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Abstract. We study the hypergeometric functions associated to five one-parameter deformations
of Delsarte K3 quartic hypersurfaces in projective space. We compute all of their Picard–Fuchs
differential equations; we count points using Gauss sums and rewrite this in terms of finite field
hypergeometric sums; then we match up each differential equation to a factor of the zeta function,
and we write this in terms of global L-functions. This computation gives a complete, explicit
description of the motives for these pencils in terms of hypergeometric motives.
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1. Introduction

1.1. Motivation. There is a rich history of explicit computation of hypergeometric functions as-
sociated to certain pencils of algebraic varieties. Famously, in the 1950s, Igusa [Igu58] studied the
Legendre family of elliptic curves and found a spectacular relation between the 2F1-hypergeometric
Picard–Fuchs differential equation satisfied by the holomorphic period and the trace of Frobenius.
More generally, the link between the study of Picard–Fuchs equations and point counts via hyperge-
ometric functions has intrigued many mathematicians. Clemens [Cl03] referred to this phenomenon
as “Manin’s unity of mathematics.” Dwork studied the now-eponymous Dwork pencil [Dwo69, §6j,
p. 73], and Candelas–de la Ossa–Rodríguez-Villegas considered the factorization of the zeta func-
tion for the Dwork pencil of Calabi–Yau threefolds in [CDRV00, CDRV01], linking physical and
mathematical approaches. More recently, given a finite-field hypergeometric function defined over
Q, Beukers–Cohen–Mellit [BCM15] construct a variety whose trace of Frobenius is equal to the
finite field hypergeometric sum up to certain trivial factors.

1.2. Our context. In this paper, we provide a complete factorization of the zeta function and more
generally a factorization of the L-series for some pencils of Calabi–Yau varieties, namely, families of
K3 surfaces. We study certain Delsarte quartic pencils in P3 (also called invertible pencils) which
arise naturally in the context of mirror symmetry, listed in (1.2.1). Associated to each family we
have a discrete group of symmetries acting symplectically (i.e., fixing the holomorphic form). Our
main theorem (Theorem 1.4.1 below) shows that hypergeometric functions are naturally associated
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to this collection of Delsarte hypersurface pencils in two ways: as Picard–Fuchs differential equations
and as traces of Frobenius yielding point counts over finite fields.

(1.2.1)

Pencil Equation H p bad

F4 x40 + x41 + x42 + x43 − 4ψx0x1x2x3 µ4 × µ4 2
F1L3 x40 + x31x2 + x32x3 + x33x1 − 4ψx0x1x2x3 µ7 2, 7
F2L2 x40 + x41 + x32x3 + x33x2 − 4ψx0x1x2x3 µ8 2
L2L2 x30x1 + x31x0 + x32x3 + x33x2 − 4ψx0x1x2x3 µ4 × µ2 2
L4 x30x1 + x31x2 + x32x3 + x33x0 − 4ψx0x1x2x3 µ5 2, 5

Here we write µn for the group of nth roots of unity and H is a designated subgroup of symmetries
of the family. The labels F and L stand for “Fermat" and “loop", respectively.

In previous work [DKSSVW17], we showed that these five pencils share a common factor in their
zeta functions, a polynomial of degree 3 associated to the hypergeometric Picard–Fuchs differential
equation satisfied by the holomorphic form—see also recent work of Kloosterman [Klo17]. Also of
note is that the pencils are also related in that one can take a finite group quotient of each family and
find that they are then birational to one another [BvGK12]. However, these pencils (and their zeta
functions) are not the same! In this article, we investigate the remaining factors explicitly (again
recovering the common factor). In fact, we show that each pencil is associated with a distinct and
beautiful collection of auxiliary hypergeometric functions.

1.3. Notation. We use the symbol ⋄ ∈ F = {F4,F2L2,F1L3, L2L2, L4} to signify one of the five K3
pencils in (1.2.1). Let ψ ∈ Q∖ {0, 1}. Let S = S(⋄, ψ) be the set of bad primes in (1.2.1) together
with the primes dividing the numerator or denominator of either ψ4 or ψ4− 1. Then for p ̸∈ S, the
K3 surface X⋄,ψ has good reduction at p, and for q = pr we let

(1.3.1) P⋄,ψ,q(T ) := det(1− Frobrp T |H2
ét,prim(X⋄,ψ,Qℓ)) ∈ 1 + TZ[T ]

be the characteristic polynomial of the q-power Frobenius acting on primitive second degree étale
cohomology for ℓ ̸= p, which is independent of ℓ. (Recall that the primitive cohomology of a
hypersurface in Pn is orthogonal to the hyperplane class.) Accordingly, the zeta function of X⋄,ψ
over Fq is

(1.3.2) Zq(X⋄,ψ, T ) =
1

(1− T )(1− qT )P⋄,ψ,q(T )(1− q2T )
.

The Hodge numbers of X⋄,ψ imply that the polynomial P⋄,ψ,q(T ) has degree 21. Packaging these
together, we define the (incomplete) L-series

(1.3.3) LS(X⋄,ψ, s) :=
∏
p ̸∈S

P⋄,ψ,p(p
−s)−1

convergent for s ∈ C in a right half-plane.
Our main theorem explicitly identifies the Dirichlet series LS(X⋄,ψ, s) as a product of hypergeo-

metric L-series. To state this precisely, we now introduce a bit more notation. Let ααα = {α1, . . . , αd}
and βββ = {β1, . . . , βd} be multisets with αi, βi ∈ Q≥0 that modulo Z are disjoint. We associate a
field of definition Kααα,βββ to ααα,βββ, which is an explicitly given finite abelian extension of Q. For certain
prime powers q and t ∈ Fq, there is a finite field hypergeometric sum Hq(ααα;βββ | t) ∈ Kααα,βββ defined
by Katz [Kat90] as a finite field analogue of the complex hypergeometric function, normalized by
McCarthy [McC12b], extended by Beukers–Cohen–Mellit [BCM15], and pursued by many authors:
see section 3.1 for the definition and further discussion, and section 3.2 for an extension of this def-
inition. We package together the exponential generating series associated to these hypergeometric
sums into an L-series LS(H(ααα;βββ | t), s): see section 4.1 for further notation.
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1.4. Results. Our main theorem is as follows.

Main Theorem 1.4.1. The following equalities hold with t = ψ−4 and S = S(⋄, ψ).
(a) For the Dwork pencil F4,

LS(XF4,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· LS(H(14 ,
3
4 ; 0,

1
2 | t), s− 1, ϕ−1)

3

· LS(H(12 ; 0 | t),Q(
√
−1), s− 1, ϕ√−1)

6

where

(1.4.2)
ϕ−1(p) :=

(
−1
p

)
= (−1)(p−1)/2 is associated to Q(

√
−1) |Q, and

ϕ√−1(p) :=

(√
−1
p

)
= (−1)(Nm(p)−1)/4 is associated to Q(ζ8) |Q(

√
−1).

(b) For the Klein–Mukai pencil F1L3,

LS(XF1L3,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· LS(H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t

−1),Q(ζ7), s− 1)

where

LS(H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t

−1), s) = LS(H( 3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t

−1), s)

are defined over K = Q(
√
−7).

(c) For the pencil F2L2,

LS(XF2L2,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· LS(Q(ζ8) |Q, s− 1)2LS(H(14 ,
3
4 ; 0,

1
2 | t), s− 1, ϕ−1)

· LS(H(12 ; 0 | t),Q(
√
−1), s− 1, ϕ√−1)

· LS(H(18 ,
5
8 ; 0,

1
4 | t

−1),Q(ζ8), s− 1, ϕ√2)

where
LS(H(18 ,

5
8 ; 0,

1
4 | t

−1), s) = LS(H(38 ,
7
8 ; 0,

3
4 | t

−1), s)

are defined over K = Q(
√
−1),

(1.4.3) ϕ√2(p) :=

(√
2

p

)
≡ 2(Nm(p)−1)/4 (mod p) is associated to Q(ζ8,

4
√
2) |Q(ζ8),

and L(Q(ζ8) |Q, s) := ζQ(ζ8)(s)/ζQ(s) is the ratio of the Dedekind zeta function of Q(ζ8) and
the Riemann zeta function.

(d) For the pencil L2L2,

LS(XL2L2,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· ζQ(
√
−1)(s− 1)4LS(H(14 ,

3
4 ; 0,

1
2 | t), s− 1, ϕ−1)

· LS(H(18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t),Q(

√
−1), s− 1, ϕ√−1ϕψ)

where

(1.4.4) ϕψ(p) :=

(
ψ

p

)
is associated to Q(

√
ψ) |Q.
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(e) For the pencil L4,

LS(XL4,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· ζ(s− 1)2LS(H(15 ,
2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t

−1),Q(ζ5), s− 1).

We summarize Theorem 1.4.1 for each of our five pencils in (1.4.5): we list the degree of the
L-factor, the hypergeometric parameters, and the base field indicating when it arises from base
change. A Dedekind (or Riemann) zeta function factor has factors denoted by -.

(1.4.5)

Pencil Degree ααα βββ Base Field

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

F4 2 · 3 = 6 1
4 ,

3
4 0, 12 Q

2 · 6 = 12 1
2 0 Q(

√
−1), from Q

F1L3
3 1

4 ,
1
2 ,

3
4 0, 0, 0 Q

18 1
14 ,

9
14 ,

11
14 0, 14 ,

3
4 Q(ζ7), from Q(

√
−7)

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

3 · 2 = 6 - - Q(ζ8), from Q

F2L2
2 1

4 ,
3
4 0, 12 Q

2 1
2 0 Q(

√
−1), from Q

8 1
8 ,

5
8 0, 14 Q(ζ8), from Q(

√
−1)

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

L2L2
2 · 4 = 8 - - Q(

√
−1), from Q

2 1
4 ,

3
4 0, 12 Q

8 1
8 ,

3
8 ,

5
8 ,

7
8 0, 14 ,

1
2 ,

3
4 Q(

√
−1), from Q

3 1
4 ,

1
2 ,

3
4 0, 0, 0 Q

L4 1 · 2 = 2 - - Q
16 1

5 ,
2
5 ,

3
5 ,

4
5 0, 14 ,

1
2 ,

3
4 Q(ζ5), from Q

We extensively checked the equality of Euler factors in Main Theorem 1.4.1 in numerical cases
(for many primes and values of the parameter ψ): for K3 surfaces we used code written by Costa
[CT14], and for the finite field hypergeometric sums we used code in Pari/GP and Magma [BCP97],
the latter available for download [V18]. See also Example 4.8.3.

Additionally, each pencil has the common factor LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s), giving another proof

of a result in previous work [DKSSVW17]: we have a factorization over Q[T ]

(1.4.6) P⋄,ψ,p(T ) = Q⋄,ψ,p(T )Rψ,p(T )

with Rψ,p(T ) of degree 3 independent of ⋄ ∈ F . The common factor Rψ,p(T ) is given by the action
of Frobenius on the transcendental part in cohomology, and the associated completed L-function
L(H(14 ,

1
2 ,

3
4 ; 0, 0, 0 | t), s) is automorphic by Elkies–Schütt [ES08] (or see our summary [DKSSVW17,

§5.2]): it arises from a family of classical modular forms on GL2 over Q, and in particular, it has
analytic continuation and functional equation. See also recent work of Naskręcki [Nas17].

The remaining factors in each pencil in Main Theorem 1.4.1 yield a factorization of Q⋄,ψ,p(T ),
corresponding to the algebraic part in cohomology (i.e., the Galois action on the Néron–Severi
group). In particular, the polynomial Q⋄,ψ,p(T ) has reciprocal roots of the form p times a root of
unity. The associated hypergeometric functions are algebraic by the criterion of Beukers–Heckman
[BH89], and the associated L-functions can be explicitly identified as Artin L-functions: see section
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4.7. The algebraic L-series can also be explicitly computed when they are defined over Q [Coh, Nas].
For example, if we look at the Artin L-series associated to the Dwork pencil F4, Cohen has given
the following L-series relations (see Proposition 4.7.2):

(1.4.7)
LS(H(14 ,

3
4 ; 0,

1
2 |ψ

−4), s, ϕ−1) = LS(s, ϕ1−ψ2)LS(s, ϕ−1−ψ2)

LS(H(12 ; 0 |ψ
−4,Q(

√
−1), s, ϕ√−1) = LS(s, ϕ2(1−ψ4))LS(s, ϕ−2(1−ψ4)).

In particular, it follows that the minimal field of definition of the Néron–Severi group of XF4,ψ is
Q(ζ8,

√
1− ψ2,

√
1 + ψ2). The expressions (1.4.7), combined with Main Theorem 1.4.1(a), resolve

a conjecture of Duan [Dua18]. (For geometric constructions of the Néron–Severi group of XF4,ψ, see
Bini–Garbagnati [BG14] and Kloosterman [Klo17]; the latter also provides an approach to explicitly
construct generators of the Néron–Severi group for four of the five families studied here, with the
stubborn case F1L3 still unresolved.) Our theorem yields an explicit factorization of Q⋄,ψ,q(T ) for
the Dwork pencil over Fq for any odd q (see Corollary 4.7.4). As a final application, Corollary 4.8.1
shows how the algebraic hypergeometric functions imply the existence of a factorization of Q⋄,ψ,p(T )
over Q[T ] depending only on q for all families.

Remark 1.4.8. Our main theorem can be rephrased as saying that the motive associated to primitive
middle-dimensional cohomology for each pencil of K3 surfaces decomposes into the direct sum of
hypergeometric motives as constructed by Katz [Kat90]. These motives then govern both the
arithmetic and geometric features of these highly symmetric pencils. Absent a reference, we do not
invoke the theory of hypergeometric motives in our proof.

1.5. Contribution and relation to previous work. Our main result gives a complete decompo-
sition of the cohomology for the five K3 pencils into hypergeometric factors. We provide formulas
for each pencil and for all prime powers q, giving an understanding of the pencil over Q. Ad-
dressing these subtleties, and consequently giving a result for the global L-function, is unique to
our treatment. Our point of view is computational and explicit; we expect that our methods will
generalize and perhaps provide an algorithmic approach to the hypergeometric decomposition for
other pencils.

As mentioned above, the study of the hypergeometricity of periods and point counts enjoys a
long-standing tradition. Using his p-adic cohomology theory, Dwork [Dwo69, §6j, p. 73] showed for
the family F4 that middle-dimensional cohomology decomposes into pieces according to three types
of differential equations. Kadir in her Ph.D. thesis [Kad04, §6.1] recorded a factorization of the zeta
function for F4, a computation due to de la Ossa. Building on the work of Koblitz [Kob83], Salerno
[Sal09, §4.2.1–4.2.2] used Gauss sums in her study of the Dwork pencil in arbitrary dimension; under
certain restrictions on q, she gave a formula for the number of points modulo p in terms of truncated
hypergeometric functions as defined by Katz [Kat90] as well as an explicit formula [Sal13a, §5.4]
for the point count for the family F4. Goodson [Goo17b, Theorems 1.1–1.3] looked again at F4
and proved a similar formula for the point counts over Fq for all primes q = p and prime powers
q ≡ 1 (mod 4). In [FLRST15], Fuselier et al. define an alternate finite field hypergeometric function
(which differs from those by Katz, McCarthy, and Beukers–Cohen–Mellit) that makes it possible to
prove identities that are analogous to well-known ones for classical hypergeometric functions. They
then use these formulas to compute the number of points of certain hypergeometric varieties.

Several authors have also studied the role of hypergeometric functions over finite fields for the
Dwork pencil in arbitrary dimension, which for K3 surfaces is the family F4 given in Main Theorem
1.4.1. McCarthy [McC16] extended the definition of p-adic hypergeometric functions to provide a
formula for the number of Fp points on the Dwork pencil in arbitrary dimension for all odd primes
p, extending his results [McC12a] for the quintic threefold pencil. Goodson [Goo17a, Theorem 1.2]
then used McCarthy’s formalism to rewrite the formula for the point count for the Dwork family in
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arbitrary dimension in terms of hypergeometric functions when (n+ 1) | (q − 1) and n is even. See
also Katz [Kat09], who took another look at the Dwork family.

Miyatani [Miy15, Theorem 3.2.1] has given a general formula that applies to each of the five
families, but with hypotheses on the congruence class of q. It is not clear that one can derive our
decomposition from the theorem of Miyatani.

A different line of research has been used to describe the factorization structure of the zeta
function for pencils of K3 surfaces or Calabi–Yau varieties that can recover part of Main Theorem
1.4.1. Kloosterman [Klo07a, Klo07b] has shown that one can use a group action to describe the
distinct factors of the zeta function for any one-parameter monomial deformation of a diagonal
hypersurface in weighted projective space. He then applied this approach [Klo17] to study the K3
pencils above and generalize our work on the common factor. His approach is different from both
that work and the present one: he uses the Shioda map [Shi86] to provide a dominant rational map
from a monomial deformation of a diagonal (Fermat) hypersurface to the K3 pencils. The Shioda
map has been used in the past [BvGK12] to recover the result of Doran–Greene–Judes matching
Picard–Fuchs equations for the quintic threefold examples, and it was generalized to hypersurfaces
of fake weighted-projective spaces and BHK mirrors [Bin11, Kel13]. Kloosterman also provides
some information about the other factors in some cases.

1.6. Proof strategy and plan of paper. The proof of Main Theorem 1.4.1 is an involved calcu-
lation. Roughly speaking, we use the action of the group of symmetries to calculate hypergeometric
periods and then use this decomposition to guide an explicit decomposition of the point count into
finite field hypergeometric sums.

Our proof follows three steps. First, in section 2, we find all Picard–Fuchs equations via the
diagrammatic method developed by Candelas–de la Ossa–Rodríguez-Villegas [CDRV00, CDRV01]
and Doran–Greene–Judes [DGJ08] for the Dwork pencil of quintic threefolds. For each of our five
families, we give the Picard–Fuchs equations in convenient hypergeometric form.

Second, in section 3, we carry out the core calculations by counting points over Fq for the
corresponding pencils using Gauss sums. This technique begins with the original method of Weil
[Wei49], extended by Delsarte and Furtado Gomida, and fully explained by Koblitz [Kob83]. We
then take these formulas and, using the hypergeometric equations found in section 2 and careful
manipulation, link these counts to finite field hypergeometric functions. The equations computed
in section 2 do not enter directly into the proof of the theorem, but they give an answer that can
then be verified by some comparatively straightforward manipulations. These calculations confirm
the match predicted by Manin’s “unity” (see [Cl03]).

Finally, in section 4, we use the point counts from section 3 to explicitly describe the L-series for
each pencil, and prove Main Theorem 1.4.1. We conclude by relating the L-series to factors of the
zeta function for each pencil.
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1401446 and the EPSRC under EP/N004922/1. Voight was supported by an NSF CAREER Award
(DMS-1151047) and a Simons Collaboration Grant (550029).
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2. Picard–Fuchs equations

In this section, we compute the Picard–Fuchs equations associated to all primitive cohomology
for our five symmetric pencils of K3 surfaces defined in (1.2.1). Since we are working with pencils
in projective space, we are able to represent 21 of the h2(Xψ) = 22 dimensions of the second degree
cohomology as elements in the Jacobian ring, that is, the primitive cohomology of degree two for
the quartic pencils in P3. We employ a more efficient version of the Griffiths–Dwork technique
which exploits discrete symmetries. This method was previously used by Candelas–de la Ossa–
Rodríguez-Villegas [CDRV00, CDRV01] and Doran-Greene–Judes [DGJ08]. Gährs [Gäh13] used a
similar combinatorial technique to study Picard–Fuchs equations for holomorphic forms on invertible
pencils. After explaining the Griffiths–Dwork technique for symmetric pencils in projective space,
we carry out the computation for two examples in thorough detail, and then state the results of the
computation for three others.

2.1. Setup. We briefly review the computational technique of Griffiths–Dwork [CDRV00, CDRV01,
DGJ08], and we begin with the setup in some generality.

LetX ⊂ Pn be a smooth projective hypersurface over C defined by the vanishing of F (x0, . . . , xn) ∈
C[x0, . . . , xn] homogeneous of degree d. Let Ai(X) be the space of rational i-forms on Pn with polar
locus contained in X, or equivalently regular i-forms on Pn \X. By Griffiths [Gri69, Corollary 2.1],
any φ ∈ An(X) can be written as

(2.1.1) φ =
Q(x0, . . . , xn)

F (x0, . . . , xn)k
Ω0,

where k ≥ 0 and Q ∈ C[x0, . . . , xn] is homogeneous of degree degQ = k degF − (n+ 1) and

(2.1.2) Ω0 :=
n∑
i=0

(−1)ixi dx0 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn.

We define the de Rham cohomology groups

(2.1.3) Hi(X) :=
Ai(X)

dAi−1(X)
.

There is a residue map
Res: Hn(X)→ Hn−1(X,C)

made famous by seminal work of Griffiths [Gri69], mapping into the middle-dimensional Betti
cohomology of the hypersurface X. Given φ ∈ An(X), we choose an (n− 1)-cycle γ in X and T (γ)
a circle bundle over γ with an embedding into the complement Pn \X that encloses γ, and define
Res(φ) to be the (n− 1)-cocycle such that

(2.1.4)
1

2π
√
−1

∫
T (γ)

φ =

∫
γ
Res(φ),

well-defined for φ ∈ Hn(X). Two circle bundles T (γ) with small enough radius are homologous in
Hn(Pn \X,Z), so the class Res(φ) ∈ Hn−1(X,C) is well-defined.

There is a filtration on Hn(X) by an upper bound on the order of the pole along X:

Hn1 (X) ⊆ Hn2 (X) ⊆ . . . ⊆ Hnn(X) = Hn(X).

This filtration on Hn(X) is compatible with the Hodge filtration on Hn−1(X,C): if we define

Fk(X) := Hn−1,0(X,C)⊕ . . .⊕Hk,n−k−1(X,C),

then the residue map restricts to Res: Hnk (X)→ Fn−k(X).
7



In certain circumstances, we may be able to reduce the order of the pole [Gri69, Formula 4.5]:
we have

(2.1.5)
Ω0

F (xi)k+1

n∑
j=0

Qj(xi)
∂F (xi)

∂xj
=

1

k

Ω0

F (xi)k

n∑
j=0

∂Qj(xi)

∂xj
+ ω

where ω is an exact rational form. In fact, equation (2.1.5) implies that the order of a form φ can
be lowered (up to an exact form) if and only if the polynomial Q is in the Jacobian ideal J(F ),
that is, the (homogeneous) ideal generated by all partial derivatives of F . So for k ≥ 1 we have a
natural identification

(2.1.6)
Hnk (X)

Hnk−1(X)

∼−→
(
C[x0, . . . , xn]

J(F )

)
k degF−(n+1)

which by the residue map induces an identification

(2.1.7)
(
C[x0, . . . , xn]

J(F )

)
k degF−(n+1)

→ Hn−k,k−1(X),

whose image is the primitive cohomology group Hn−k,k−1
prim (X), which we know is the cohomology

orthogonal to the hyperplane class since X is a hypersurface in Pn.

Example 2.1.8. For X a quartic hypersurface in P3, the identification (2.1.7) reads

(2.1.9)
C[x0, x1, x2, x3]4k

J(F )
≃ H2−k,k

prim (X).

In this case, the Hodge numbers are given by h2,0 = 1, h1,1 = 35 − 4 · 4 = 19, and h0,2 =
165− 4 · 56 + 6 · 10 = 1.

2.2. Griffiths–Dwork technique. Now suppose that Xψ is a pencil of hypersurfaces in the pa-
rameter ψ, defined by Fψ = 0. Let {γj}j be a basis for Hn−1(Xψ,C) with cardinality hn−1 :=
dimCHn−1(Xψ,C).

Remark 2.2.1. There is a subtle detail about taking a parallel transport using an Ehresmann con-
nection to obtain a (locally) unique horizontal family of homology classes [DGJ08, §2.3]. This detail
does not affect our computations.

We then choose a basis of (possibly ψ-dependent) (n−1)-forms ΩXψ ,i ∈ Hn−1(X,C) so that each
of the forms ΩXψ ,i ∈ Hn−1(X,C) has fixed bidegree (p, q) which provides a basis for the Hodge
decomposition Hn−1(X,C) =

⊕
p+q=n−1H

p,q(X) for each fixed ψ. We now examine the period
integrals ∫

γj

ΩXψ ,i

for 1 ≤ i, j ≤ hn−1.
We want to understand how these integrals vary with respect to the pencil parameter ψ. To do

so, we simply differentiate with respect to ψ, or equivalently integrate on the complement of Xψ in
Pn as outlined above. Using the residue relation (2.1.4), we rewrite:

(2.2.2)
∫
γj

ΩXψ ,i =

∫
T (γj)

Qi

F kψ
Ω0,

for some Qi ∈ C[x0, . . . , xn]k degFψ−(n+1) and k ∈ Z≥0 (and circle bundle T (γj) with sufficiently
small radius as above). By viewing Fψ as a function F : C → C[x0, . . . , xn] with parameter ψ, we
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can differentiate F (ψ) with respect to ψ and study how this period integral varies:

(2.2.3)
d

dψ

∫
T (γj)

Qi
F (ψ)k

Ω0 = −k
∫
T (γj)

Qi
F (ψ)k+1

dF

dψ
Ω0

Note that the right-hand side of (2.2.3) gives us a new (n− 1)-form.
We know that we will find a linear relation if we differentiate dimCH

n−1(Xψ,C) times, giving
us a single-variable ordinary differential equation called the Picard–Fuchs equation for the period∫
γj
ΩXψ ,i. In practice, fewer derivatives may be necessary.

For simplicity, we suppose that Fψ is linear in the variable ψ. Then the Griffiths–Dwork technique
for finding the Picard–Fuchs equation is the following procedure (see [CK99] or [DGJ08] for a more
detailed exposition):

1. Differentiate the period b times, 1 ≤ b ≤ hn−1. We obtain the equation(
d

dψ

)b ∫
T (γj)

Qi
F (ψ)k

Ω0 =
(k + b− 1)!

(k − 1)!

∫
T (γj)

Qi
F (ψ)k+b

(
−dF

dψ

)b
Ω0.

2. Write

(2.2.4) Qi

(
−dF

dψ

)b
=

hn−1∑
j=1

αjQj + J

where αk ∈ C(ψ) and J is in the Jacobian ideal, so we may write J =
∑

iAi
∂Fψ
∂xi

with Ai ∈
C(ψ)[x0, . . . , xn] for all i.

3. Use (2.1.5) to reduce the order of the pole of
J

F (ψ)k
Ω0. We obtain a new numerator polynomial

of lower degree.
4. Repeat steps 2 and 3 for the new numerator polynomials, until the bth derivative is expressed in

terms of the chosen basis for cohomology.
5. Use linear algebra to find a C(ψ)-linear relationship between the derivatives.

While algorithmic and assured to work, this method can be quite tedious to perform. Moreover,
the structure of the resulting differential equation may not be readily apparent.

2.3. A diagrammatic Griffiths–Dwork method. In this section, we give a computational tech-
nique that uses discrete symmetries of pencils of Calabi–Yau hypersurfaces introduced by Candelas–
de la Ossa–Rodríguez-Villegas [CDRV00, CDRV01]. To focus on the case at hand, we specialize to
the case of quartic surfaces and explain this method so their diagrammatic and effective adaptation
of the Griffiths–Dwork technique can be performed for the five pencils that we want to study.

Let xv := xv00 x
v1
1 x

v2
2 x

v3
3 and let k(v) := 1

4

∑
i vi; for a monomial arising from (2.1.9), we have

k(v) ∈ Z≥0. Fix a cycle γ, and consider the periods

(2.3.1) (v0, v1, v2, v3) :=

∫
T (γ)

xv

F
k(v)+1
ψ

Ω0.

Consider the relation:

(2.3.2) ∂i

 xix
v

F
k(v)+1
ψ

 =
xv

F
k(v)+1
ψ

(1 + vi)− (k(v) + 1)
xv

F
k(v)+2
ψ

xi∂iFψ.

9



We can use (2.3.2) in order to simplify the computation of the Picard–Fuchs equation: integrating
over T (γ), the left hand side vanishes, so we can solve for (v0, v1, v2, v3):

(2.3.3) (1 + vi)(v0, v1, v2, v3) :=

∫
T (γ)

xv

F
k(v)+1
ψ

Ω0 = (k(v) + 1)

∫
T (γ)

xvxi∂iFψ

F
k(v)+2
ψ

Ω0.

Example 2.3.4. Consider the Dwork pencil F4, the pencil defined by the vanishing of

Fψ = x40 + x41 + x42 + x43 − 4ψx0x1x2x3.

Simplifying the right-hand side of (2.3.3) gives us the relation of periods:

(1 + vi)(v0, v1, v2, v3) = 4(k(v) + 1) ((v0, . . . , vi + 4, . . . , v3)− ψ(v0 + 1, v1 + 1, v2 + 1, v3 + 1))

or in a more useful form

(2.3.5) (v0, . . . , vi + 4, . . . , v3) =
1 + vi

4(k(v) + 1)
(v0, v1, v2, v3) + ψ(v0 + 1, v1 + 1, v2 + 1, v3 + 1)

for i = 0, 1, 2, 3.

Recall we can also find a relation between various (v0, v1, v2, v3) by differentiating with respect
to ψ. Rewriting (2.2.3) in the current notation, we obtain

(2.3.6)
d

dψ
(v0, v1, v2, v3) = (4(k(v) + 1))(v0 + 1, v1 + 1, v2 + 1, v3 + 1),

yielding a dependence of the monomials with respect to the successive derivatives with respect to
ψ.

Using the relations (2.3.3) and (2.3.6), we will compute the Picard–Fuchs equations associated
to periods that come from primitive cohomology. The key observation is that these two operations
respect the symplectic symmetry group.

Restricting now to our situation, let ⋄ ∈ {F4,F2L2,F1L3, L2L2, L4} signify one of the five K3
families in (1.2.1) defined by F⋄,ψ and having symmetry group H = H⋄ as in (1.2.1). Then H acts
on the 19-dimensional C-vector space

(2.3.7) V := (C[x0, x1, x2, x3]/J(Fψ))4
giving a representation H → GL(V ). As H is abelian, we may decompose V =

⊕
χWχ where H

acts on Wχ by a (one-dimensional) character χ : H → C×. Conveniently, each subspace Wχ has
a monomial basis. Moreover, the relations from the Jacobian ideal (2.3.3) and (2.3.6) respect the
action of H, so we can apply the Griffiths–Dwork technique to the smaller subspaces Wχ.

2.4. Hypergeometric differential equations. In fact, we will find that all of our Picard–Fuchs
differential equations are hypergeometric. In this section, we briefly recall the definitions [Sla66].

Definition 2.4.1. Let n,m ∈ Z, let α1, . . . , αn ∈ Q and β1, . . . , βm ∈ Q>0, and write ααα = {αj}j
and βββ = {βj}j as multisets. The (generalized) hypergeometric function is the formal series

(2.4.2) F (ααα;βββ | z) :=
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βm)k

zk ∈ Q[[z]],

where (x)k is the rising factorial (or Pochhammer symbol)

(x)k := x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)

and (x)0 := 1. We call ααα the numerator parameters and βββ the denominator parameters.
10



We consider the differential operator

θ := z
d

dz

and define the hypergeometric differential operator

(2.4.3) D(ααα;βββ | z) := (θ + β1 − 1) · · · (θ + βm − 1)− z(θ + α1) · · · (θ + αn).

When β1 = 1, the hypergeometric function F (ααα;βββ | z) is annihilated by D(ααα;βββ | z).

2.5. The Dwork pencil F4. We now proceed to calculate Picard–Fuchs equations for our five
pencils. We begin in this section with the Dwork pencil F4, the one-parameter family of projective
hypersurfaces Xψ ⊂ P4 defined by the vanishing of the polynomial

Fψ := x40 + x41 + x42 + x43 − 4ψx0x1x2x3.

The differential equations associated to this pencil were studied by Dwork [Dwo69, §6j]; our approach
is a bit more detailed and explicit, and this case is a good warmup as the simplest of the five cases
we will consider.

There is a H = (Z/4Z)2 symmetry of this family generated by the automorphisms

(2.5.1)
g1(x0 : x1 : x2 : x3) = (−

√
−1x0 :

√
−1x1 : x2 : x3)

g2(x0 : x1 : x2 : x3) = (−
√
−1x0 : x1 :

√
−1x2 : x3).

A character χ : H → C× is determined by χ(g1), χ(g2) ∈ ⟨
√
−1⟩, and we write χ(a1,a2) for the

character with χ(a1,a2)(gi) =
√
−1ai with ai ∈ Z/4Z for i = 1, 2, totaling 16 characters. We then

decompose V defined in (2.3.7) into irreducible subspaces with a monomial basis. We cluster these
subspaces into three types up to the permutation action by S4 on coordinates:

(i) (a1, a2) = (0, 0) (the H-invariant subspace), spanned by x0x1x2x3;
(ii) (a1, a2) both even but not both zero, e.g., the subspace with (a1, a2) = (0, 2) spanned by

x20x
2
1, x

2
2x

2
3; and

(iii) (a1, a2) not both even, e.g., the subspace with (a1, a2) = (2, 1), spanned by x30x1.
Up to permutation of coordinates, there are 1, 3, 12 subspaces of types (i),(ii),(iii), respectively.
By symmetry, we just need to compute the Picard–Fuchs equations associated to one subspace of
each of these types. In other words, we only need to find equations satisfied by the monomials
x0x1x2x3, x

2
0x

2
1, x

2
2x

2
3, and x30x1, corresponding to (1, 1, 1, 1), (2, 2, 0, 0), (0, 0, 2, 2), and (3, 1, 0, 0),

respectively.
The main result for this subsection is as follows.

Proposition 2.5.2. The primitive middle-dimensional cohomology group H2
prim(XF4,ψ,C) has 21

periods whose Picard–Fuchs equations are hypergeometric differential equations as follows:

3 periods are annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4),

6 periods are annihilated by D(14 ,
3
4 ; 1,

1
2 |ψ

−4), and

12 periods are annihilated by D(12 ; 1 |ψ
−4).

By the interlacing criterion [BH89, Theorem 4.8], the latter two hypergeometric equations have
algebraic solutions.

We state and prove each case of Proposition 2.5.2 with an individual lemma.

Lemma 2.5.3. The Picard–Fuchs equation associated to the period ψ(0, 0, 0, 0) is the hypergeometric
differential equation D(14 ,

1
2 ,

3
4 ; 1, 1, 1 |ψ

−4).
11



Proof. We recall the equations (2.3.5) and (2.3.6):

(2.5.4) (v0, . . . , vi + 4, . . . , v3) =
1 + vi

4(k(v) + 1)
(v0, v1, v2, v3) + ψ(v0 + 1, v1 + 1, v2 + 1, v3 + 1);

(2.5.5)
d

dψ
(v0, v1, v2, v3) = (4(k(v) + 1))(v0 + 1, v1 + 1, v2 + 1, v3 + 1).

These equations imply a dependence among the terms

(v0, v1, v2, v3), (v0 + 1, v1 + 1, v2 + 1, v3 + 1), and (v0, . . . , vi + 4, . . . , v3)

denoted in the following diagram:

(v0, v1, v2, v3) //

��

(v0 + 1, v1 + 1, v2 + 1, v3 + 1)

(v0, . . . , vi + 4, . . . , v3)

In order to use these dependences, we build up a larger diagram:

(2.5.6)

(0, 0, 0, 0) //

��

(1, 1, 1, 1) //

��

(2, 2, 2, 2) //

��

(3, 3, 3, 3)

(4, 0, 0, 0) //

��

(5, 1, 1, 1) //

��

(6, 2, 2, 2)

(4, 4, 0, 0) //

��

(5, 5, 1, 1)

(3, 3, 3,−1) //

��

(4, 4, 4, 0)

(3, 3, 3, 3)

It may be useful to point out that the same period must appear in two places by simple linear algebra:
the vectors (4, 0, 0, 0), (0, 4, 0, 0), (0, 0, 4, 0), (0, 0, 0, 4) and (1, 1, 1, 1) are linearly dependent.

Using (2.3.5) and (2.3.6) and letting η := ψ
d

dψ
, we see that:

(2.5.7)

(0, 0, 0, 0) =
1

4
(η + 1)(4, 0, 0, 0)

(4, 0, 0, 0) =
1

8
(η + 1)(4, 4, 0, 0)

(4, 4, 0, 0) =
1

12
(η + 1)(4, 4, 4, 0)

ψ(4, 4, 4, 0) = (3, 3, 3, 3)
12



Now, we can use the fact that (η − a)ψa = ψaη for a ∈ Z to great effect:

(2.5.8)

η(0, 0, 0, 0) = 4ψ(1, 1, 1, 1)

(η − 1)η(0, 0, 0, 0) = 4ψη(1, 1, 1, 1) = 8 · 4ψ2(2, 2, 2, 2)

(η − 2)(η − 1)η(0, 0, 0, 0) = 12 · 8 · 4ψ2η(2, 2, 2, 2) = 12 · 8 · 4ψ3(3, 3, 3, 3)

= 12 · 8 · 4ψ4(4, 4, 4, 0)

= 8 · 4ψ4(η + 1)(4, 4, 0, 0)

= 4ψ4(η + 1)2(4, 0, 0, 0)

= ψ4(η + 1)3(0, 0, 0, 0).

We conclude that

(2.5.9)
[
(η − 2)(η − 1)η − ψ4(η + 1)3

]
(0, 0, 0, 0) = 0.

We then multiply by ψ to obtain[
ψ(η − 2)(η − 1)η − ψ4ψ(η + 1)3

]
(0, 0, 0, 0) = 0[

(η − 3)(η − 2)(η − 1)− ψ4(η)3
]
ψ(0, 0, 0, 0) = 0.

Finally, substitute t := ψ−4 and let θ := t
d

dt
= −η/4 to see that

(2.5.10)

[
(−4θ − 3)(−4θ − 2)(−4θ − 1)− t−1(−4θ)3

]
ψ(0, 0, 0, 0) = 0[

−t(θ + 3
4)(θ +

1
2)(θ +

1
4) + θ3

]
ψ(0, 0, 0, 0) = 0[

θ3 − t(θ + 1
4)(θ +

1
2)(θ +

3
4)
]
ψ(0, 0, 0, 0) = 0,

which is the differential equation D(14 ,
1
2 ,

3
4 ; 1, 1, 1 | t). □

Lemma 2.5.11. The Picard–Fuchs equation associated to both ψ(2, 2, 0, 0) and ψ(0, 0, 2, 2) is D(14 ,
3
4 ; 1,

1
2 |ψ

−4).

Proof. By iterating the use of (2.3.5), we can construct a diagram including both (2, 2, 0, 0) and
(0, 0, 2, 2):

(2.5.12)

(0, 0, 2, 2)

��

// (1, 1, 3, 3)

(3,−1, 1, 1)

��

// (4, 0, 2, 2)

(2, 2, 0, 0)

��

// (3, 3, 1, 1)

(1, 1, 3,−1)

��

// (2, 2, 4, 0)

(1, 1, 3, 3)

We then obtain the following relations:

(2.5.13)
η(2, 2, 0, 0) = ψ2(η + 1)(0, 0, 2, 2);

η(0, 0, 2, 2) = ψ2(η + 1)(2, 2, 0, 0).
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We then can use these relations to make a Picard–Fuchs equation associated to the period (2, 2, 0, 0):

(2.5.14)

(η − 2)η(2, 2, 0, 0) = ψ2(η + 1)η(0, 0, 2, 2)

= ψ2(η + 1)
(
ψ2(η + 1)(2, 2, 0, 0)

)
= 2ψ4(η + 1)(2, 2, 0, 0) + ψ4(η + 1)η(2, 2, 0, 0)

+ ψ4(η + 1)(2, 2, 0, 0)

= ψ4(η2 + 4η + 3)(2, 2, 0, 0)

= ψ4(η + 1)(η + 3)(2, 2, 0, 0).

By symmetry, we get the same equation for the period (0, 0, 2, 2), so we have:

(2.5.15)

[
(η − 2)η − ψ4(η + 1)(η + 3)

]
(2, 2, 0, 0) = 0[

(η − 2)η − ψ4(η + 1)(η + 3)
]
(0, 0, 2, 2) = 0

Now multiply by ψ and then change variables to t := ψ−4 with θ := t ddt = −4η to obtain:[
ψ(η − 2)η − ψψ4(η + 1)(η + 3)

]
(2, 2, 0, 0) = 0[

(η − 3)(η − 1)− ψ4η(η + 2)
]
ψ(2, 2, 0, 0) = 0[

(−4θ − 3)(−4θ − 1)− t−1(−4θ)(−4θ + 2)
]
ψ(2, 2, 0, 0) = 0[

t(θ + 3
4)(θ +

1
4)− θ(θ −

1
2)
]
ψ(2, 2, 0, 0) = 0[

θ(θ − 1
2)− t(θ +

1
4)(θ +

3
4)
]
ψ(2, 2, 0, 0) = 0.

This Picard–Fuchs equation is D(14 ,
3
4 ; 1,

1
2 |ψ

−4). □

Lemma 2.5.16. The Picard–Fuchs equation associated to ψ(3, 1, 0, 0) is D(12 ; 1 |ψ
−4).

Proof. Our strategy again is to use (2.3.5) and (2.3.6) in the order represented by the diagram below
to study the period (3, 1, 0, 0):

(2.5.17)

(2, 0,−1, 3)

��

// (3, 1, 0, 4)

(1,−1, 2, 2)

��

// (2, 0, 3, 3)

(−1, 1, 0, 0)

��

// (0, 2, 1, 1)

��

// (1, 3, 2, 2)

(3, 1, 0, 0)

��

// (4, 2, 1, 1)

(3, 1, 0, 4)

Using (2.3.5) iteratively in the upper part of the diagram, we see that:

(2.5.18) (1, 3, 2, 2) = ψ2(3, 1, 0, 4).

Then using (2.3.6), we then have that

(2.5.19) η(0, 2, 1, 1) = 8ψ(1, 3, 2, 2) = 8ψ3(3, 1, 0, 4).
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Now, using (2.3.5) again, we have that (3, 1, 0, 0) = ψ(0, 2, 1, 1) and we can then compute:

(2.5.20)

(η − 1)(3, 1, 0, 0) = ψη(0, 2, 1, 1)

= 8ψ4(3, 1, 0, 4)

= 8ψ4

[
1

8
(3, 1, 0, 0) + ψ(4, 2, 1, 1)

]
= 8ψ4

[
1

8
(3, 1, 0, 0) +

1

8
η(3, 1, 0, 0)

]
= ψ4(η + 1)(3, 1, 0, 0).

We then get the Picard–Fuchs equation associated to the period (3, 1, 0, 0):

(2.5.21)
[
(η − 1)− ψ4(η + 1)

]
(3, 1, 0, 0) = 0.

We now will multiply by ψ and then change variables to t = ψ−4 as in the previous lemma to
obtain: [

ψ(η − 1)− ψψ4(η + 1)
]
(3, 1, 0, 0) = 0[

(η − 2)− ψ4η
]
ψ(3, 1, 0, 0) = 0[

(−4θ − 2)− t−1(−4θ)
]
ψ(3, 1, 0, 0) = 0[

θ − t(θ + 1
2)
]
ψ(3, 1, 0, 0) = 0,

giving rise to the hypergeometric differential equation D(12 ; 1 |ψ
−4). □

We now conclude this section with the proof of the main result.

Proof of Proposition 2.5.2. We combine Lemmas 2.5.3, 2.5.11, and 2.5.16 with the consideration of
the number of subspaces of each type described above. □

2.6. The Klein–Mukai pencil F1L3. We now consider the Klein–Mukai pencil F1L3, the one-
parameter family of hypersurfaces Xψ ⊂ P4 defined by the vanishing of

Fψ := x30x1 + x31x2 + x32x0 + x43 − 4ψx0x1x2x3.

The polynomial Fψ is related to the defining polynomial (1.2.1) by a change in the order of variables.
There is a H = Z/7Z scaling symmetry of this family generated by the automorphism (xi) by

the element
g(x0 : x1 : x2 : x3) = (ξx0 : ξ

4x1 : ξ
2x2 : x3),

where ξ is a seventh root of unity. There are seven characters χk : H → C× defined by χk(g) = ξk

for k ∈ Z/7Z. Note that the monomial bases for the subspaces Wχ1 ,Wχ2 , and Wχ4 are cyclic
permutations of one another under the variables x0, x1, and x2. Analogously, so are subspaces
Wχ3 ,Wχ5 , and Wχ6 . So we have three types of clusters:

(i) Wχ0 has the monomial basis {x0x1x2x3};
(ii) Wχ1 has the monomial basis {x21x23, x20x1x2, x22x1x3}; and
(iii) Wχ3 has the monomial basis {x32x1, x21x2x3, x23x0x2}.

There is one cluster of type (i) and three clusters each of types (ii) and (iii), so h1,1 is decomposed
as 19 = 1 + 3 · 3 + 3 · 3.

Proposition 2.6.1. The group H2
prim(XF1L3,ψ) has 21 periods whose Picard–Fuchs equations are

hypergeometric differential equations, with 3 periods annihilated by

D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4)
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and 3 periods each annihilated by the following 6 operators:

D( 1
14 ,

9
14 ,

11
14 ;

1
4 ,

3
4 , 1 |ψ

4), D(−3
14 ,

1
14 ,

9
14 ; 0,

1
4 ,

3
4 |ψ

4), D(−5
14 ,

−3
14 ,

1
14 ;

−1
4 , 0,

1
4 |ψ

4),

D( 3
14 ,

5
14 ,

13
14 ;

1
4 ,

3
4 , 1 |ψ

4), D(−1
14 ,

3
14 ,

5
14 ; 0,

1
4 ,

3
4 |ψ

4), D(−11
14 ,

−1
14 ,

5
14 ;

−1
4 , 0,

1
4 |ψ

4).

Again, the latter 6 operators have an algebraic solution. To prove Proposition 2.6.1, we again
use the diagrammatic method outlined above, but in this case we have different periods that are
related. Notice that we have the following differentials ∂i multiplied by xi:

(2.6.2)

x0∂0Fψ = 3x30x1 + x32x0 − 4ψx0x1x2x3

x1∂1Fψ = 3x31x2 + x30x1 − 4ψx0x1x2x3

x2∂2Fψ = 3x32x0 + x31x2 − 4ψx0x1x2x3

x3∂3Fψ = 4x44 − 4ψx0x1x2x3

We can make linear combinations of these equations so that the right hand side is just a linear
combination of two monomials, for example,

(2.6.3) (9x0∂0 + x1∂1 − 3x2∂2)Fψ = 28(x30x1 − ψx0x1x2x3).

Now using (2.3.3), we obtain the following period relations analogous to (2.3.5), written in multi-
index notation:

(2.6.4)

v + (3, 1, 0, 0) =
f0(v)

28(k(v) + 1)
v + ψ(v + (1, 1, 1, 1)),

v + (0, 3, 1, 0) =
f1(v)

28(k(v) + 1)
v + ψ(v + (1, 1, 1, 1)),

v + (0, 0, 3, 1) =
f2(v)

28(k(v) + 1)
v + ψ(v + (1, 1, 1, 1)), and

v + (0, 0, 0, 4) =
1 + v3

4(k(v) + 1)
v + ψ(v + (1, 1, 1, 1));

where

(2.6.5)

f0(v) := 9(v0 + 1) + (v1 + 1)− 3(v2 + 1),

f1(v) := −3(v0 + 1) + 9(v1 + 1) + (v2 + 1), and
f2(v) := (v0 + 1)− 3(v1 + 1) + 9(v2 + 1).

Lemma 2.6.6. Let t = ψ−4. The Picard–Fuchs equation associated to the period ψ(0, 0, 0, 0) is the
hypergeometric differential equation D(14 ,

1
2 ,

3
4 ; 1, 1, 1 | t).
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Proof. We build the following diagram using (2.6.4) and (2.3.6):

(0, 0, 0, 0) //

��

(1, 1, 1, 1) //

��

(2, 2, 2, 2) //

��

(3, 3, 3, 3)

(3, 1, 0, 0) //

��

(4, 2, 1, 1) //

��

(5, 3, 2, 2)

(3, 4, 1, 0) //

��

(4, 5, 2, 1)

(3, 3, 3,−1) //

��

(4, 4, 4, 0)

(3, 3, 3, 3)

When one runs through this computation, one can see that we get the same Picard–Fuchs equation
for the invariant period as we did with the Fermat:

(2.6.7)
[
(η − 2)(η − 1)η − ψ4(η + 1)3

]
(0, 0, 0, 0) = 0

By multiplying by ψ and changing variables to t = ψ−4 and θ = t
d

dt
, we can see by following

through the computation seen in (2.5.10) that:[
θ3 − t(θ + 3

4)(θ +
1
2)(θ +

1
4)
]
ψ(0, 0, 0, 0) = 0,

which is the differential equation D(14 ,
1
2 ,

3
4 ; 1, 1, 1 | t). □

Lemma 2.6.8. For the Klein–Mukai family Xψ,

the period (0, 1, 2, 1) is annihilated by D( 1
14 ,

9
14 ,

11
14 ;

1
4 ,

3
4 , 1 |ψ

4),

the period ψ(0, 2, 0, 2) is annihilated by D(−3
14 ,

1
14 ,

9
14 ; 0,

1
4 ,

3
4 |ψ

4), and

the period ψ3(2, 1, 1, 0) is annihilated by D(−5
14 ,

−3
14 ,

1
14 ;

−1
4 , 0,

1
4 |ψ

4).

Proof. For the character χ1(g) = ξ associated to 1 ∈ Z/7Z, we have the following diagram:

(0, 1, 2, 1) //

��

(1, 2, 3, 2)

(2, 1, 1, 0) //

��

(3, 2, 2, 1)

(1, 3, 1,−1) //

��

(2, 4, 2, 0)

(0, 2, 0, 2) //

��

(1, 3, 1, 3)

(1, 2, 3, 2)

17



We then have the following relations:

(2.6.9)

η(0, 2, 0, 2) =
11

7
ψ2 + ψ2η(2, 1, 1, 0);

η(2, 1, 1, 0) =
2

7
ψ(0, 1, 2, 1) + ψη(0, 1, 2, 1);

η(0, 1, 2, 1) =
1

7
ψ(0, 2, 0, 2) + ψη(0, 2, 0, 2).

Now we can use these relations to compute the Picard–Fuchs equations associated to (2, 1, 1, 0),
(0, 2, 0, 2), and (0, 1, 2, 1). We first do this for the period (0, 1, 2, 1):

(2.6.10)

η(0, 1, 2, 1) =
1

7
ψ(0, 2, 0, 2)ψη(0, 2, 0, 2)

(η − 1)η(0, 1, 2, 1) =
165

49
ψ3(2, 1, 1, 0) +

26

7
ψ3η(2, 1, 1, 0) + ψ3η2(2, 1, 1, 0)

(η − 3)(η − 1)η(0, 1, 2, 1) = ψ4
(
η + 2

7

) (
η + 18

7

) (
η + 22

7

)
This gives us the Picard–Fuchs equation for the period (0, 1, 2, 1):

(2.6.11)
[
(η − 3)(η − 1)η − ψ4

(
η + 2

7

) (
η + 18

7

) (
η + 22

7

)]
(0, 1, 2, 1) = 0,

Letting u = ψ4 and σ = u
d

du
, we get the following hypergeometric form:[

(4σ − 3)(4σ − 1)4σ − u
(
4σ + 2

7

) (
4σ + 18

7

) (
4σ + 22

7

)]
(0, 1, 2, 1) = 0[

(σ − 3
4)(σ −

1
4)σ − u

(
σ + 1

14

) (
σ + 9

14

) (
σ + 11

14

)]
(0, 1, 2, 1) = 0,

which is the hypergeometric differential equation D( 1
14 ,

9
14 ,

11
14 ; 1,

1
4 ,

3
4 |u).

We then do the same for (0, 2, 0, 2):

(2.6.12)

η(0, 2, 0, 2) =
11

7
ψ2 + ψ2η(2, 1, 1, 0)

(η − 2)η(0, 2, 0, 2) =
36

49
ψ3(0, 1, 2, 1) +

20

7
ψ3η(0, 1, 2, 1) + ψ3η2(0, 1, 2, 1)

(η − 3)(η − 2)η(0, 2, 0, 2) = ψ4
(
η + 1

7

) (
η + 9

7

) (
η + 25

7

)
(0, 2, 0, 2).

This gives us the Picard–Fuchs equation for the period (0, 2, 0, 2):

(2.6.13)
[
(η − 3)(η − 2)η − ψ4

(
η + 1

7

) (
η + 9

7

) (
η + 25

7

)]
(0, 2, 0, 2) = 0.

By multiplying by ψ and changing variables to u = ψ4 and σ = u
d

du
, we get:

ψ
[
(η − 3)(η − 2)η − ψ4

(
η + 1

7

) (
η + 9

7

) (
η + 25

7

)]
(0, 2, 0, 2) = 0[

(η − 4)(η − 3)(η − 1)− ψ4
(
η − 6

7

) (
η + 2

7

) (
η + 18

7

)]
ψ(0, 2, 0, 2) = 0[

(4σ − 4)(4σ − 3)(4σ − 1)− u
(
4σ − 6

7

) (
4σ + 2

7

) (
4σ + 18

7

)]
ψ(0, 2, 0, 2) = 0[

(σ − 1)(σ − 3
4)(σ −

1
4)− u

(
σ − 3

14

) (
σ + 1

14

) (
σ + 9

14

)]
ψ(0, 2, 0, 2) = 0,

which is the hypergeometric differential equation D( 1
14 ,

9
14 ,

−3
14 ; 0,

1
4 ,

3
4 |u).
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We finally look at (2, 1, 1, 0):

(2.6.14)

η(2, 1, 1, 0) =
2

7
ψ(0, 1, 2, 1) + ψη(0, 1, 2, 1)

(η − 1)η(2, 1, 1, 0) =
2

7
ψη(0, 1, 2, 1) + ψη2(0, 1, 2, 1)

=
9

49
ψ2(0, 2, 0, 2) +

10

7
ψ2η(0, 2, 0, 2) + ψ2η2(0, 2, 0, 2)

(η − 2)(η − 1)η(2, 1, 1, 0) =
9

49
ψ2η(0, 2, 0, 2) +

10

7
ψ2η2(0, 2, 0, 2) + ψ2η3(0, 2, 0, 2)

= ψ4
(
η + 11

7

) (
η + 15

7

) (
η + 23

7

)
(2, 1, 1, 0).

This gives us the Picard-Fuchs equation for the period (2, 1, 1, 0):

(2.6.15)
[
(η − 2)(η − 1)η − ψ4

(
η + 11

7

) (
η + 15

7

) (
η + 23

7

)]
(2, 1, 1, 0) = 0

By multiplying by ψ3 and again changing variables we get:

ψ3
[
(η − 2)(η − 1)η − ψ4

(
η + 11

7

) (
η + 15

7

) (
η + 23

7

)]
(2, 1, 1, 0) = 0[

(η − 5)(η − 4)(η − 3)− ψ4
(
η − 10

7

) (
η − 6

7

) (
η + 2

7

)]
ψ3(2, 1, 1, 0) = 0[

(4σ − 5)(4σ − 4)(4σ − 3)− u
(
4σ − 10

7

) (
4σ − 6

7

) (
4σ + 2

7

)]
ψ3(2, 1, 1, 0) = 0[

(σ − 5
4)(σ − 1)(σ − 3

4)− u
(
σ − 5

14

) (
σ − 3

14

) (
σ + 1

14

)]
ψ3(2, 1, 1, 0) = 0;

at last, we have the hypergeometric differential equation D( 1
14 ,

−5
14 ,

−3
14 ; 0,

−1
4 ,

1
4 |u). □

Lemma 2.6.16. For the Klein–Mukai family Xψ,

the period (0, 2, 1, 1) is annihilated by D( 3
14 ,

5
14 ,

13
14 ;

1
4 ,

3
4 , 1 |ψ

4),

the period ψ(1, 0, 1, 2) is annihilated by D(−1
14 ,

3
14 ,

5
14 ; 0,

1
4 ,

3
4 |ψ

4), and

the period ψ3(0, 1, 3, 0) is annihilated by D(−11
14 ,

−1
14 ,

5
14 ;

−1
4 , 0,

1
4 |ψ

4).

Proof. We use the following diagram:

(0, 1, 3, 0) //

��

(1, 2, 4, 1)

(2, 1, 2,−1) //

��

(3, 2, 3, 0)

(1, 0, 1, 2) //

��

(2, 1, 3, 3)

(0, 2, 1, 1) //

��

(1, 3, 2, 2)

(1, 2, 4, 1)
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and then compute the following period relations:

(2.6.17)

η(0, 1, 3, 0) =
10

7
ψ(0, 2, 1, 1) + ψη(0, 2, 1, 1);

η(0, 2, 1, 1) =
5

7
ψ(1, 0, 1, 2) + ψη(1, 0, 1, 2);

η(1, 0, 1, 2) =
−1
7
ψ2(0, 1, 3, 0) + ψ2η(0, 1, 3, 0).

By cyclically using these relations, we get the following Picard–Fuchs equations:

(2.6.18)

[
(η − 3)(η − 1)η − ψ4

(
η + 6

7

) (
η + 10

7

) (
η + 26

7

)]
(0, 2, 1, 1) = 0;[

(η − 3)(η − 2)η − ψ4
(
η + 5

7

) (
η + 13

7

) (
η + 17

7

)]
(1, 0, 1, 2) = 0;[

(η − 2)(η − 1)η − ψ4
(
η − 1

7

) (
η + 19

7

) (
η + 31

7

)]
(0, 1, 3, 0) = 0.

We then multiply these equations above by 1, ψ, and ψ3, respectively and then change coordinates

to u = ψ4 and σ = u
d

du
to obtain the following:[

(σ − 3
4)(σ −

1
4)σ − u

(
σ + 3

14

) (
σ + 5

14

) (
σ + 13

14

)]
(0, 2, 1, 1) = 0;[

(σ − 1)(σ − 3
4)(σ −

1
4)− u

(
σ − 1

14

) (
σ + 3

14

) (
σ + 5

14

)]
ψ(1, 0, 1, 2) = 0;[

(σ − 5
4)(σ − 1)(σ − 3

4)− u
(
σ − 11

14

) (
σ − 1

14

) (
σ + 5

14

)]
ψ3(0, 1, 3, 0) = 0.

which are D( 3
14 ,

5
14 ,

13
14 ; 1,

1
4 ,

3
4 |u), D( 3

14 ,
5
14 ,

−1
14 ; 0,

1
4 ,

3
4 |u), and D(−11

14 ,
5
14 ,

−1
14 ; 0,

1
4 ,

−1
4 |u), respec-

tively. □

We conclude this section by combining these results.

Proof of Proposition 2.6.1. Combine Lemmas 2.6.6, 2.6.8, and 2.6.16. □

2.7. Remaining pencils. For the remaining three pencils F2L2, L2L2, and L4, the Picard–Fuchs
equations can be derived in a similar manner. The details can be found in Appendix A; we state
here only the results.

Proposition 2.7.1. The group H2
prim(XF2L2,ψ,C) has 15 periods whose Picard–Fuchs equations are

hypergeometric differential equations as follows:

3 periods are annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4),

2 periods are annihilated by D(14 ,
3
4 ; 1,

1
2 |ψ

−4),

2 periods are annihilated by D(12 ; 1 |ψ
4),

4 periods are annihilated by D(18 ,
5
8 ; 1,

1
4 |ψ

4), and

4 periods are annihilated by D(18 ,
−3
8 ; 0, 14 |ψ

4).

Proof. See Proposition A.1.2. □

Proposition 2.7.2. The group H2
prim(XL2L2,ψ,C) has 13 periods whose Picard–Fuchs equations are

hypergeometric differential equations as follows:

3 periods are annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4),

8 periods are annihilated by D(18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4), and

2 periods are annihilated by D(14 ,
3
4 ; 1,

1
2 |ψ

4).

Proof. See Proposition A.2.2. □
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Proposition 2.7.3. The group H2
prim(XL4,ψ,C) has 19 periods whose Picard–Fuchs equations are

hypergeometric differential equations as follows:

3 periods are annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4),

4 periods are annihilated by D(15 ,
2
5 ,

3
5 ,

4
5 ; 1,

1
4 ,

1
2 ,

3
4 |ψ

4),

4 periods are annihilated by D(−1
5 ,

1
5 ,

2
5 ,

3
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4),

4 periods are annihilated by D(−2
5 ,

−1
5 ,

1
5 ,

2
5 ;

−1
4 , 0,

1
4 ,

1
2 |ψ

4), and

4 periods are annihilated by D(−3
5 ,

−2
5 ,

−1
5 ,

1
5 ; 0,

1
4 ,

−1
2 ,

−1
4 |ψ

4).

Proof. See Proposition A.3.2. □

3. Explicit formulas for the number of points

In this section, we derive explicit formulas for the number of points and identify the hyperge-
ometric periods according to the action of the group of symmetries, matching the Picard–Fuchs
equations computed in section 2.

3.1. Hypergeometric functions over finite fields. We begin by defining the finite field analogue
of the generalized hypergeometric function (defined in section 2.4); we follow Beukers–Cohen–Mellit
[BCM15].

Let q = pr be a prime power. We use the convenient abbreviation

q× := q − 1.

Let ω : F×
q → C× be a generator of the character group on F×

q . Let Θ: Fq → C× be a nontrivial
(additive) character, defined as follows: let ζp ∈ C be a primitive pth root of unity, and define

Θ(x) = ζ
TrFq |Fp (x)
p . For m ∈ Z, we define the Gauss sum

(3.1.1) g(m) :=
∑
x∈F×

q

ω(x)mΘ(x).

We suppress the dependence on q in the notation, and note that g(m) depends only on m ∈ Z/q×Z
(and the choice of ω and ζp).

Remark 3.1.2. Every generator of the character group on F×
q is of the form ωk(x) := ω(x)k for

k ∈ (Z/q×Z)×, and ∑
x∈F×

q

ωk(x)
mΘ(x) = g(km).

Similarly, every additive character of Fq is of the form Θk(x) := ζ
kTr(x)
p for k ∈ (Z/pZ)×, and∑

x∈F×
q

ω(x)mΘk(x) = ω(k)−mg(m)

(see e.g. Berndt [BEW98, Theorem 1.1.3]). Accordingly, we will analyze below how our definition
of finite field hypergeometric functions depends on these choices.

We will need four basic identities for Gauss sums.

Lemma 3.1.3. The following relations hold:
(a) g(0) = −1.
(b) g(m)g(−m) = (−1)mq for every m ̸≡ 0 (mod q×), and in particular

g( q
×

2 )2 = (−1)q×/2q.
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(c) For every N | q× with N > 0, we have

(3.1.4) g(Nm) = −ω(N)Nm
N−1∏
j=0

g(m+ jq×/N)

g(jq×/N)
.

(d) g(pm) = g(m) for all m ∈ Z.

Proof. For parts (a)–(c), see Cohen [Coh2, Lemma 2.5.8, Proposition 2.5.9, Theorem 3.7.3]. For
(d), we replace x by xp in the definition and use the fact that Θ(xp) = Θ(x) as it factors through
the trace. □

Remark 3.1.5. Lemma 3.1.3(c) is due originally to Hasse and Davenport, and is called the Hasse–
Davenport product relation.

We now build our hypergeometric sums. Let ααα = {α1, . . . , αd} and βββ = {β1, . . . , βd} be multisets
of d rational numbers. Suppose that ααα and βββ are disjoint modulo Z, i.e., αi − βj ̸∈ Z for all
i, j = 1, . . . , d.

Based on work of Greene [Gre87], Katz [Kat90, p. 258], but normalized following McCarthy
[McC13, Definition 3.2] and Beukers–Cohen–Mellit [BCM15, Definition 1.1], we make the following
definition.

Definition 3.1.6. Suppose that

(3.1.7) q×αi, q
×βi ∈ Z

for all i = 1, . . . , d. For t ∈ F×
q , we define the finite field hypergeometric sum by

(3.1.8) Hq(ααα,βββ | t) := −
1

q×

q−2∑
m=0

ω((−1)dt)mG(m+αααq×,−m− βββq×)

where

(3.1.9) G(m+αααq×,−m− βββq×) :=
d∏
i=1

g(m+ αiq
×)g(−m− βiq×)

g(αiq×)g(−βiq×)

for m ∈ Z.

In this definition (and the related ones to follow), the sum Hq(ααα,βββ | t) only depends on the classes
in Q/Z of the elements of ααα and βββ. Moreover, the sum is independent of the choice of character
Θ by a straightforward application of Remark 3.1.2. The hypothesis (3.1.7) is unfortunately rather
restrictive—but it is necessary for the definition to make sense as written. Fortunately, Beukers–
Cohen–Mellit [BCM15] provided an alternate definition that allows all but finitely many q under a
different hypothesis, as follows.

Definition 3.1.10. The field of definition Kααα,βββ ⊂ C associated to ααα,βββ is the field generated by the
coefficients of the polynomials

(3.1.11)
d∏
j=1

(x− e2π
√
−1αj ) and

d∏
j=1

(x− e2π
√
−1βj ).

Visibly, the number field Kααα,βββ is an abelian extension of Q.
Suppose that ααα,βββ is defined over Q, i.e., Kααα,βββ = Q. Then Hq(ααα,βββ | t) is independent of the choice

of character ω again applying Remark 3.1.2 (more generally, see below).
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In this case, by a straightforward verification, there exist p1, . . . , pr, q1, . . . , qs ∈ Z≥1 such that

(3.1.12)
d∏
j=1

(x− e2π
√
−1αj )

(x− e2π
√
−1βj )

=

∏r
j=1 x

pj − 1∏s
j=1 x

qj − 1
.

Recall we require the ααα,βββ to be disjoint, which implies that the sets {p1, . . . , pr} and {q1, . . . , qs}
are also disjoint.

Let D(x) := gcd(
∏r
j=1(x

pj − 1),
∏s
j=1(x

qj − 1)) and M :=
(∏r

j=1 p
pj
j

)(∏s
j=1 q

−qj
j

)
. Let ϵ :=

(−1)
∑s
j=1 qj , and let s(m) ∈ Z≥0 be the multiplicity of the root e2π

√
−1m/q× in D(x). Finally,

abbreviate

(3.1.13) g(pppm,−qqqm) := g(p1m) · · · g(prm)g(−q1m) · · · g(−qsm).

For brevity, we say that q is good for ααα,βββ if q is coprime to the least common denominator of
ααα ∪ βββ.

Definition 3.1.14. Suppose that ααα,βββ are defined over Q and q is good for ααα,βββ. For t ∈ F×
q , define

(3.1.15) Hq(ααα,βββ | t) =
(−1)r+s

1− q

q−2∑
m=0

q−s(0)+s(m)g(pppm,−qqqm)ω(ϵM−1t)m.

Again, the hypergeometric sum Hq(ααα,βββ | t) is independent of the choice of characters ω and Θ.
The independence on ω is just as with the previous definition, and in this case the independence
from Θ comes from the fact that every root of unity has its conjugate, and so again any additional
factors from changing additive characters cancel out. The apparently conflicting notation is justified
by the following result, showing that Definition 3.1.14 is more general.

Proposition 3.1.16 (Beukers–Cohen–Mellit [BCM15, Theorem 1.3]). Suppose that ααα,βββ are defined
over Q and that (3.1.7) holds. Then Definitions 3.1.6 and 3.1.14 agree.

3.2. A hybrid sum. We will need a slightly more general hypothesis than allowed in the previous
section. We do not pursue the most general case as it is rather combinatorially involved, poses some
issues of algebraicity, and anyway is not needed here; see Beukers [Beu18] for some work in this
direction. Instead, we isolate a natural case, where the indices are not defined over Q but neither
does (3.1.7) hold, which is sufficient for our purposes.

Definition 3.2.1. We say that q is splittable for ααα,βββ if there exist partitions

(3.2.2) ααα = ααα0 ⊔ααα′ and βββ = βββ0 ⊔ βββ′

where ααα0,βββ0 are defined over Q and
q×α′

i, q
×β′j ∈ Z

for all α′
i ∈ ααα′ and all β′j ∈ βββ′.

Example 3.2.3. If (3.1.7) holds, then q is splittable for ααα,βββ taking ααα = ααα′ and βββ = βββ′ and ααα0 =
βββ0 = ∅. Likewise, if ααα,βββ is defined over Q, then q is splittable for ααα,βββ for all q.

Example 3.2.4. A splittable case that arises for us (up to a Galois action) in Proposition 3.5.1
below is as follows. Let ααα = { 1

14 ,
9
14 ,

11
14} and βββ = {0, 14 ,

3
4}. We cannot use Definition 3.1.14 since

(x− e2π
√
−1/14)(x− e18πi/14)(x− e22π

√
−1/14) ̸∈ Q[x]. When q ≡ 1 (mod 28), we may use Definition

3.1.6; otherwise we may not. However, when q ≡ 1 (mod 7) is odd, then q is splittable for ααα,βββ: we
may take ααα0 = ∅, ααα′ = ααα and βββ0 = βββ, βββ′ = ∅.
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It is now a bit notationally painful but otherwise straightforward to generalize the definition for
splittable q, providing a uniform description in all cases we consider. Suppose that q is splittable
for ααα,βββ. Let ααα0 be the union of all submultisets of ααα that are defined over Q; then ααα0 is defined
over Q. Repeat this for βββ0. Let p1, . . . , pr, q1, . . . , qs be such that∏

α0j∈ααα0
(x− e2π

√
−1α0j )∏

β0j∈βββ0
(x− e2π

√
−1β0j )

=

∏r
j=1(x

pj − 1)∏s
j=1(x

qj − 1)
.

As before, let

D(x) := gcd(
∏r
j=1x

pj − 1,
∏s
j=1x

qj − 1) and M :=

∏r
j=1p

pj
j∏s

j=1q
qj
j

and let s(m) be the multiplicity of the root e2π
√
−1m/q× in D(x). Finally, let δ := degD(x). We

again abbreviate

(3.2.5) g(pppm,−qqqm) :=

r∏
i=1

g(pim)

s∏
i=1

g(−qim)

for m ∈ Z and

(3.2.6) G(m+ααα′q×,−m− βββ′q×) :=
∏
α′
i∈ααα′

g(m+ α′
iq

×)

g(αiq×)

∏
β′
i∈βββ′

g(−m− β′iq×)
g(−βiq×)

.

Definition 3.2.7. Suppose that q is good and splittable for ααα,βββ. For t ∈ F×
q , with the notation

above we define the finite field hypergeometric sum

Hq(ααα,βββ | t) :=
(−1)r+s

1− q

q−2∑
m=0

q−s(0)+s(m)G(m+ααα′q×,−m− βββ′q×)g(pppm,−qqqm)ω((−1)d+δMt)m.

The following proposition then shows that our definition encompasses the previous ones.

Proposition 3.2.8. Suppose that q is good and splittable for ααα,βββ. Then the following statements
hold.

(a) The hypergeometric sum Hq(ααα,βββ | t) in Definition 3.2.7 is independent of the choice of char-
acter Θ, and is independent of ω if ααα,βββ are defined over Q.

(b) If αiq×, βiq× ∈ Z for all i = 1, . . . , d, then Definitions 3.1.6 and 3.2.7 agree.
(c) If ααα,βββ are defined over Q, then Definitions 3.1.14 and 3.2.7 agree.

Proof. Part (c) follows directly from ααα0 = ααα and βββ0 = βββ (and ααα′ = βββ′ = ∅), so the definitions in fact
coincide. Part (a) follows directly from the independence from Θ and ω of each part of the hybrid
sum.

Part (b) follows by the same argument (due to Beukers–Cohen–Mellit) as in Proposition 3.1.16;
for completeness, we give a proof in Lemma B.1.1 in the appendix. □

Suppose that q is good and splittable for ααα,βββ and let t ∈ F×
q . Then by construction Hq(ααα,βββ | t) ∈

Q(ζq× , ζp). Since gcd(p, q×) = 1, we have

Gal(Q(ζq× , ζp) |Q) ≃ Gal(Q(ζq×) |Q)×Gal(Q(ζp) |Q).

We now descend the hypergeometric sum to its field of definition, in two steps.

Lemma 3.2.9. We have Hq(ααα,βββ | t) ∈ Q(ζq×).

Proof. The action of Gal(Q(ζp) |Q) ≃ (Z/pZ)× by ζp 7→ ζkp changes only the additive character Θ.
By Proposition 3.2.8, the sum is independent of this choice, so it descends by Galois theory. □
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The group Gal(Q(ζq×) |Q) ≃ (Z/q×Z)× by σk(ζq×) = ζkq× for k ∈ (Z/q×Z)× acts on the finite
field hypergeometric sums as follows.

Lemma 3.2.10. The following statements hold.
(a) Let k ∈ Z be coprime to q×. Then σk(Hq(ααα,βββ | t)) = Hq(kααα, kβββ | t).
(b) We have Hq(ααα,βββ | t) ∈ Kααα,βββ.
(c) We have Hq(pααα, pβββ | t) = Hq(ααα,βββ | tp).

Proof. To prove (a), note σk(ω(x)) = ωk(x) since ω takes values in µq× (more generally, this
argument shows what happens if we replace ω by ωk); therefore σk(g(m)) = g(km), and we have
both

σk(g(pppm,−qqqm)) = g(pppkm,−qqqkm)

and
σk(G(m+ααα′q×,−m− βββ′q×)) = G(km+ kααα′q×,−km− kβββ′q×)).

We have s(km) = s(m) since D(x) ∈ Q[x]. Moreover, kααα0 = ααα0 and the same with βββ, so the values
pi, qi remain the same when computed for kααα, kβββ. Now plug these into the definition of Hq(ααα,βββ | t)
and just reindex the sum by km← m to obtain the result.

Part (b) follows from part (a): the field of definition Kααα,βββ is precisely the fixed field under the
subgroup of k ∈ (Z/q×Z)× such that kααα, kβββ are equivalent to ααα,βββ as multisets in Q/Z.

Finally, part (c). Starting with the left-hand side, we reindex m ← pm then substitute using
Lemma 3.1.3(d)’s implication that g(pm) = g(m) to get

G(pm+ pααα′q×,−pm− pβββ′q×) = G(m+ααα′q×,−m− βββ′q×) and g(ppp(pm), qqq(pm)) = g(pppm,qqqm),

noting that the quantities ppp and qqq do not change, as pααα0 = ααα0 and pβββ0 = βββ0 modulo Z (as they are
defined over Q). Noting that ((−1)d+δM)p = (−1)d+δM ∈ Fp ⊆ Fq, we then obtain the result. □

Before concluding this primer on finite field hypergeometric functions, we combine the Gauss sum
identities and our hybrid definition to expand one essential example; this gives a flavor of what is
to come. First, we prove a new identity.

Lemma 3.2.11. We have the following identity of Gauss sums:

g( q
×

14 )g(
9q×

14 )g(11q
×

14 ) = g( q
×

2 )3 = (−1)q×/2qg( q
×

2 ).

Proof. Since q is odd, we use the Hasse–Davenport product relation (Lemma 3.1.3(c)) for N = 2

and m = q×

14 ,
9q×

14 ,
11q×

14 , solving for g( q
×

14 ), g(
9q×

14 ), g(11q
×

14 ), respectively to find:

g( q
×

14 ) =
g( q

×

7 )g( q
×

2 )

g(11q
×

7 )
ω(2)−q

×/7

g(9q
×

14 ) =
g(9q

×

7 )g( q
×

2 )

g( q
×

7 )
ω(2)−9q×/7

g(11q
×

14 ) =
g(11q

×

7 )g( q
×

2 )

g(9q
×

7 )
ω(2)−11q×/7.

Multiply all of these together, divide by g( q
×

2 ), and cancel to obtain:

(3.2.12)
g( q

×

14 )g(
9q×

14 )g(11q
×

14 )

g( q
×

2 )
= g( q

×

2 )2ω(2)−3q× = (−1)q×/2q

applying Lemma 3.1.3(b) in the last step. □
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Next, we consider our example.

Example 3.2.13. Going back to Example 3.2.4, in the case where q ≡ 1 (mod 7) and q odd, we have
ααα = { 1

14 ,
9
14 ,

11
14} and βββ = {0, 14 ,

3
4}. Then ααα0 = ∅ and βββ0 = βββ. Thus∏

α0j∈ααα0
(x− e2π

√
−1α0j )∏

β0j∈βββ0
(x− e2π

√
−1β0j )

=
1

(x− 1)(x2 + 1)
=

(x2 − 1)

(x− 1)(x4 − 1)
.

Thus D(x) = x2 − 1 and M = 43; and s(m) = 1 if m = 0, q
×

2 and s(m) = 0 otherwise. Therefore
Definition 3.2.7 and simplification using Lemma 3.1.3(a)–(b) gives

Hq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t)

=
−1
1− q

q−2∑
m=0

qs(m)−1 g(m+ 1
14q

×)g(m+ 9
14q

×)g(m+ 11
14q

×)

g( 1
14q

×)g( 9
14q

×)g(1114q
×)

g(2m)g(−m)g(−4m)ω(−43t)m.

When m = 0, the summand is just (−1)(−1)3/(1 − q) = 1/q×. When m = q×

2 , applying Lemma
3.2.11 we obtain

−g(4q
×

7 )g( q
×

7 )g(2q
×

7 )

q×g( 1
14q

×)g( 9
14q

×)g(1114q
×)
g( q

×

2 )ω(−43t)q×/2 = −1
qq×

g( q
×

7 )g(2q
×

7 )g(4q
×

7 )ω(t)q
×/2.

Therefore

(3.2.14)

Hq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t)

=
1

q×
− 1

qq×
g( q

×

7 )g(2q
×

7 )g(4q
×

7 )ω(t)q
×/2

+
1

qq×

q−2∑
m=1

m̸=q×/2

g(m+ 1
14q

×)g(m+ 9
14q

×)g(m+ 11
14q

×)

g( 1
14q

×)g( 9
14q

×)g(1114q
×)

g(2m)g(−m)g(−4m)ω(−43t)m.

3.3. Counting points. Following work of Delsarte [Del51] and Furtado Gomide [FG51], Koblitz
[Kob83] gave a formula for the number of points on monomial deformations of diagonal hypersurfaces
(going back to Weil [Wei49]). In this subsection, we outline their approach for creating closed
formulas that compute the number of points for hypersurfaces in projective space in terms of Gauss
sums.

Let X ⊆ Pn be the projective hypersurface over Fq defined by the vanishing of the nonzero
polynomial

r∑
i=1

aix
νi0
0 · · ·x

νin
n ∈ Fq[x0, . . . , xn]

so that ai ∈ Fq and νij ∈ Z≥0 for i = 1, . . . , r and j = 0, . . . , n. Suppose that q× := q − 1 does not
divide any of the νij . Let U be the intersection of X with the torus Gn+1

m /Gm ⊆ Pn, so that the
points of U are the points of X with all nonzero coordinates.

Let S be the set of s = (s1, . . . , sr) ∈ (Z/q×Z)r such that the following condition holds:

(3.3.1)
∑r

i=1si ≡ 0 (mod q×) and
∑r

i=1 νijsi ≡ 0 (mod q×) for all j = 1, . . . , n.

Let µq× be the group of q×-th roots of unity. Any element s = (s1, . . . , sr) ∈ S corresponds to a
multiplicative character

χs : (µq×)
r → C×

χs(x1, . . . , xr) = ω(Πri=1x
si
i ).
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Given s ∈ S, we define

(3.3.2) cs :=
(q×)n−r+1

q

r∏
i=1

g(si)

if s ̸= 0 and

c0 := (q×)n−r+1 (q
×)r−1 − (−1)r−1

q
.

With this notation, we have the following result of Koblitz, rewritten in terms of Gauss sums so
that we can apply it in our context.

Theorem 3.3.3 (Koblitz). We have

(3.3.4) #U(Fq) =
∑
s∈S

ω(a)−scs.

where ω(a)−s := ω(a−s11 · · · a−srr ).

Proof. We unpack and repack a bit of notation. Koblitz [Kob83, Theorem 1] proves that

#U(Fq) =
∑
s

ω(a)−sc′s

where the sum is over all characters of (µq×)r/∆ where ∆ is the diagonal—this set is in natural
bijection with the set S—and where for s ̸= 0

c′s = −
1

q
(q×)n−r+1J(s1, . . . , sr)

where J(s1, . . . , sr) is the Jacobi sum and where c′0 = c0 as in (3.3.2). It only remains to show that
c′s = cs for s ̸= 0. If si ̸= 0 for all i, then [Kob83, (2.5)]

J(s1, . . . , sr) =
g(s1) · · · g(sr)
g(s1 + . . .+ sr)

= −g(s1) · · · g(sr)

so c′s = cs by definition. If r > 1 and si = 0 for some i, then [Kob83, below (2.5)]

J(s1, . . . , sr) = −J(s1, . . . , si−1, si+1, . . . , sr),

so iterating and using Lemma 3.1.3(a),

□(3.3.5) J(s1, . . . , sr) = −
∏

i=1,...,r
si=0

(−1)
∏

i=1,...,r
si ̸=0

g(si) = −
∏

i=1,...,r
si=0

g(0)
∏

i=1,...,r
si ̸=0

g(si) = −
r∏
i=1

g(si).

In the remaining sections, we apply the preceding formulas to each of our five pencils.

3.4. The Dwork pencil F4. In this subsection, we will give a closed formula in terms of finite field
hypergeometric sums for the number of points in a given member of the Dwork family. Throughout
this section, we suppose that q is odd.

Proposition 3.4.1. For ψ ∈ F×
q , the following statements hold.

(a) If q ≡ 3 (mod 4), then

#XF4,ψ(Fq) = q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

(b) If q ≡ 1 (mod 4), then

#XF4,ψ(Fq) = q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 12(−1)(q−1)/4qHq(
1
2 ; 0 |ψ

−4).
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Proposition 3.4.1 has several equivalent formulations and has seen many proofs: see section 1.5 in
the introduction for further references. We present another proof for completeness and to illustrate
the method we will apply to all five families in this well-studied case.

Remark 3.4.2. Quite beautifully, the point counts in Proposition 3.4.1 in terms of finite field hy-
pergeometric sums match (up to twisting factors) the indices with multiplicity in the Picard–Fuchs
equations computed in Proposition 2.5.2. Although we are not able to use this matching directly,
it guides the decomposition of the sums by means of lemmas that can be proven in a technical but
direct manner.

We prove Proposition 3.4.1 in four steps:
1. We compute the relevant characters and cluster them.
2. We use Theorem 3.3.3 to count points where no coordinate is zero and rewrite the sums into

hypergeometric functions.
3. We count points where at least one coordinate is zero.
4. We combine steps 2 and 3 to finally prove Proposition 3.4.1.

The calculations are somewhat involved, but we know how to cluster the characters in step 1 and
which hypergeometric functions we need to islate for step 2: the parameters of the finite field
hypergeometric sums are given by the calculation of the Picard–Fuchs equations for the Dwork
pencil given by Proposition 2.5.2.

Step 1: Computing and clustering the characters. In order to use Theorem 3.3.3 we must compute
the subset S ⊂ (Z/q×Z)r given by the constraints in (3.3.1). This is equivalent to solving the system
of congruences:

(3.4.3)


4 0 0 0 1
0 4 0 0 1
0 0 4 0 1
0 0 0 4 1
1 1 1 1 1



s1
s2
s3
s4
s5

 ≡ 0 (mod q×).

If q ≡ 3 (mod 4), then by linear algebra over Z we obtain

S =
{
(1, 1, 1, 1,−4)k1 + q×

2 (0, 0, 1,−1, 0)k2 + q×

2 (0, 1, 0,−1, 0)k3 : ki ∈ Z/q×Z
}
.

These solutions can be clustered in an analogous way as done in section 2.5:
(i) S1 := {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z},
(ii) S2 := {k(1, 1, 1, 1,−4) + q×

2 (0, 1, 1, 0, 0) : k ∈ Z/q×Z},
(iii) S3 := {k(1, 1, 1, 1,−4) + q×

2 (0, 1, 0, 1, 0) : k ∈ Z/q×Z}, and
(iv) S4 := {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}.
The last three (ii)–(iv) all behave in the same way, due to the evident symmetry.

If instead q ≡ 1 (mod 4), then

S =
{
(1, 1, 1, 1,−4)k1 + q×

4 (0, 1, 0,−1, 0)k2 + q×

4 (0, 0, 1,−1, 0)k3 : ki ∈ Z/q×Z
}
;

we cluster again, getting the four clusters above but now together with twelve new clusters:
(v) three sets of the form S5 := {k(1, 1, 1, 1,−4) + q×

4 (0, 1, 2, 1, 0) : k ∈ Z/q×Z},
(vi) three sets of the form S6 := {k(1, 1, 1, 1,−4)− q×

4 (0, 1, 2, 1, 0) : k ∈ Z/q×Z}, and
(vii) six sets of the form S7 := {k(1, 1, 1, 1,−4) + q×

4 (0, 0, 1, 3, 0) : k ∈ Z/q×Z},
where the number of sets is given by the number of distinct permutations of the middle three
coordinates.
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Step 2: Counting points on the open subset with nonzero coordinates. We now give a formula for
#UF4,ψ(Fq) for the number of points, applying Theorem 3.3.3.

We go through each cluster Si, linking each to a hypergeometric function.

Lemma 3.4.4. For all odd q,

(3.4.5)
∑
s∈S1

ω(a)−scs = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

Proof. By Definition 3.1.14,

Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) =
1

q×

q−2∑
m=0

q−s(0)+s(m)g(4m)g(−m)4ω(4ψ)−4m

=
−1
q×

+
−q−1g( q

×

2 )4

q×
+

1

q×

q−2∑
m=1

m̸=q×/2

q−1g(4m)g(−m)4ω(4ψ)−4m

= − 1

q×
−
g( q

×

2 )4

qq×
+

1

qq×

q−2∑
k=1

k ̸=q×/2

g(−4k)g(k)4ω(4ψ)4k

the latter by substituting k = −m. Now we expand to match terms:∑
s∈S1

ω(a)−scs = c(0,0,0,0,0) + c(q×/2)(1,1,1,1,0) +

q−2∑
k=1

k ̸=q×/2

ω(−4ψ)4kc(k,k,k,k,−4k)

=
(q×)4 − (−1)4

qq×
− 1

qq×
g( q

×

2 )4 +
1

qq×

q−2∑
k=1

k ̸=q×/2

ω(4ψ)4kg(k)4g(−4k)(3.4.6)

=
q3 − 4q2 + 6q − 4

q×
−
g( q

×

2 )4

qq×
+

1

qq×

q−2∑
k=1,k ̸= q

×

2

ω(4ψ)4kg(k)4g(−4k)

= q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4). □

Lemma 3.4.7. For i = 2, 3, 4,

(3.4.8)
∑
s∈Si

ω(a)−scs = (−1)q×/2
(
2 + qHq(

1
4 ,

3
4 ; 0,

1
2 |ψ

−4)
)
.

Proof. By definition,

(3.4.9)

Hq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4) =
1

q×

q−2∑
m=0

q−s(0)+s(m)g(4m)g(−2m)2ω(2ψ)−4m

=
−2
q×

+
1

q×

q−2∑
m=1

m̸=q×/2

q−1g(4m)g(−2m)2ω(2ψ)−4m

using s(m) = 1 if m = 0, q
×

2 and s(m) = 0 otherwise.
By symmetry, ∑

s∈S2

ω(a)−scs =
∑
s∈S3

ω(a)−scs =
∑
s∈S4

ω(a)−scs.
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So we only need to consider i = 2. Then:
(3.4.10)∑

s∈S2

ω(a)−scs = c(q×/2)(0,1,1,0,0) + c(q×/2)(1,0,0,1,0) +

q−2∑
k=1

k ̸=q×/2

ω(−4ψ)4kc(k(1,1,1,1,−4)+(q×/2)(0,1,1,0,0))

= −2
g( q

×

2 )2

qq×
+

1

qq×

q−2∑
k=1

k ̸=q×/2

ω(−4ψ)4kg(k)2g(k + q×

2 )2g(−4k).

Next, we use the Hasse–Davenport product relation (Lemma 3.1.3(c)) with N = 2 | q× to get

g(2k) = −ω(2)2k g(k)
g(0)

g(k + q×

2 )

g( q
×

2 )

which rearranges using g(0) = −1 to

(3.4.11) g(k)g(k + q×

2 ) = ω(2)−2kg(2k)g( q
×

2 ).

Using Lemma 3.1.3(b) gives g( q
×

2 )2 = (−1)q×/2q; substituting this and (3.4.11) into (3.4.10) simpli-
fies to

∑
s∈S2

ω(a)−scs = −2
(−1)q×/2

q×
+

1

qq×

q−2∑
k=1

k ̸=q×/2

ω(−4ψ)4k(ω(2)−2kg(2k)g( q
×

2 ))2g(−4k)

= −2(−1)
q×/2

q×
+

1

q×

q−2∑
k=1

k ̸=q×/2

(−1)q×/2ω(−2ψ)4kg(2k)2g(−4k)

= (−1)q×/2

− 2

q×
+

1

q×

q−2∑
k=1

k ̸=q×/2

ω(−2ψ)4kg(2k)2g(−4k)

 .

Looking back at (3.4.9), we rearrange and insert a factor q to find the hypergeometric sum:

(−1)q×/2
∑
s∈S2

ω(a)−scs =
2q − 2

q×
− 2q

q×
+

q

q×

q−2∑
m=1

m̸=q×/2

q−1ω(2ψ)−4mg(−2m)2g(4m)

= 2 + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

as claimed. □

Lemma 3.4.12. Suppose q ≡ 1 (mod 4). Then

∑
s∈S5

ω(a)−scs = (−1)q×/4qHq(
1
2 ; 0 |ψ

−4) + (−1)q×/4 −
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )
.
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Proof. Plugging into the definition of the finite field hypergeometric sum and then pulling out terms
m = jq×/4 with j = 0, 1, 2, 3, we get
(3.4.13)

Hq(
1
2 ; 0 |ψ

−4) =
1

q×

q−2∑
m=0

ω(−ψ−4)m
g(m+ q×

2 )g(−m)

g( q
×

2 )

= − 2

q×
+

(−1)q×/4

q×g( q
×

2 )

(
g( q

×

4 )2 + g(3q
×

4 )2
)
+

1

q×

q−2∑
m=0
q×∤4m

ω(−ψ−4)m
g(m+ q×

2 )g(−m)

g( q
×

2 )
.

Hasse–Davenport (Lemma 3.1.3(c)) implies

(3.4.14) g(4m) = −ω(4)4m
g(m)g(m+ q×

4 )g(m+ q×

2 )g(m+ 3q×

4 )

g(0)g( q
×

4 )g( q
×

2 )g(3q
×

4 )

For m ̸= j q
×

4 , multiplying (3.4.14) by g(−m− 3q×

4 )g(−4m) and simplifying, we get:

(3.4.15)
(−1)4mqg(−m− 3q×

4 ) = ω(4)4m(−1)m
g(m)g(m+ q×

4 )g(m+ q×

2 )g(−4m)

g( q
×

2 )

g(m)g(m+ q×

4 )g(m+ q×

2 )g(−4m) = (−1)−mω(4)−4mqg( q
×

2 )g(−m− 3q×

4 ).

Now we look at the point count. First, we take the definition:

(3.4.16)
∑
s∈S5

ω(a)−scs =
1

qq×

q−2∑
k=0

ω(−4ψ)4kg(k)g(k + q×

4 )2g(k + q×

2 )g(−4k).

We then tease out the four terms with k = jq×/4. The cases k = 0, q
×

2 give

(3.4.17)
1

qq×
g( q

×

4 )2g( q
×

2 ) +
1

qq×
g( q

×

2 )g(3q
×

4 )2 =
g( q

×

4 )2 + g(3q
×

4 )2

q×g( q
×

2 )

because g( q
×

2 )2 = q as q ≡ 1 (mod 4). The terms with k = q×

4 ,
3q×

4 are

(3.4.18) − 1

qq×
g( q

×

4 )g( q
×

2 )2g(3q
×

4 )− 1

qq×
g(3q

×

4 )g( q
×

4 ) = −(−1)q×/4 q + 1

q×
= (−1)q×/4

(
1− 2q

q×

)
.

using Lemma 3.1.3(b) with m = q×

4 to get g( q
×

4 )g(3q
×

4 ) = (−1)q×/4q.
For the remaining terms in the sum, we plug in (3.4.15) to get

(3.4.19)

1

qq×

q−2∑
k=0
q×∤4k

ω(−4ψ)4kg(k)g(k + q×

4 )2g(k + q×

2 )g(−4k)

=
1

qq×

q−2∑
k=0
q×∤4k

ω(−4ψ)4kg(k + q×

4 )(−1)−kω(4)−4kqg( q
×

2 )g(−k − 3q×

4 )

=
q

q×

q−2∑
k=0
q×∤4k

ω(−ψ4)k
g(k + q×

4 )g(−k − 3q×

4 )

g( q
×

2 )
.
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Next, we reindex this summation with the substitution m = −k − q×

4 to obtain
(3.4.20)

q

q×

q−2∑
m=0
q×∤4m

ω(−ψ4)−m−q×/4 g(−m)g(m+ q×

2 )

g( q
×

2 )
= (−1)q×/4 q

q×

q−2∑
m=0
q×∤4m

ω(−ψ−4)m
g(m+ q×

2 )g(−m)

g( q
×

2 )
.

Taking (3.4.16), expanding and substituting (3.4.17), (3.4.18), and (3.4.20) then give

(−1)q×/4
∑
s∈S5

ω(a)−scs

= (−1)q×/4
g( q

×

4 )2 + g(3q
×

4 )2

q×g( q
×

2 )
+ 1− 2q

q×
+

q

q×

q−2∑
m=0
q×∤4m

ω(−ψ−4)m
g(m+ q×

2 )g(−m)

g( q
×

2 )
.

We are quite close to (3.4.13), but the first term is off by a factor q. Adding and subtracting give

(−1)q×/4
∑
s∈S5

ω(a)−scs = 1 + qHq(
1
2 ; 0 |ψ

−4)− (−1)q×/4
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

as claimed. □

Lemma 3.4.21. If q ≡ 1 (mod 4), then∑
s∈S5

ω(a)−scs =
∑
s∈S6

ω(a)−scs =
∑
s∈S7

ω(a)−scs.

Proof. We start with (3.4.16) and reindex with m = k + q×

2 :

∑
s∈S5

ω(a)−scs =
1

qq×

q−2∑
k=0

ω(−4ψ)4kg(k)g(k + q×

4 )2g(k + q×

2 )g(−4k)

=
1

qq×

q−2∑
m=0

ω(−4ψ)4mg(m+ q×

2 )g(m+ 3q×

4 )2g(m)g(−4m)

=
∑
s∈S6

ω(a)−scs.

The equality for S7 holds reindexing with m = k + q×

4 . □

We now put these pieces together to give the point count for the toric hypersurface.

Proposition 3.4.22. Let ψ ∈ F×
q .

(a) If q ≡ 3 (mod 4), then

(3.4.23) #UF4,ψ(Fq) = q2 − 3q − 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)).

(b) If q ≡ 1 (mod 4), then

(3.4.24)

#UF4,ψ(Fq) = q2 − 3q + 9 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4))

+ 12

(
(−1)q×/4qHq(

1
2 ; 0 |ψ

−4) + (−1)q×/4 −
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
.
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Proof. For q ≡ 3 (mod 4), we have from Lemmas 3.4.4 and 3.4.7:

(3.4.25)

#UF4,ψ(Fq) =
4∑
i=1

∑
s∈Si

ω(a)−scs

= q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 3(−2− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4))

= q2 − 3q − 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4))

For q ≡ 1 (mod 4), we have from Lemmas 3.4.4, 3.4.7, 3.4.12, and 3.4.21, we have that:

(3.4.26)

#UF4,ψ(Fq) =
4∑
i=1

∑
s∈Si

ω(a)−scs + 12
∑
s∈S5

ω(a)−scs

= q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 3(2 + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4))

+ 12

(
(−1)q×/4qHq(

1
2 ; 0 |ψ

−4) + (−1)q×/4 −
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
which simplifies to the result. □

Step 3: Count points when at least one coordinate is zero.

Lemma 3.4.27. If q ≡ 3 (mod 4), then

#XF4,ψ(Fq)−#UF4,ψ(Fq) = 4q + 4.

Proof. First we compute the number of points when x3 = 0 and x0x1x2 ̸= 0, i.e., count points on
the Fermat quartic curve V : x40 + x41 + x42 = 0 with coordinates in the torus. All points in V (Fq) lie
on the torus: if e.g. x0 = 0 and x1 ̸= 0, then −1 = (x2/x1)

4, but −1 ̸∈ F×2
q since q ≡ 3 (mod 4).

We claim that #V (Fq) = q + 1; this can be proven in many ways. First, we sketch an elementary
argument, working affinely on x40 + x41 = −1. The map (x0, x1) 7→ (x20, x

2
1) gives a map to the

affine curve defined by C : w2
0 + w2

1 = −1. The number of points on this curve over Fq is q + 1
(the projective closure is a smooth conic with no points at infinity), and again all such solutions
have w0, w1 ∈ F×

q . Since q ≡ 3 (mod 4), the squaring map F×2
q → F×4

q is bijective. Therefore,
for the four points (±w0,±w1) with w2

0 + w2
1 = −1, there are exactly four points (±x0,±x1) with

x4i = w2
i for i = 0, 1. Thus #V (Fq) = #C(Fq) = q + 1. (Alternatively, the map (x0, x1) 7→ (x20, x1)

is bijective, with image a supersingular genus 1 curve over Fq.)
Second, and for consistency, we again apply the formula of Koblitz! For the characters, we solve

(3.4.28)


4 0 0
0 4 0
0 0 4
1 1 1


s1s2
s3

 ≡ 0 (mod q×).

There are exactly four solutions when q ≡ 3 (mod 4):

S = {(0, 0, 0), q
×

2 (1, 1, 0), q
×

2 (1, 0, 1), q
×

2 (0, 1, 1)}.
Then by Theorem 3.3.3,

(3.4.29)

#V (Fq) = c(0,0,0) + c(q×/2)(1,1,0) + c(q×/2)(1,0,1) + c(q×/2)(0,1,1)

=
(q − 1)2 − (−1)2

q
+ 3(−1)2 1

q
g( q

×

2 )2g( q
×

2 )g(0)

=
q2 − 2q

q
+ 3 = q + 1.

33



By symmetry, repeating in each of the four coordinate hyperplanes, we obtain #XF4,ψ(Fq) −
#UF4,ψ(Fq) = 4(q + 1) = 4q + 4. □

Lemma 3.4.30. If q ≡ 1 (mod 4), then

#XF4,ψ(Fq)−#UF4,ψ(Fq) = 4q − 8− 12(−1)q×/4 + 12
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )
.

Proof. We repeat the argument in the preceding lemma. We cluster solutions to (3.4.28) and count
the number of solutions in the following way:

(3.4.31)

#V (Fq) = c(0,0,0) + 6c(q×/4)(1,3,0) + 3c(q×/4)(2,2,0) + 3c(q×/4)(1,1,2) + 3c(q×/4)(3,3,2)

= q − 2− 6(−1)q×/4 − 3 +
3

q
g( q

×

4 )2g( q
×

2 ) +
3

q
g(3q

×

4 )2g( q
×

2 )

= q − 5− 6(−1)q×/4 + 3
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )
.

There are 2 solutions to x40 + x41 = 0 with x0x1 ̸= 0 if q ≡ 1 (mod 8) and zero otherwise, so
2 + 2(−1)q×/4 solutions in either case. Adding up, we get

#XF4,ψ(Fq)−#UF4,ψ(Fq) = 4#V (Fq) + 6(2 + 2(−1)q×/4)

= 4q − 8− 12(−1)q×/4 + 12
1

q
g( q

×

4 )2g( q
×

2 ) + 12
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )
. □

Step 4: Conclude. We now conclude the proof.

Proof of Proposition 3.4.1. We combine Proposition 3.4.22 with Lemmas 3.4.27 and 3.4.30. If q ≡ 3
(mod 4), then

#XF4,ψ(Fq) = #UF4,ψ(Fq) + (#XF4,ψ(Fq)−#UF4,ψ(Fq))
= (q2 − 3q − 3 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)) + (4q + 4)

= q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

If q ≡ 1 (mod 4), then the ugly terms cancel, and we have simply

#XF4,ψ(Fq) = #UF4,ψ(Fq) + (#XF4,ψ(Fq)−#UF4,ψ(Fq))
= (q2 − 3q + 9 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 12(−1)q×/4qHq(
1
2 ; 0 |ψ

−4)) + (4q − 8)

= q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 3qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 12(−1)q×/4qHq(
1
2 ; 0 |ψ

−4). □

3.5. The Klein–Mukai pencil F1L3. In this section, we repeat the steps of the previous section
but for the Klein–Mukai pencil F1L3. We suppose throughout this section that q is coprime to 14.
Our main result is as follows.

Proposition 3.5.1. For q coprime to 14 and ψ ∈ F×
q , the following statements hold.

(a) If q ̸≡ 1 (mod 7), then

#XF1L3,ψ(Fq) = q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).
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(b) If q ≡ 1 (mod 7), then

#XF1L3,ψ(Fq) = q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)

+ 3qHq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4) + 3qHq(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ

4).

Remark 3.5.2. The new parameters 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 and 3

14 ,
5
14 ,

13
14 ; 0,

1
4 ,

3
4 match the Picard–Fuchs

equations in Proposition 2.6.1 as elements of Q/Z, with the same multiplicity.

Step 1: Computing and clustering the characters. As before, we first have to compute the solutions
to the system of congruences:

3 0 1 0 1
1 3 0 0 1
0 1 3 0 1
0 0 0 4 1
1 1 1 1 1



w1

w2

w3

w4

w5

 ≡

0
0
0
0
0

 (mod q×).

By linear algebra over Z, we compute that if q ̸≡ 1 (mod 7), then the set of solutions is

S = {(1, 1, 1, 1,−4)w : w ∈ Z/q×Z}.
On the other hand if q ≡ 1 (mod 7), then the set splits into three classes:

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z},
(ii) three sets of the form S8 =

{
k(1, 1, 1, 1,−4) + q×

7 (1, 4, 2, 0, 0) : k ∈ Z/q×Z
}

, and

(iii) three sets of the form S9 =
{
k(1, 1, 1, 1,−4) + q×

7 (3, 5, 6, 0, 0) : k ∈ Z/q×Z
}

.

The multiplicity of the latter two sets corresponds to cyclic permutations yielding the same product
of Gauss sums.

Step 2: Counting points on the open subset with nonzero coordinates. As in the previous section,
the hard work is in counting points in the toric hypersurface. We now proceed with each cluster.

Lemma 3.5.3. If q ≡ 1 (mod 7), then

(3.5.4)
∑
s∈S8

ω(a)−scs = qHq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4)− 1

q
g( q

×

7 )g(4q
×

7 )g(2q
×

7 ).

Proof. Recall our hybrid hypergeometric sum (3.2.14) from Example 3.2.13, plugging in t = ψ4:
(3.5.5)
Hq(

1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4)

=
1

q×
− 1

qq×
g( q

×

7 )g(2q
×

7 )g(4q
×

7 )

+
1

qq×

q−2∑
m=1

m̸=q×/2

g(m+ 1
14q

×)g(m+ 9
14q

×)g(m+ 11
14q

×)

g( 1
14q

×)g( 9
14q

×)g(1114q
×)

g(2m)g(−m)g(−4m)ω(−43ψ4)m.

Our point count formula expands to∑
s∈S8

ω(a)−scs =
1

qq×
g( q

×

7 )g(4q
×

7 )g(2q
×

7 )− 1

qq×
g(9q

×

14 )g( q
×

14 )g(
11q×

14 )g( q
×

2 )

+
1

qq×

q−2∑
k=0
q×∤2k

ω(−4ψ)4kg(k + q×

7 )g(k + 4q×

7 )g(k + 2q×

7 )g(k)g(−4k).
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We work on the sum. Changing indices to m = k + q×

2 , using the identity

g(m+ q×

2 ) = ω(4)−m(−1)mq−1g( q
×

2 )g(−m)g(2m)

found by using Hasse–Davenport for N = 2, and applying Lemma 3.2.11, gives us the summand

ω(−4ψ)4mg(m+ 9q×

14 )g(m+ q×

14 )g(m+ 11q×

14 )g(m+ q×

2 )g(−4m)

= ω(−4ψ)4mg(m+ q×

14 )g(m+ 9q×

14 )g(m+ 11q×

14 )ω(4)−m(−1)mq−1g( q
×

2 )g(−m)g(2m)g(−4m)

= ω(−43ψ4)m
g(m+ q×

14 )g(m+ 9q×

14 )g(m+ 11q×

14 )

g( q
×

14 )g(
9q×

14 )g(11q
×

14 )
q−1g( q

×

2 )4g(2m)g(−m)g(−4m)

= qω(−43ψ4)m
g(m+ q×

14 )g(m+ 9q×

14 )g(m+ 11q×

14 )

qg( q
×

14 )g(
9q×

14 )g(11q
×

14 )
g(2m)g(−m)g(−4m).

Plugging back in, we can relate this to the hypergeometric function (3.5.5):∑
s∈S8

ω(a)−scs =
1

qq×
g( q

×

7 )g(2q
×

7 )g(4q
×

7 )− 1

qq×
g( q

×

14 )g(
9q×

14 )g(11q
×

14 )g( q
×

2 )

+
1

qq×

q−2∑
m=0
q×∤2m

qω(−43ψ4)m
g(m+ q×

14 )g(m+ 9q×

14 )g(m+ 11q×

14 )

g( q
×

14 )g(
9q×

14 )g(11q
×

14 )
g(2m)g(−m)g(−4m)

=
1

qq×
g( q

×

7 )g(2q
×

7 )g(4q
×

7 )− 1

qq×
g( q

×

14 )g(
9q×

14 )g(11q
×

14 )g( q
×

2 )

+ qHq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4) +
q

q×
− 1

q×
g( q

×

7 )g(2q
×

7 )g(4q
×

7 )

= qHq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4)− 1

q
g( q

×

7 )g(2q
×

7 )g(4q
×

7 ). □

Lemma 3.5.6. If q ≡ 1 (mod 7) then

(3.5.7)
∑
s∈S9

ω(a)−scs = qHq(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ

4)− 1

q
g(3q

×

7 )g(5q
×

7 )g(6q
×

7 ).

Proof. Apply complex conjugation to Lemma 3.5.3; the effect is to negate indices, as in Proposition
3.2.8. □

We now put the pieces together to prove the main result in this step.

Proposition 3.5.8. Suppose ψ ∈ F×
q .

(a) If q ̸≡ 1 (mod 7) then

(3.5.9) #UF1L3,ψ(Fq) = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

(b) If q ≡ 1 (mod 7) then

(3.5.10)

#UF1L3,ψ(Fq) = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)

+ 3qHq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4) + 3qHq(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ

4)

− 3

q
(g( q

×

7 )g(2q
×

7 )g(4q
×

7 ) + g(3q
×

7 )g(5q
×

7 )g(6q
×

7 )).
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Proof. When q ̸≡ 1 (mod 7), there is only one cluster of characters, S1. By Lemma 3.4.4, we know
that

(3.5.11) #UF1L3,ψ(Fq) =
∑
s∈S1

ω(a)−scs = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

When q ≡ 1 (mod 7) we have three clusters of characters, the latter two (S8 and S9) with multi-
plicity 3. By Lemmas 3.4.4, 3.5.3, and 3.5.6, these sum to the result. □

Step 3: Count points when at least one coordinate is zero. Recall that q is coprime to 14.

Lemma 3.5.12. Let ψ ∈ F×
q .

(a) If q ̸≡ 1 (mod 7), then

#XF1L3,ψ(Fq)−#UF1L3,ψ(Fq) = 4q − 2.

(b) If q ≡ 1 (mod 7), then

#XF1L3,ψ(Fq)−#UF1L3,ψ(Fq) = 4q − 2 +
3

q
(g( q

×

7 )g(2q
×

7 )g(4q
×

7 ) + g(3q
×

7 g(5q
×

7 )g(6q
×

7 )).

Proof. We count solutions with at least one coordinate zero. If x3 = 0 but x0x1x2 ̸= 0, we count
points on x40+x31x2 = 0: solving for x2, we see there are q− 1 solutions; repeating this for the cases
x1 = 0 or x2 = 0, we get 3q − 3 points.

Now suppose x0 = 0 but x1x2x3 ̸= 0, we look at the equation x31x2 + x32x3 + x33x1 = 0 defining
the Klein quartic. Applying Theorem 3.3.3 again, we find that

(3.5.13)


3 1 0
0 3 1
1 0 3
1 1 1


s1s2
s3

 ≡ 0 (mod q×).

If q ̸≡ 1 (mod 7), then only (0, 0, 0) is a solution and c(0,0,0) = q − 2. If q ≡ 1 (mod 7) then the

solutions are
{
k( q

×

7 ,
4q×

7 , 2q
×

7 ) : k ∈ Z/7Z
}

which gives the point count

q − 2 +
3

q
g( q

×

7 )g(2q
×

7 )g(4q
×

7 ) +
3

q
g(3q

×

7 )g(5q
×

7 )g(6q
×

7 ).

If now at least two of the variables among {x1, x2, x3} are zero, then the equation is just x40 = 0
hence the last one is also zero and there is only one such point. If x0 = x1 = 0, then the equation
is x32x3 = 0 hence another of the first three variables is zero. Consequently there are exactly 3 such
points. Totaling up gives the result. □

Step 4: Conclude. We now prove Proposition 3.5.1.

Proof of Proposition 3.5.1. By Proposition 3.5.8 and Lemma 3.5.12, if q ̸≡ 1 (mod 7), then

(3.5.14)
#XF1L3,ψ(Fq) = q2 − 3q + 3 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + (4q − 2)

= q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).
37



If q ≡ 1 (mod 7), then the ugly terms cancel and we get

(3.5.15)

#XF1L3,ψ(Fq) = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)+

+ 3qHq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4) + 3qHq(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ

4)

− 31
q g(

q×

7 )g(4q
×

7 )g(2q
×

7 )

+ (4q − 2)

= q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)

+ 3qHq(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 |ψ

4) + 3qHq(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 |ψ

4)

as desired. □

3.6. Remaining pencils. For the remaining three pencils F2L2, L2L2, and L4, the formula for the
point counts can be derived in a similar manner. The details can be found in Appendix B; we state
here only the results.

Proposition 3.6.1. For q odd and ψ ∈ F×
q , the following statements hold.

(a) If q ≡ 3 (mod 4), then

#XF2L2,ψ(Fq) = q2 − q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

(b) If q ≡ 5 (mod 8), then

#XF2L2,ψ(Fq) = q2 − q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)

+ qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)− 2qHq(
1
2 ; 0 |ψ

−4).

(c) If q ≡ 1 (mod 8), then

#XF2L2,ψ(Fq) = q2 + 7q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2qHq(
1
2 ; 0 |ψ

−4) + 2ω(2)q
×/4qHq(

1
8 ,

5
8 ; 0,

1
4 |ψ

4) + 2ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4).

Proof. See Proposition B.2.1. □

Proposition 3.6.2. For q odd and ψ ∈ F×
q , the following statements hold.

(a) If q ≡ 3 (mod 4), then

#XL2L2,ψ(Fq) = q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

(b) If q ≡ 1 (mod 4), then

#XL2L2,ψ(Fq) = q2 + 9q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2(−1)q×/4ω(ψ)q×/2qHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4).

Proof. See Proposition B.3.1. □

Proposition 3.6.3. For q coprime to 10 and ψ ∈ F×
q , the following statements hold.

(a) If q ̸≡ 1 (mod 5), then

#XL4,ψ(Fq) = q2 + 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

(b) If q ≡ 1 (mod 5), then

#XL4,ψ(Fq) = q2 + 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 4qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4).

Proof. See Proposition B.4.1. □
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4. Proof of the main theorem and applications

In this section, we prove Main Theorem 1.4.1 by converting the hypergeometric point count
formulas in the previous section into a global L-series. We conclude with some discussion and
applications.

4.1. From point counts to L-series. In this section, we define L-series of K3 surfaces and hy-
pergeometric functions, setting up the notation we will use in the proof of our main theorem.

We begin with L-series of K3 surfaces. Let ψ ∈ Q ∖ {0, 1}. Let ⋄ ∈ {F4,F2L2,F1L3, L2L2, L4}
signify one of the five K3 families in (1.2.1). Let S = S(⋄, ψ) be the set of bad primes in (1.2.1)
together with the primes dividing the numerator or denominator of either ψ4 or ψ4 − 1.

Lemma 4.1.1. For p ̸∈ S(⋄, ψ), the surface X⋄,ψ has good reduction at p.

Proof. Straightforward calculation. □

Let p ̸∈ S(⋄, ψ). The zeta function of X⋄,ψ over Fp is of the form

(4.1.2) Zp(X⋄,ψ, T ) =
1

(1− T )(1− pT )P⋄,ψ,p(T )(1− p2T )

where P⋄,ψ,p(T ) ∈ 1+TZ[T ]. The Hodge numbers of X⋄,ψ imply that the polynomial P⋄,ψ,p(T ) has
degree 21. Equivalently, we have that

(4.1.3) P⋄,ψ,p(T ) = det(1− Frob−1
p T |H2

ét,prim(X⋄,ψ,Qℓ))

is the characteristic polynomial of the Frobenius automorphism acting on primitive second degree
étale cohomology for ℓ ̸= p (and independent of ℓ). We then define the (incomplete) L-series

(4.1.4) LS(X⋄,ψ, s) :=
∏
p ̸∈S

P⋄,ψ,p(p
−s)−1,

convergent for s ∈ C in a right half-plane by elementary estimates.
We now turn to hypergeometric L-series, recalling the definitions made in section 3.1–3.2. Let

ααα,βββ be multisets of rational numbers that are disjoint modulo Z. Let t ∈ Q ∖ {0, 1}, and let
S(ααα,βββ, t) be the set of primes dividing a denominator in ααα ∪ βββ together with the primes dividing
the numerator or denominator of either t or t− 1.

Recall the Definition 3.2.7 of the finite field hypergeometric sums Hq(ααα;βββ | t) ∈ Kααα,βββ ⊆ C. For a
prime power q such that ααα,βββ is splittable, we define the formal series

(4.1.5) Lq(H(ααα,βββ | t), T ) := exp

(
−

∞∑
r=1

Hqr(ααα;βββ | t)
T r

r

)
∈ 1 + TKααα,βββ[[T ]]

using Lemma 3.2.10(b). (Note the negative sign; below, this normalization will yield polynomials
instead of inverse polynomials.)

For a number field M , a prime of M is a nonzero prime ideal of the ring of integers ZM of M .
We call a prime p of M good (with respect to ααα,βββ, ψ) if p lies above a prime p ̸∈ S(ααα,βββ, ψ). Now
let M be an abelian extension of Q containing the field of definition K := Kααα,βββ with the following
property:

(4.1.6) for all good primes p of M , we have q = Nm(p) splittable for ααα,βββ.

For example, if m is the least common multiple of all denominators in ααα ∪ βββ, then we may take
M = Q(ζm). We will soon see that we will need to take M to be nontrivial extensions of K in
Proposition 4.3.1 to deal with the splittable hypergeometric function given in Example 3.2.4. Let m
be the conductor of M , i.e., the minimal positive integer such that M ⊆ Q(ζm). Under the canonical
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identification (Z/mZ)× ∼−→ Gal(Q(ζm) |Q) where k 7→ σk and σk(ζm) = ζkm, let HM ≤ (Z/mZ)× be
such that Gal(M |Q) ≃ (Z/mZ)×/HM .

Now let p ̸∈ S(ααα,βββ, ψ). Let p1, . . . , pr be the primes above p in M , and let q = pf = Nm(pi) for
any i. Recall (by class field theory for Q) that f is the order of p in (Z/mZ)×/HM , and rf = [M : Q].
Moreover, the set of primes {pi}i arise as pi = σki(p1) where ki ∈ Z are representatives of the
quotient (Z/mZ)×/⟨HM , p⟩ of (Z/mZ)× by the subgroup generated by HM and p. We then define

(4.1.7)
Lp(H(ααα,βββ | t),M, T ) :=

r∏
i=1

Lq(H(kiααα, kiβββ | t), T f )

=
∏

ki∈(Z/mZ)×/⟨HM ,p⟩

Lq(H(kiααα, kiβββ | t), T f ) ∈ 1 + TK[[T ]].

This product is well-defined up to choice of representatives ki of the cosets in (Z/mZ)×/⟨HM , p⟩.
Indeed, by Lemma 3.2.10: part (c) gives

(4.1.8) Lq(H(pkααα, pkβββ | t), T f ) = Lq(H(kααα, kβββ | tp), T f ) = Lq(H(kααα, kβββ | t), T f )

for all k ∈ (Z/mZ)× and all good primes p, since tp = t ∈ Fp ⊆ Fq; and similarly part (a) implies
it is well-defined for k ∈ (Z/mZ)×/HM as HM ≤ HK .

Lemma 4.1.9. The following statements hold.
(a) We have

(4.1.10) Lp(H(ααα;βββ | t),M, T ) ∈ 1 + TQ[[T ]]

and

(4.1.11) Lp(H(ααα;βββ | t),M, T ) = Lp(H(kααα; kβββ | t),M, T )

for all k ∈ Z coprime to p and m, independent of the choice of multiplicative character ω.
(b) Let HK ≤ (Z/mZ)× correspond to Gal(K |Q) as above, and let

(4.1.12) r(M |K, p) := [⟨HK , p⟩ : ⟨HM , p⟩].

Then r(M |K, p) is the number of primes in M above a prime in K above p, and

(4.1.13) Lp(H(ααα,βββ | t),M, T ) =
∏

ki∈(Z/mZ)×/⟨HK ,p⟩

Lq(H(kiααα, kiβββ | t), T f )r(M |K,p).

Proof. For part (a), the descent to Q follows from Galois theory and Lemma 3.2.10 (and its proof);
the equality (4.1.11) follows as multiplication by k permutes the indices ki in (Z/mZ)×/⟨HM , p⟩. For
part (b), the fact that r(M |K, p) counts the number of primes follows again from class field theory;
to get (4.1.13), use Lemma 3.2.10 and the fact that the field of definition of ααα,βββ is K = Kααα,βββ . □

We again package these together in an L-series:

(4.1.14) LS(H(ααα;βββ | t),M, s) :=
∏
p ̸∈S

Lp(H(ααα;βββ | t),M, p−s)−1.

We may expand (4.1.14) as a Dirichlet series

(4.1.15) LS(H(ααα;βββ | t),M, s) =
∑

n⊆ZM
n ̸=(0)

an
Nm(n)s

with an ∈ K = Kααα,βββ ⊂ C, and again the series converges for s ∈ C in a right half-plane. If
M = Kααα,βββ , we suppress the notation M and write just LS(H(ααα;βββ | t), s), etc.
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Finally, for a finite order Dirichlet character χ over M , we let LS(H(ααα;βββ | t),M, s, χ) denote the
twist by χ, defined by

(4.1.16) LS(H(ααα;βββ | t),M, s, χ) :=
∑

n⊆ZM
n̸=(0)

χ(n)an
Nm(n)s

.

4.2. The Dwork pencil F4. In the remaining sections, we continue with the same notation: let
t = ψ−4 and let S = S(⋄, ψ) be the set of bad primes in (1.2.1) together with the set of primes
dividing the numerator or denominator of t or t− 1. We now prove Main Theorem 1.4.1(a).

Proposition 4.2.1. Let ψ ∈ Q∖ {0, 1} and let t = ψ−4. Then

LS(XF4,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· LS(H(14 ,
3
4 ; 0,

1
2 | t), s− 1, ϕ−1)

3

· LS(H(12 ; 0 | t),Q(
√
−1), s− 1, ϕ√−1)

6

where

(4.2.2)
ϕ−1(p) =

(
−1
p

)
= (−1)(p−1)/2 is associated to Q(

√
−1) |Q, and

ϕ√−1(p) =

(√
−1
p

)
= (−1)(Nm(p)−1)/4 is associated to Q(ζ8) |Q(

√
−1).

Proof. Recall Proposition 3.4.1, where we wrote the number of Fq points on F4 in terms of finite
field hypergeometric functions. We rewrite these for convenience:

(4.2.3)
#XF4,ψ(Fq) = q2 + q + 1 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) + ϕ−1(q)3qHq(

1
4 ,

3
4 ; 0,

1
2 | t)

+ δ[q ≡ 1 (mod 4)]12ϕ√−1(q)qHq(
1
2 ; 0 | t)

where δ[P] = 1, 0 according as if P holds or not.
Each summand in (4.2.3) corresponds to a multiplicative term in the exponential generating

series. The summand q2 + q + 1 gives the factor (1 − T )(1 − qT )(1 − q2T ) in the denominator of
(4.1.2), so LS(XF4,ψ, s) represents the rest of the sum. The summand Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) yields

LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s) by definition.

Next we consider the summand ϕ−1(q)3qHq(
1
4 ,

3
4 ; 0,

1
2 | t): for each p ̸∈ S, we have

(4.2.4)

exp

(
−

∞∑
r=1

ϕ−1(p
r)3prHpr

(
1
4 ,

3
4 ; 0,

1
2 | t
) (p−s)r

r

)

= exp

(
−

∞∑
r=1

ϕ−1(p
r)Hpr(

1
4 ,

3
4 ; 0,

1
2 | t)

p(1−s)r

r

)3

= Lp(Hp(
1
4 ,

3
4 ; 0,

1
2 | t), p

1−s, ϕ−1)
3;

Combining these for all p ̸∈ S then gives the L-series LS(H(14 ,
3
4 ; 0,

1
2 | t), s− 1, ϕ−1)

3.
We conclude with the final term 12ϕ√−1(q)qHq(

1
2 ; 0 | t) which exists only when q ≡ 1 (mod 4).

We accordingly consider two cases. First, if p ≡ 1 (mod 4), then in Z[
√
−1], the two primes p1, p2
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above p have norm p. We compute

(4.2.5)

exp

(
−

∞∑
r=1

12ϕ√−1(p
r)prHpr(

1
2 ; 0 | t)

(p−s)r

r

)
= Lp(H(12 ; 0 | t), p

1−s, ϕ√−1)
12

= Lp(H(12 ; 0 | t), p
1−s, ϕ√−1)

6Lp(H(−1
2 ; 0 | t), p

1−s, ϕ√−1)
6

= Lp(H(12 ; 0 | t),Q(
√
−1), p1−s, ϕ√−1)

6

where the second equality holds because the definition of the hypergeometric sum only depends on
parameters modulo Z and the final equality is the definition (4.1.7) using that Gal(M |Q) when
M = Q(

√
−1) is generated by complex conjugation.

Second, if p ≡ 3 (mod 4), then there is a unique prime ideal p above p with norm Nm(p) = p2,
and

(4.2.6)

exp

(
−

∞∑
r=1

12ϕ√−1(p
2r)p2rHp2r(

1
2 ; 0 | t)

(p−s)2r

2r

)
= Lp2(H(12 ; 0 | t), p

2(1−s), ϕ√−1)
6

= Lp(H(12 ; 0 | t),Q(
√
−1), p1−s, ϕ√−1)

6.

Taking the product of (4.2.5) and (4.2.6) over all prescribed p, we obtain the last L-series factor. □

4.3. The Klein–Mukai pencil F1L3. We now prove Theorem 1.4.1(b).

Proposition 4.3.1. For the Klein–Mukai pencil F1L3,

LS(XF1L3,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· LS(H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t

−1),Q(ζ7), s− 1)

where for ααα,βββ = { 1
14 ,

9
14 ,

11
14}, {0,

1
4 ,

3
4} we have field of definition Kααα,βββ = Q(

√
−7).

Remark 4.3.2. By Lemma 4.1.9, we have

LS(H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t

−1), s) = LS(H( 3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t

−1), s).

Proof. Recall that by Proposition 3.5.1, we have

#XF1L3,ψ(Fq) = q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t)

+ 3qδ[q ≡ 1 (mod 7)]
(
Hq(

1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t

−1) +Hq(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t

−1)
)

We compute that the field of definition (see Definition 3.1.10) associated to the parameters ααα,βββ =
{ 1
14 ,

9
14 ,

11
14}, {0,

1
4 ,

3
4} and to ααα,βββ = { 3

14 ,
5
14 ,

13
14}, {0,

1
4 ,

3
4} is Q(

√
−7). We take M = Q(ζ7) and

consider a prime p of M , and let q = Nm(p). Then q ≡ 1 (mod 7), and in Example 3.2.4, we have
seen that q is splittable for ααα,βββ.

We proceed in two cases, according to the splitting behavior of p in K = Kααα,βββ = Q(
√
−7).

First, suppose that p ≡ 1, 2, 4 (mod 7), or equivalently p splits in K. We have 2r(M |K, p)f = 6 so
r(M |K, p) = 3. We then apply Lemma 4.1.9(b), with (Z/mZ)×/⟨HK , p⟩ = {±1}, to obtain

exp

(
−

∞∑
r=1

3pfrHpfr
(

1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t
) (p−s)fr

fr
− 3pfrHpfr

(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t
) (p−s)fr

fr

)
= Lpf (H( 1

14 ,
9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t), p

1−s)3/fLpf (H( 3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t), p

1−s)3/f(4.3.3)

=
∏

ki∈(Z/mZ)×/⟨HK ,p⟩

Lp(H( 1
14ki,

9
14ki,

11
14ki; 0,

1
4ki,

3
4ki | t), p

1−s)r(M |K,p)
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= Lp(H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t),Q(ζ7), p

1−s).

To conclude, suppose p ≡ 3, 5, 6 (mod 7), i.e., p is inert in K. Now (Z/mZ)×/⟨HK , p⟩ = {1} and
6 = r(M |K, p)f . By Lemma 3.2.10(c), for all q ≡ 1 (mod 7), we have that

(4.3.4) Hq

(
1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t
)
= Hq

(
1
14p,

9
14p,

11
14p; 0,−

1
4 ,−

3
4 | t

p
)
= Hq

(
3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t
)
.

Using the previous line and Lemma 4.1.9(b),

exp

(
−

∞∑
r=1

3pfrHpfr
(

1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t
) (p−s)fr

fr

+3pfrHpfr
(

3
14 ,

5
14 ,

13
14 ; 0,

1
4 ,

3
4 | t
) (p−s)fr

fr

)
= exp

(
−

∞∑
r=1

6Hpfr
(

1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t
) (p1−s)fr

fr

)
= Lpf (H( 1

14 ,
9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t), p

1−s)6/f(4.3.5)

= Lpf (H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t), p

1−s)r(M |K,p)

= Lp(H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t),Q(ζ7), p

1−s). □

4.4. The pencil F2L2. We now prove Theorem 1.4.1(c):

Proposition 4.4.1. For the pencil F2L2,

LS(XF2L2,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· LS(Q(ζ8) |Q, s− 1)2

· LS(H(14 ,
3
4 ; 0,

1
2 | t), s− 1, ϕ−1)

· LS(H(12 ; 0 | t),Q(
√
−1), s− 1, ϕ√−1)

· LS(H(18 ,
5
8 ; 0,

1
4 | t

−1),Q(ζ8), s− 1, ϕ√2)

where
• the character ϕ√−1 is defined in (4.2.2),
• for ααα,βββ = {18 ,

5
8}, {0,

1
4} we have the field of definition Kααα,βββ = Q(

√
−1), M = Q(ζ8), and

ϕ√2(p) :=

(√
2

p

)
≡ 2(Nm(p)−1)/4 (mod p) is associated to Q(ζ8,

4
√
2) |Q(ζ8), and

• L(Q(ζ8) |Q, s) = ζQ(ζ8)(s)/ζ(s), where ζQ(ζ8)(s) is the Dedekind zeta function of Q(ζ8) and
ζ(s) = ζQ(s) the Riemann zeta function.

Proof. We now appeal to Proposition 3.6.1, which we summarize as:

(4.4.2)

#XF2L2,ψ(Fq) = q2 + q + 1 + 2q ·

{
3 if q ≡ 1 (mod 8)

−1 if q ̸≡ 1 (mod 8)

+Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) + ϕ−1(q)qHq(

1
4 ,

3
4 ; 0,

1
2 | t)

+ 2ϕ√−1(q)qδ[q ≡ 1 (mod 4)]Hq(
1
2 ; 0 | t)

+ 2ϕ√2(q)qδ[q ≡ 1 (mod 8)]
(
Hq(

1
8 ,

5
8 ; 0,

1
4 | t

−1) +Hq(
3
8 ,

7
8 ; 0,

3
4 | t

−1)
)
.

For the new sum with parameters ααα,βββ = {18 ,
5
8}, {0,

1
4}, we have field of definitionKααα,βββ = Q(

√
−1)

because the subgroup of (Z/8Z)× preserving these subsets is generated by 5.
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The term q2 + q + 1 in (4.4.2) is handled as before. For the next term, by splitting behavior in
the biquadratic field Q(ζ8) = Q(

√
−1,
√
2) we obtain

(4.4.3) Lp(Q(ζ8) |Q, pT ) =

(1− pT )3, if p ≡ 1 (mod 8);
(1− (pT )2)2

1− pT
= (1− pT )(1 + pT )2, if p ̸≡ 1 (mod 8).

For q ≡ 1 (mod 8) the contribution to the exponential generating series is 3q, otherwise the contri-
bution is q − 2q = −q.

All remaining terms except for the term

2ϕ√2(q)qδ[q ≡ 1 (mod 8)](Hq(
1
8 ,

5
8 ; 0,

1
4 | t

−1) +Hq(
3
8 ,

7
8 ; 0,

3
4 | t

−1))

are handled in the proof of Proposition 4.2.1. We choose M = Q(ζ8) which has conductor m = 8.

Then HK = ⟨5⟩ ≤ (Z/8Z)×. Let ϵ =
(√

2

p

)
for a prime p above p in Q(ζ8) (and independent of

this choice).
Suppose that p ≡ 1 (mod 8). We compute that f = 1 and r(M |K, p) = 2. By applying

Lemma 4.1.9(b), we have:

exp

(
−

∞∑
r=1

2ϵrprHpr
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
) (p−s)r

r
−

∞∑
r=1

2ϵrprHpr
(
3
8 ,

7
8 ; 0,

3
4 | t

−1
) (p−s)r

r

)
= Lp(H

(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
, p1−s, ϕ√2)

2Lp(Hpr
(
3
8 ,

7
8 ; 0,

3
4 | t

−1
)
, p1−s, ϕ√2)

2(4.4.4)

=
∏

k∈(Z/8Z)×/⟨HK ,p⟩

Lp(H
(
1
8k,

5
8k; 0,

1
4k | t

−1
)
, p1−s, ϕ√2)

2

= Lp(H
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
,Q(ζ8), p

1−s, ϕ√2).

Suppose now that p ≡ 3, 7 (mod 8). Then f = 2 and r(M |K, p) = 2. By Lemma 3.2.10(c), for
all q a power of p so that q ≡ 1 (mod 8), we have that

(4.4.5) Hq

(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
= Hq

(
1
8p,

5
8p; 0,

1
4p | t

−p) = Hq

(
3
8 ,

7
8 ; 0,

3
4 | t

−1
)
.

Again applying Lemma 4.1.9(b), we have:

exp

(
−

∞∑
r=1

2ϵrp2rHp2r
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
) (p−s)2r

2r
−

∞∑
r=1

2ϵrp2rHp2r
(
3
8 ,

7
8 ; 0,

3
4 | t

−1
) (p−s)2r

2r

)

= exp

(
−

∞∑
r=1

2ϵrp2rHp2r
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
) (p−s)2r

r

)
= Lp2(H

(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
, p1−s, ϕ√2)

2(4.4.6)

= Lp2(H
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
, p1−s, ϕ√2)

r(M |K,p)

= Lp2(H
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
,Q(ζ8), p

1−s, ϕ√2).

Finally, suppose that p ≡ 5 (mod 8). Then f = 2 and r(M |K, p) = 1, and now

exp

(
−

∞∑
r=1

2ϵrp2rHp2r
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
) (p−s)2r

2r
−

∞∑
r=1

2ϵrp2rHp2r
(
3
8 ,

7
8 ; 0,

3
4 | t

−1
) (p−s)2r

2r

)
= Lp2(H

(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
, p1−s, ϕ√2)Lp2(H

(
3
8 ,

7
8 ; 0,

3
4 | t

−1
)
, p1−s, ϕ√2)(4.4.7)

=
∏

k∈(Z/8Z)×/⟨HK ,p⟩

Lp2(H
(
1
8k,

5
8k; 0,

1
4k | t

−1
)
, p1−s, ϕ√2)
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= Lp(H
(
1
8 ,

5
8 ; 0,

1
4 | t

−1
)
,Q(ζ8), p

1−s, ϕ√2). □

4.5. The pencil L2L2. We now prove Theorem 1.4.1(d).

Proposition 4.5.1. For the pencil L2L2, we have

LS(XL2L2,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)

· ζQ(
√
−1)(s− 1)4

· LS(H(14 ,
3
4 ; 0,

1
2 | t), s− 1, ϕ−1)

· LS(H(18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t),Q(i), s− 1, ϕ√−1ϕψ)

where the characters ϕ−1, ϕ√−1 are defined in (4.2.2) and

(4.5.2) ϕψ(p) =

(
ψ

p

)
is associated to Q(

√
ψ) |Q

and ζQ(
√
−1)(s) is the Dedekind zeta function of Q(

√
−1).

Proof. By Proposition 3.6.2, we have the point counts

(4.5.3)

#XL2L2,ψ(Fq) = q2 + q + 1 + 4q ·

{
2 if q ≡ 1 (mod 4)

0 if q ≡ 3 (mod 4)

+Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t) + (−1)q×/2qHq(

1
4 ,

3
4 ; 0,

1
2 | t)

+ 2(−1)q×/4ω(ψ)q×/2qδ[q ≡ 1 (mod 4)]Hq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t).

Again by splitting behavior, we have

(4.5.4) ζQ(i),p(pT ) =

{
(1− pT )2, if p ≡ 1 (mod 4);

1− p2T 2, if p ≡ 3 (mod 4).

For q ≡ 1 (mod 4), the contribution to the exponential generating series is 2q, otherwise the con-
tribution is 0.

All but the last summand have been identified in the previous propositions, and this one follows
in a similar but easier manner (because it has Q as field of definition) applying Lemma 4.1.9(b),
with M = Q(

√
−1) and fr(M |Q, p) = 2:

exp

(
−

∞∑
r=1

2(−1)(pfr)×/4ω(ψ)(pfr)×/2pfrHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t)

(p−s)fr

fr

)
= Lpf (H(18 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t), p

1−s, ϕψϕ−1)
2/f(4.5.5)

= Lpf (H(18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t), p

1−s, ϕψϕ−1)
r(M |Q,p)

= Lp(H(18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 | t),Q(

√
−1), p1−s, ϕψϕ−1). □

4.6. The pencil L4. Here we prove Theorem 1.4.1(e).

Proposition 4.6.1. For the pencil L4,

LS(XL4,ψ, s) = LS(H(14 ,
1
2 ,

3
4 ; 0, 0, 0 | t), s)ζ(s− 1)2

· LS(H(15 ,
2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t

−1),Q(ζ5), s− 1),
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Proof. By Proposition 3.6.3, we have that

#XL4(ψ) = q2 + 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 | t)

+ 4qδ[q ≡ 1 (mod 5)]Hq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t

−1).

The extra two summands of q in the point count correspond to the L-series factor ζ(s− 1)2. We
now focus on the remaining new summand 4qHq(

1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4) that occurs exactly when
q ≡ 1 (mod 5). Let f be the order of p in (Z/5Z)×, which divides 4. Take M = Q(ζ5). We know
that K = Q for all possible p, hence r(M |K, p) = 4f−1. By Lemma 4.1.9, we have

exp

(
−

∞∑
r=1

4prfHprf (
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t

−1)
(p−s)rf

fr

)
= Lpf (H(15 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t

−1), p1−s)4/f(4.6.2)

= Lpf (H(15 ,
2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t

−1), p1−s)r(M |Q,p)

= Lp(H(15 ,
2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 | t

−1),Q(ζ5), p
1−s). □

4.7. Algebraic hypergeometric functions. We now turn to some applications of our main the-
orem. We begin in this section by setting up a discussion of explicit identification of the algebraic
hypergeometric functions that arise in our decomposition, following foundational work of Beukers–
Heckman [BH89].

Recall the hypergeometric function F (z) = F (ααα;βββ | z) (Definition 2.4.1) for parameters ααα,βββ. For
certain special parameters, this function may be algebraic over C(z), i.e., the field C(z, F (z)) is
a finite extension of C(z). By a criterion of Beukers–Heckman, F (z) is algebraic if and only if
the parameters interlace (ordering the parameters, they alternate between elements of ααα and βββ)
[BH89, Theorem 4.8]; moreover, all sets of interlacing parameters are classified [BH89, Theorem
7.1]. We see in Main Theorem 1.4.1 that for all but the common factor LS(H(14 ,

1
2 ,

3
4 ; 0, 0, 0 | t), s),

the parameters interlace, so this theory applies.

Conjecture 4.7.1. Let t ∈ Q, let ααα,βββ with #ααα = βββ = d be such that the hypergeometric function
F (ααα;βββ | z) is algebraic. Let M satisfy (4.1.6). Then LS(H(ααα,βββ | t),M, s) is an Artin L-series of
degree d[M : Kααα,βββ]; in particular, for all good primes p, we have Lp(H(ααα,βββ | t),M, T ) ∈ 1 + TQ[T ]
a polynomial of degree d[M : Kααα,βββ].

Conjecture 4.7.1 is implicit in work of Katz [Kat90, Chapter 8], and there is current, ongoing
work on the theory of hypergeometric motives that is expected to prove this conjecture, at least for
certain choices of M . An explicit version of Conjecture 4.7.1 could be established in each case for
the short list of parameters that arise in our Main Theorem. For example, we can use the following
proposition about L-series and apply it for the family F4, proving a conjecture of Duan [Dua18].

Proposition 4.7.2 (Cohen). We have the following L-series relations:

(4.7.3)
LS(H(14 ,

3
4 ; 0,

1
2 |ψ

−4), s, ϕ−1) = LS(s, ϕ1−ψ2)LS(s, ϕ−1−ψ2)

LS(
1
2 ; 0 |ψ

−4,Q(
√
−1), s, ϕ√−1) = LS(s, ϕ2(1−ψ4))LS(s, ϕ−2(1−ψ4)),

where ϕa =
(
a

p

)
is the Legendre symbol.

Proof. The hypergeometric L-series were computed explicitly by Cohen [Coh, Propositions 6.4 and
7.32], and the above formulation follows directly from this computation. □

More generally, Naskręcki [Nas] has given an explicit description for algebraic hypergeometric
L-series of low degree defined over Q using the variety defined by Beukers–Cohen–Mellit [BCM15].
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Proposition 4.7.2, plugged into our hypergeometric decomposition, gives an explicit decomposition
of the polynomial QF4,ψ,q as follows.

Corollary 4.7.4. We have:
QF4,ψ,q(T )

=


(
1−

(
1− ψ2

q

)
qT

)3(
1−

(
−1− ψ2

q

)
qT

)3(
1−

(
1− ψ4

q

)
qT

)12

, if q ≡ 1 (mod 4);(
1−

(
1− ψ2

q

)
qT

)3

(1− qT )6(1 + qT )6, if q ≡ 3 (mod 4);

where
(
a

q

)
denotes the Jacobi symbol.

Corollary 4.7.4 explains why the field of definition of the Picard group involves square roots of
1 + ψ2 and 1− ψ2.

4.8. Applications to zeta functions. To conclude, we give an application to zeta functions. In
Sections 2 and 3, we established a relationship between the periods and the point counts for our
collection of invertible K3 polynomial families and hypergeometric functions. In particular, both the
periods and the point counts decompose naturally in terms of the group action into hypergeometric
components.

It is easy to see that the zeta function is the characteristic polynomial of Frobenius acting on
our cohomology (i.e., the collection of periods). In this sense, both sections 2 and 3 suggest that,
as long as the group action and the action of Frobenius commute, the splitting of Frobenius by the
group action translates into factors, each corresponding to the Frobenius acting only on a given
isotypical component of the action. However, a priori we only know that this factorization over Q
(see e.g. work of Miyatani [Miy15]).

Thus, we have the following corollary of Main Theorem 1.4.1.

Corollary 4.8.1. Assuming Conjecture 4.7.1, for smooth X⋄,ψ,q, the polynomials Q⋄,ψ,q(T ) factor
over Q[T ] under the given hypothesis as follows:

(4.8.2)

Family Factorization Hypothesis

F4
(deg 2)3(deg 1)12 q ≡ 1 (mod 4)
(deg 2)3(deg 2)6 q ≡ 3 (mod 4)

F1L3

(deg 3)3(deg 3)3 q ≡ 1 (mod 7)
(deg 6)3 q ≡ 6 (mod 7)

(deg 9)(deg 9) q ≡ 2, 4 (mod 7)
(deg 18) q ≡ 3, 5 (mod 7)

F2L2

(1− qT )6(deg 2)(deg 1)2(deg 2)2(deg 2)2 q ≡ 1 (mod 8)
(1− qT )2(1 + qT )4(deg 2)(deg 1)2(deg 4)2 q ≡ 5 (mod 5)

(1− qT )2(1 + qT )4(deg 2)(deg 2)(deg 4)(deg 4) q ≡ 3, 7 (mod 8)

L2L2
(1− qT )8(deg 2)(deg 4)2 q ≡ 1 (mod 4)
(1− q2T 2)4(deg 2)(deg 8) q ≡ 3 (mod 4)

L4

(1− qT )2(deg 4)4 q ≡ 1 (mod 5)
(1− qT )2(deg 8)2 q ≡ 4 (mod 5)
(1− qT )2(deg 16) q ≡ 2, 3 (mod 5)

The factorization in Corollary 4.8.1 is to be read as follows: for the family L2L2 when q ≡ 1
(mod 4), we have Q⋄,ψ,q(T ) = (1− qT )8Q1(T )Q2(T )

2 where degQ1(T ) = 2 and degQ2(T ) = 4, but
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we do not claim that Q1, Q2 are irreducible. A complete factorization into irreducibles depends on
ψ ∈ F×

q and can instead be computed from the explicit Artin L-series.

Proof. For each case, we need to identify the field of definition for the terms associated to hypergeo-
metric functions other than H(14 ,

1
2 ,

3
4 ; 0, 0, 0 | t) and check the degrees of the resulting zeta function

factors using Lemma 4.1.9 and Conjecture 4.7.1.
F4. The case where q ≡ 3 (mod 4) is straightforward from the statement of Proposition 4.2.1.

In the case where q ≡ 1 (mod 4), we see in the proof that the L-series

LS(Hq(
1
2 ; 0 | t),Q(

√
−1), s− 1, ϕ√−1)

factors into a square (see Equations (4.2.5) and (4.2.6)).
F1L3. In the case where q ≡ 1, 2, 4 (mod 7), we see in Equation (4.3.3) that the L-series associated

to H( 1
14 ,

9
14 ,

11
14 ; 0,

1
4 ,

3
4 | t) factorizes into two terms with multiplicity 3/f where f is the

order of q in (Z/7Z)×. The analogous argument holds for when q ≡ 3, 5, 6 (mod 7) using
Equation (4.3.5) to see that the L-series factors into one term with multiplicity 6/f .

F2L2. The explicit factors follow directly from Equation (4.4.3). The next two factors come
from the L-series LS(H(14 ,

3
4 ; 0,

1
2 | t), s − 1, ϕ−1) and LS(H(12 ; 0 | t),Q(

√
−1), s − 1, ϕ√−1)

were dealt with in the F4 case. The zeta function factorization implied by the L-series
LS(H(18 ,

5
8 ; 0,

1
4 | t

−1),Q(ζ8), s− 1) follows by using Equations (4.4.4), (4.4.6), and (4.4.7).
L2L2. The explicit factors follow directly from Equation (4.5.4). The next factor has been dealt

with above. The final factor is implied by Equation (4.5.5).
L4. The term ζ(s−1)2 gives the (1−qT )2 factor. The last factor is direct from Equation (4.6.2).

□

Example 4.8.3. Because the reciprocal roots of Q⋄,ψ,q(T ) are of the form q times a root of 1, the
factors of Q⋄,ψ,q(T ) over Z are of the form Φ(qT ), where Φ is a cyclotomic polynomial. We now
give the explicit zeta functions for the case where q = 281 and ψ = 18 in the table below. We use
a SageMath interface to C code written by Costa, which is described in a paper of Costa–Tschinkel
[CT14]. Note that the factorizations in Corollary 4.8.1 are sharp for the families F1L3 and L4.

(4.8.4)

Family Q⋄,ψ,q(T )

F4 (1− qT )12(1 + qT )6

F2L2 (1− qT )8(1 + qT )2(1 + q2T 2)4

F1L3 (1 + qT + q2T 2 + q3T 3 + q4T 4 + q5T 5 + q6T 6)3

L2L2 (1− qT )12(1 + qT )6

L4 (1− qT )2(1 + qT + q2T 2 + q3T 3 + q4T 4)4

Appendix A. Remaining Picard–Fuchs equations

In this appendix, we provide the details in the computation of the remaining three pencils F2L2,
L2L2, and L4. We follow the same strategy as in sections 2.5–2.6.

A.1. The F2L2 pencil. Take the pencil

Fψ := x40 + x41 + x32x3 + x33x2 − 4ψx0x1x2x3

that defines the pencil of projective hypersurfaces Xψ = Z(Fψ) ⊂ P3. There is a Z/8Z scaling
symmetry of this family generated by the element

g(x0 : x1 : x2 : x3) = (ξ2x0 : x1 : ξx2 : ξ
5x3)

where ξ is a primitive eighth root of unity. There are eight characters χk : H → C×, where
χk(g) = ξk. We can again decompose V into subspaces Wχk and write their monomial bases.
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Note that the monomial bases for Wχ1 ,Wχ3 ,Wχ5 , and Wχ7 are the same up to transpositions of x0
and x1 or x2 and x3 which leave the polynomial invariant; thus, they have the same Picard–Fuchs
equations. The monomial bases for Wχ2 and Wχ6 are related by transposing x0 and x1, so they also
have the same Picard–Fuchs equations. So we are left with four types of monomial bases:

(i) Wχ0 has monomial basis {x0x1x2x3};
(ii) Wχ1 has monomial basis {x22x0x3, x20x1x3};
(iii) Wχ2 has monomial basis {x20x2x3, x21x22, x21x23}; and
(iv) Wχ4 has monomial basis {x20x21, x22x23, x22x0x1, x23x0x1}.

Using (2.3.3), we compute the following period relations:

(A.1.1)

v + (4, 0, 0, 0) =
1 + v0

4(ω + 1)
v + ψ(v + (1, 1, 1, 1))

v + (0, 4, 0, 0) =
1 + v1

4(ω + 1)
v + ψ(v + (1, 1, 1, 1))

v + (0, 0, 3, 1) =
3(v2 + 1)− (v3 + 1)

8(ω + 1)
v + ψ(v + (1, 1, 1, 1))

v + (0, 0, 1, 3) =
−(v2 + 1) + 3(v3 + 1)

8(ω + 1)
v + ψ(v + (1, 1, 1, 1))

We can now use the diagram method to prove the following proposition.

Proposition A.1.2. For the F2L2 family, the primitive cohomology group H2
prim(XF2L2,ψ,C) has 15

periods whose Picard–Fuchs equations are hypergeometric differential equations as follows:

3 periods are annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4),

2 periods are annihilated by D(14 ,
3
4 ; 1,

1
2 |ψ

−4),

2 periods are annihilated by D(12 ; 1 |ψ
4),

4 periods are annihilated by D(18 ,
5
8 ; 1,

1
4 |ψ

4), and

4 periods are annihilated by D(−3
8 ,

1
8 ; 0,

1
4 |ψ

4).

We consider each of these in turn.

Lemma A.1.3. The Picard–Fuchs equation associated to the periods ψ(2, 2, 0, 0) and ψ(0, 0, 2, 2) is
the hypergeometric differential equation D(14 ,

3
4 ; 1,

1
2 |ψ

−4).

Proof. For the periods (2, 2, 0, 0) and (0, 0, 2, 2), corresponding to the quartic monomials x20x21 and
x22x

2
3, we use the diagram
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(2, 2, 0, 0) //

��

(3, 3, 1, 1)

(1, 1, 2, 0) //

��

(2, 2, 3, 1)

(0, 0, 2, 2) //

��

(1, 1, 3, 3)

(3,−1, 1, 1) //

��

(4, 0, 2, 2)

(3, 3, 1, 1)

and get the relations

(A.1.4)
η(2, 2, 0, 0) = ψ2(η + 1)(0, 0, 2, 2);

η(0, 0, 2, 2) = ψ2(η + 1)(2, 2, 0, 0).

For the periods (2, 2, 0, 0) and (0, 0, 2, 2), corresponding to the quartic monomials x20x21 and x22x23,
we get the same Picard–Fuchs equation

(A.1.5)
[
(η − 2)η − ψ4(η + 3)(η + 1)

]

By multiplying by ψ and substituting t = ψ−4 and θ = t
d

dt
= −η/4, we get:

ψ
[
(η − 2)η − ψ4(η + 3)(η + 1)

]
(2, 2, 0, 0) = 0[

(η − 3)(η − 1)− ψ4(η + 2)η
]
ψ(2, 2, 0, 0) = 0[

(θ + 3
4)(θ +

1
4)− t

−1(θ − 1
2)θ
]
ψ(2, 2, 0, 0) = 0[

(θ − 1
2)θ − t(θ +

3
4)(θ +

1
4)
]
ψ(2, 2, 0, 0) = 0

which is the hypergeometric differential equation D(14 ,
3
4 ; 1,

1
2 |ψ

−4). □

Lemma A.1.6. The Picard–Fuchs equation associated to the periods (2, 0, 1, 1) is the hypergeometric
differential equation D(12 ; 1 |ψ

4).

Proof. For the period (2, 0, 1, 1), corresponding to the quartic monomial x20x2x3, we use the diagram
50



(2, 0, 1, 1) //

��

(3, 1, 2, 2)

(1,−1, 3, 1) //

��

(2, 0, 4, 2)

(0, 2, 2, 0) //

��

(1, 3, 3, 1)

(−1, 1, 2, 2) //

��

(0, 2, 3, 3)

(3, 1, 2, 2)

One can see that (2, 0, 4, 2) = 1
8(2 + η)(2, 0, 1, 1), which one can then use to show that:

(A.1.7)

η(2, 0, 1, 1) = 8ψ2(0, 2, 3, 3)

= 8ψ3(1, 3, 3, 1)

= 8ψ4(2, 0, 4, 2)

= ψ4(η + 2)(2, 0, 1, 1).

Thus the period (2, 0, 1, 1) corresponding to the quartic monomial x20x2x3 satisfies the differential
equation: [

η − ψ4(η + 2)
]
(2, 0, 1, 1) = 0

By substituting u = ψ4 and σ = u
d

du
= 4η, we get:[

η − ψ4(η + 2)
]
(2, 0, 1, 1) = 0[

σ − u(σ + 1
2)
]
(2, 0, 1, 1) = 0. □

Lemma A.1.8. The Picard–Fuchs equations associated to the periods (2, 1, 0, 1), ψ3(1, 0, 2, 1) are
the hypergeometric differential equations D(18 ,

5
8 ; 1,

1
4 |ψ

4), D(18 ,
−3
8 ; 0, 14 |ψ

4), respectively.

Proof. For the period (2, 1, 0, 1), corresponding to the quartic monomial x20x1x3, we use the diagram

(0,−1, 2, 3) //

D2

��

(1, 0, 3, 4)

(−1, 2, 1, 2) //

D1

��

(0, 3, 2, 3)

(2, 1, 0, 1) //

D3

��

(3, 2, 1, 2)

(1, 0, 2, 1) //

D2

��

(2, 1, 3, 2)

(1, 0, 3, 4)
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Note that:

(A.1.9)

η(2, 1, 0, 1) = 8ψ3(1, 0, 3, 4)

(1, 0, 3, 4) = 1
8(η +

3
2)(1, 0, 2, 1)

η(1, 0, 2, 1) = ψ(η + 1
2)(2, 1, 0, 1).

We can compute the two periods that satisfy each of the following Picard–Fuchs equations for
the four sets of pairs:

(A.1.10)

[
(η − 3)η − ψ4(η + 5

2)(η +
1
2)
]
(2, 1, 0, 1) = 0;[

(η − 1)η − ψ4(η + 7
2)(η +

3
2)
]
(1, 0, 2, 1) = 0.

With the first Picard–Fuchs equation, we can substitute u = ψ4, σ = u d
du = 4η, and yield the

equation: [
(η − 3)η − ψ4(η + 5

2)(η +
1
2)
]
(2, 1, 0, 1) = 0;[

(σ − 3
4)σ − u(σ + 5

8)(σ + 1
8)
]
(2, 1, 0, 1) = 0.

which is the hypergeometric differential equation D(18 ,
5
8 ; 1,

1
4 |u). For the second Picard–Fuchs

equation, we can multiply by ψ3 and then substitute to find:[
(η − 1)η − ψ4(η + 7

2)(η +
3
2)
]
(1, 0, 2, 1) = 0

ψ3
[
(η − 1)η − ψ4(η + 7

2)(η +
3
2)
]
(1, 0, 2, 1) = 0[

(η − 4)(η − 3)− ψ4(η + 1
2)(η −

3
2)
]
ψ3(1, 0, 2, 1) = 0[

(σ − 1)(σ − 3
4)− u(σ + 1

8)(σ −
3
8)
]
ψ3(1, 0, 2, 1) = 0,

which is the hypergeometric function D(18 ,
−3
8 ; 0, 14 |ψ

4). □

Proof of Proposition 2.7.1. The periods annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4) are those correspond-
ing to the holomorphic form. The 2 periods are annihilated by D(14 ,

3
4 ; 1,

1
2 |ψ

−4) are provided by
Lemma A.1.3. The period annihilated by D(12 ; 1 |ψ

4) corresponds to a monomial in the basis for
Wχ2 , which we compute in Lemma A.1.6. Since Wχ2 and Wχ6 are related by a transposition of x0
and x1, there are two periods annihilated by the hypergeometric differential equation computed here.
The 4 periods annihilated by D(18 ,

5
8 ; 1,

1
4 |ψ

4) and the 4 periods annihilated by D(−3
8 ,

1
8 ; 0,

1
4 |ψ

4)
correspond to the monomial bases for Wχ1 ,Wχ3 ,Wχ5 , and Wχ7 , which are the same up to transpo-
sitions. We compute in Lemma A.1.8 the Picard–Fuchs equations for Wχ1 which then give us that
each of those hypergeometric differential equations annihilates 4 periods. □

A.2. The L2L2 pencil. Now consider

Fψ := x30x1 + x31x0 + x32x3 + x33x2 − 4ψx0x1x2x3

that defines the pencil of projective hypersurfaces Xψ = Z(Fψ) ⊂ P3. There is a Z/4Z symmetry
with generator

g(x0 : x1 : x2 : x3) = (ξx0 : ξ
5x1 : ξ

3x2 : ξ
7x3)

where ξ is a primitive eighth root of unity. There are four characters χa : H → Gm, where
χa(g1) =

√
−1a. We can again decompose V into subspaces Wχa . Out of the eight, the subspaces

Wχ0 ,Wχ1 ,Wχ2 , and Wχ3 are empty. The monomial bases for Wχ1 and Wχ3 are related by a
transposition of the variables x0 and x1, so their Picard–Fuchs equations are the same. We have
three types of monomial bases:

(i) Wχ0 has monomial basis {x0x1x2x3, x20x22, x20x23, x21x22, x21x23};
(ii) Wχ1 has monomial basis {x20x1x2, x21x0x3, x22x1x3, x23x0x2}; and
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(iii) Wχ2 has monomial basis {x20x21, x22x23, x20x2x3, x21x2x3, x22x0x1, x23x0x1}.
Using (2.3.3), we compute the following period relations:

(A.2.1)
v + (3, 1, 0, 0) =

3(v0 + 1)− (v1 + 1)

8(ω + 1)
v + ψ(v + (1, 1, 1, 1))

v + (1, 3, 0, 0) =
−(v0 + 1) + 3(v1 + 1)

8(ω + 1)
v + ψ(v + (1, 1, 1, 1))

and the two symmetric relations replacing 0, 1 with 2, 3.

Proposition A.2.2. For the L2L2 family, the primitive cohomology group H2
prim(XL2L2,ψ,C) has 13

periods whose Picard–Fuchs equations are hypergeometric differential equations as follows:

3 periods are annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4),

8 periods are annihilated by D(18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4), and

2 periods are annihilated by D(14 ,
3
4 ; 1,

1
2 |ψ

4).

To prove Proposition A.2.2, we use the diagram method above in a few cases and then use
symmetry. We first do two calculations.

Lemma A.2.3. The Picard–Fuchs equation associated to the periods (2, 1, 1, 0), (1, 0, 1, 2), (1, 2, 0, 1),
and (0, 1, 2, 1) is the hypergeometric differential equation D(18 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4).

Proof. To find the Picard–Fuchs equations corresponding to all these cohomology pieces, we use the
diagram

(2, 1, 1, 0) //

��

(3, 2, 2, 1)

(1, 0, 1, 2) //

��

(2, 1, 2, 3)

(1, 2, 0, 1) //

��

(2, 3, 1, 2)

(0, 1, 2, 1) //

��

(1, 2, 3, 2)

(3, 2, 2, 1)

We obtain the following relations:

(A.2.4)

η(1, 0, 1, 2) = ψ(η + 1
2)(2, 1, 1, 0)

η(1, 2, 0, 1) = ψ(η + 1
2)(1, 0, 1, 2)

η(0, 1, 2, 1) = ψ(η + 1
2)(1, 2, 0, 1)

η(2, 1, 1, 0) = ψ(η + 1
2)(0, 1, 2, 1)

Using these relations, we can get the Picard–Fuchs equation:

(A.2.5)
[
(η − 3)(η − 2)(η − 1)η − ψ4

(
η + 7

2

) (
η + 5

2

) (
η + 3

2

) (
η + 1

2

)]
(1, 0, 1, 2) = 0

By substituting u = ψ4 and σ = u
d

du
= 1

4η, we obtain:[
(4σ − 3)(4σ − 2)(4σ − 1)4σ − u

(
4σ + 7

2

) (
η + 5

2

) (
4σ + 3

2

) (
4σ + 1

2

)]
(1, 0, 1, 2) = 0;
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[
(σ − 3

4)(σ −
1
2)(σ −

1
4)σ − u

(
σ + 7

8

) (
σ + 5

8

) (
σ + 3

8

) (
σ + 1

8

)]
(1, 0, 1, 2) = 0,

which is the hypergeometric differential equationD(18 ,
3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4). The other three Picard–
Fuchs equations are the same due to the symmetry in (A.2.4). □

Lemma A.2.6. The Picard–Fuchs equation associated to the periods (2, 2, 0, 0) and (0, 0, 2, 2) is the
hypergeometric differential equation D(14 ,

3
4 ; 1,

1
2 |ψ

4).

Proof. We use the diagram

(2, 2, 0, 0) //

��

(3, 3, 1, 1)

(1, 1, 2, 0) //

��

(2, 2, 3, 1)

(0, 0, 2, 2) //

��

(1, 1, 3, 3)

(2, 0, 1, 1) //

��

(3, 1, 2, 2)

(3, 3, 1, 1)

We obtain the following relations:

(A.2.7)
η(0, 0, 2, 2) = ψ2(η + 1)(2, 2, 0, 0);

η(2, 2, 0, 0) = ψ2(η + 1)(0, 0, 2, 2),

giving the following Picard–Fuchs equations:

(A.2.8)

[
(η − 2)η − ψ4 (η + 3) (η + 1)

]
(2, 2, 0, 0) = 0;[

(η − 2)η − ψ4 (η + 3) (η + 1)
]
(0, 0, 2, 2) = 0;

By substituting u = ψ4 and σ = u d
du = 1

4η, we obtain the hypergeometric form:[
(σ − 1

2)σ − u
(
σ + 3

4

) (
σ + 1

4

)]
(2, 2, 0, 0) = 0;[

(σ − 1
2)σ − u

(
σ + 3

4

) (
σ + 1

4

)]
(0, 0, 2, 2) = 0,

which is the hypergeometric differential equation D(14 ,
3
4 ; 1,

1
2 |ψ

4). □

Proof of Proposition A.2.2. The first three periods are the same for each family. Next, by Lemma A.2.3,
all the monomial basis elements in Wχ1 are annihilated by the hypergeometric differential equation
D(18 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4). Since Wχ1 and Wχ3 are related by a transposition, we get 8 periods an-
nihilated by it. The Picard–Fuchs equations for the last two periods are given by Lemma A.2.6. □

A.3. The L4 pencil. Finally we consider

Fψ := x30x1 + x31x2 + x32x3 + x33x0 − 4ψx0x1x2x3

that defines the pencil of projective hypersurfaces Xψ = Z(Fψ) ⊂ P3. There is a H = Z/5Z scaling
symmetry on Xψ generated by the element

g(x0 : x1 : x2 : x3) = (ξx0 : ξ
2x2 : ξ

4x2 : ξ
3x3)

where ξ is a fifth root of unity. There are five characters χk : H → C× given by χk(g) = ξk. We
decompose V into five subspaces Wχk . The monomial bases for Wχ1 ,Wχ2 ,Wχ3 , and Wχ4 are related
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by a rotation of the variables x1, x2, x3, and x4, so their corresponding Picard–Fuchs equations are
the same. We are then left with two types of monomial bases:

(i) Wχ0 has monomial basis {x0x1x2x3, x20x22, x21x23}; and
(ii) Wχ1 has monomial basis {x20x21, x21x2x3, x23x0x2, x22x0x1}.

For this family, we can compute the period relations:

(A.3.1) v + (3, 1, 0, 0) =
27(1 + v0)− (1 + v1) + 3(1 + v2)− 9(1 + v3)

80(ω + 1)
v + ψ(v + (1, 1, 1, 1))

and its 4 cyclic permutations.

Proposition A.3.2. For the family L4, the primitive cohomology group H2
prim(XL4,ψ,C) has 19

periods whose Picard–Fuchs equations are hypergeometric differential equations as follows:

3 periods are annihilated by D(14 ,
1
2 ,

3
4 ; 1, 1, 1 |ψ

−4),

4 periods are annihilated by D(15 ,
2
5 ,

3
5 ,

4
5 ; 1,

1
4 ,

1
2 ,

3
4 |ψ

4),

4 periods are annihilated by D(−1
5 ,

1
5 ,

2
5 ,

3
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4),

4 periods are annihilated by D(−2
5 ,

−1
5 ,

1
5 ,

2
5 ;

−1
4 , 0,

1
4 ,

1
2 |ψ

4), and

4 periods are annihilated by D(−3
5 ,

−2
5 ,

−1
5 ,

1
5 ;

−1
2 ,

−1
4 , 0,

1
4 |ψ

4).

Proof. The period associated to the holomorphic form is found by the same strategy as before.
Lastly, we use (A.3.1) to construct the diagram:

(2, 2, 0, 0) //

��

(3, 3, 1, 1)

(1, 1, 2, 0) //

��

(2, 2, 3, 1)

(1, 0, 1, 2) //

��

(2, 1, 2, 3)

(0, 2, 1, 1) //

��

(1, 3, 2, 2)

(3, 3, 1, 1)

and consequently obtain the following relations:

(A.3.3)

η(1, 1, 2, 0) = ψ
(
η + 2

5

)
(2, 2, 0, 0);

η(1, 0, 1, 2) = ψ
(
η + 1

5

)
(1, 1, 2, 0);

η(0, 2, 1, 1) = ψ
(
η + 4

5

)
(1, 0, 1, 2);

η(2, 2, 0, 0) = ψ
(
η + 3

5

)
(0, 2, 1, 1).
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We then cyclically use these relations to find a recursion which yields the following Picard–Fuchs
equations:

(A.3.4)

[(
η + 16

5

) (
η + 12

5

) (
η + 8

5

) (
η + 4

5

)
− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(1, 0, 1, 2) = 0[(

η + 17
5

) (
η + 13

5

) (
η + 9

5

) (
η + 1

5

)
− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(1, 1, 2, 0) = 0[(

η + 18
5

) (
η + 14

5

) (
η + 6

5

) (
η + 2

5

)
− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(2, 2, 0, 0) = 0[(

η + 19
5

) (
η + 11

5

) (
η + 7

5

) (
η + 3

5

)
− 1

ψ4 (η − 3)(η − 2)(η − 1)η
]
(0, 2, 1, 1) = 0.

By multiplying these lines by 1, ψ, ψ2, and ψ3, respectively, substituting u = ψ4, σ = u
d

du
, and

then multiplying by −u, we obtain the following equations:[
(σ − 3

4)(σ −
1
2)(σ −

1
4)σ − u

(
σ + 4

5

) (
σ + 3

5

) (
σ + 2

5

) (
σ + 1

5

)]
(1, 0, 1, 2) = 0[

(σ − 1)(σ − 3
4)(σ −

1
2)(σ −

1
4)− u

(
σ + 3

5

) (
σ + 2

5

) (
σ + 1

5

) (
σ − 1

5

)]
ψ(1, 1, 2, 0) = 0[

(σ − 5
4)(σ − 1)(σ − 3

4)(σ −
1
2)− u

(
σ + 2

5

) (
σ + 1

5

) (
σ − 1

5

) (
σ − 2

5

)]
ψ2(2, 2, 0, 0) = 0[

(σ − 3
2)(σ −

5
4)(σ − 1)(σ − 3

4)− u
(
σ + 1

5

) (
σ − 1

5

) (
σ − 2

5

) (
σ − 3

5

)]
ψ3(0, 2, 1, 1) = 0.

These are the claimed hypergeometric differential equations. □

Appendix B. Finite field hypergeometric sums

In this part of the appendix, we write down the details of manipulations of hypergeometric sums.

B.1. Hybrid definition. In this section, we apply the argument of Beukers–Cohen–Mellit to show
that the hybrid definition of the finite field hypergeometric sum reduces to the classical one. We
retain the notation from sections 3.1–3.2.

Lemma B.1.1. Suppose that q is good and splittable for ααα,βββ. If αiq×, βiq× ∈ Z for all i = 1, . . . , d,
then Definitions 3.1.6 and 3.2.7 agree.

Proof. Our proof follows Beukers–Cohen–Mellit [BCM15, Theorem 1.3]. We consider

G(m+ααα′q×,−m− βββ′q×) =
∏
α′
i∈ααα′

g(m+ α′
iq

×)

g(αiq×)

∏
β′
i∈βββ′

g(−m− β′iq×)
g(−βiq×)

.

We massage this expression, and for simplicity drop the subscripts 0. First,

D(x)
∏
αj∈α̂αα

(x− e2π
√
−1αj ) =

r∏
j=1

(xpj − 1) and D(x)
∏
βj∈β̃ββ

(x− e2π
√
−1βj ) =

s∏
j=1

(xqj − 1).

Write D(x) =
∏δ
j=1(x− e2π

√
−1cj/q

×
). Then

(B.1.2)

G(m+ααα′q×,−m− βββ′q×)

=

 r∏
i=1

pi−1∏
j=0

g(m+ jq×/pi)

g(jq×/pi)

 s∏
i=1

qi−1∏
j=0

g(−m− jq×/qi)
g(−jq×/qi)

 δ∏
j=1

g(cj)g(−cj)
g(m+ cj)g(−m− cj)

.

Since pi divides q×, by the Hasse–Davenport relation (Lemma 3.1.3(c)) we have that

(B.1.3)
pi−1∏
j=0

g(m+ jq×/pi)

g(jq×/pi)
=
−g(pim)

ω(pi)pim
.
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Analogously, since qi divides q×, we use Hasse–Davenport to find that

(B.1.4)
qi−1∏
j=0

g(−m− jq×/qi)
g(−jq×/qi)

= −g(−qim)ω(qi)
qim

Note that if cj ̸= 0 then g(cj)g(−cj) = (−1)cjq and 1 otherwise, hence

δ∏
i=1

g(cj)g(−cj) = (−1)
∑
cjqδ−s(0),

where s(0) is the multiplicity of 1 in D(x), or, equivalently, the number of times cj is 0. Now
note the number of times that m + cj = 0 is the multiplicity of the root e−2π

√
−1m/q× in D(x),

which, equivalently, is the multiplicity of e2π
√
−1m/q× in D(x) as D(x) is a product of cyclotomic

polynomials. This implies that
δ∏
j=1

g(m+ cj)g(−m− cj) = (−1)m+cjqδ−λ(m).

We then have that

(B.1.5)
δ∏
j=1

g(cj)g(−cj)
g(m+ cj)g(−m− cj)

=
(−1)

∑
j cjqδ−s(0)

(−1)
∑
j(m+cj)qδ−s(m)

= (−1)−δmqs(m)−s(0).

Combining Equations (B.1.3), (B.1.4), and (B.1.5), we then have

G(m+ααα′q×,−m− βββ′q×)

=

(
r∏
i=1

−g(pim)

ω(pi)pim

)(
s∏
i=1

−g(−qim)ω(qi)
qim

)(
(−1)−δmqs(m)−s(0)

)
= (−1)r+sqs(m)−s(0)g(p1m) · · · g(prm)g(−q1m) · · · g(−qsm)ω((−1)δp−p11 · · · p−prr qq11 · · · q

qs
s )m

= (−1)r+sqs(m)−s(0)g(p1m) · · · g(prm)g(−q1m) · · · g(−qsm)ω((−1)δM)m.

By plugging this equation into Definition 3.1.6 for the appropriate factors we obtain the quantity
given in Definition 3.2.7. □

B.2. The pencil F2L2.

Proposition B.2.1. The number of Fq-points on F2L2 can be written in terms of hypergeometric
functions, as follows:

(a) If q ≡ 3 (mod 4), then

XF2L2,ψ(Fq) = q2 − q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

(b) If q ≡ 5 (mod 8), then

XF2L2,ψ(Fq) = q2 − q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)

+ qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)− 2qHq(
1
2 ; 0 |ψ

−4).

(c) If q ≡ 1 (mod 8), then

XF2L2,ψ(Fq) = q2 + 7q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2qHq(
1
2 ; 0 |ψ

−4) + 2ω(2)q
×/4qHq(

1
8 ,

5
8 ; 0,

1
4 |ψ

4) + 2ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4).
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Remark B.2.2. Notice that the hypergeometric functions appearing in the point count correspond
to the Picard–Fuchs equations in Proposition 2.7.1. We also see the appearance of six additional
trivial factors.

Step 1: Computing and clustering the characters. To use Theorem 3.3.3 we compute the subset
S ⊂ (Z/q×Z)r given by the constraints in (3.3.1).

(a) If q ≡ 3 (mod 4) then S can be clustered in the following way:
(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z} and
(ii) the set S4 = {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}.
(b) If q ≡ 5 (mod 8) then S contains the two sets above and:

(i) the set S5 = {k(1, 1, 1, 1,−4) + q×

4 (0, 2, 1, 1, 0) : k ∈ Z/q×Z} and
(ii) the set S6 = {k(1, 1, 1, 1,−4) + 3 q

×

4 (0, 2, 1, 1, 0) : k ∈ Z/q×Z}.
(b) If q ≡ 1 (mod 8) then S contains the four sets above and

(i) two sets of the form S10 = {k(1, 1, 1, 1,−4) + q×

8 (0, 2, 1, 5, 0) : k ∈ Z/q×Z} and
(ii) two sets of the form S11 = {k(1, 1, 1, 1,−4) + q×

8 (0, 6, 7, 3, 0) : k ∈ Z/q×Z}.

Step 2: Counting points on the open subset with nonzero coordinates.

Lemma B.2.3. Suppose ψ ∈ F×
q .

(a) If q ≡ 3 (mod 4) then

(B.2.4) #UF2L2,ψ(Fq) = q2 − 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

(b) If q ≡ 5 (mod 8) then

(B.2.5)

#UF2L2,ψ(Fq) = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

− 2qHq(
1
2 ; 0 |ψ

−4)− 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
.

(c) If q ≡ 1 (mod 8) then
(B.2.6)
#UF2L2,ψ(Fq) = q2 − 3q + 7 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2qHq(
1
2 ; 0 |ψ

−4) + 2ω(2)q
×/4qHq(

1
8 ,

5
8 ; 0,

1
4 |ψ

4) + 2ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4)

− 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
− 4

q g(
q×

8 )g(5q
×

8 )g( q
×

4 )− 4
q g(

3q×

8 )g(7q
×

8 )g(3q
×

4 ).

Proof. If q ≡ 3 (mod 4) then by Lemmas 3.4.4 and 3.4.7

(B.2.7)

#UF2L2,ψ(Fq) =
∑
s∈S1

ω(a)−scs +
∑
s∈S4

ω(a)−scs

= (q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4))+

− 2− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

= q2 − 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

If q ≡ 5 (mod 8) then q ≡ 1 (mod 4) but q ̸≡ 1 (mod 8), so by Lemmas 3.4.4, 3.4.7, 3.4.12,
and 3.4.21
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(B.2.8)

#UF2L2,ψ(Fq) =
∑
s∈S1

ω(a)−scs +
∑
s∈S4

ω(a)−scs +
∑
s∈S5

ω(a)−scs +
∑
s∈S6

ω(a)−scs

= (q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)) + (2 + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4))

+ (−1)q×/4qHq(
1
2 ; 0 |ψ

−4) + (−1)q×/4 −

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)

+ (−1)q×/4qHq(
1
2 ; 0 |ψ

−4) + (−1)q×/4 −

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
= q2 − 3q + 3 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4))

− 2qHq(
1
2 ; 0 |ψ

−4)− 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
.

If q ≡ 1 (mod 8), then by Lemmas 3.4.4, 3.4.7, 3.4.12, 3.4.21, B.2.12, and B.2.17, we have:

(B.2.9)

#UF2L2,ψ(Fq) =
∑
s∈S1

ω(a)−scs +
∑
s∈S4

ω(a)−scs +
∑
s∈S5

ω(a)−scs +
∑
s∈S6

ω(a)−scs

+
∑
s∈S10

ω(a)−scs +
∑
s∈S11

ω(a)−scs

= (q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)) + (2 + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4))

+ 2qHq(
1
2 ; 0 |ψ

−4) + 2− 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
+ 2ω(2)q

×/4qHq(
1
8 ,

5
8 ; 0,

1
4 |ψ

4) + 2ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4)

− 4
q g(

q×

8 )g(5q
×

8 )g( q
×

4 )− 4
q g(

3q×

8 )g(7q
×

8 )g(3q
×

4 )

= q2 − 3q + 7 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2qHq(
1
2 ; 0 |ψ

−4) + 2ω(2)q
×/4qHq(

1
8 ,

5
8 ; 0,

1
4 |ψ

4)

+ 2ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4)− 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
− 4

q g(
q×

8 )g(5q
×

8 )g( q
×

4 )− 4
q g(

3q×

8 )g(7q
×

8 )g(3q
×

4 )

as claimed. □

Before proving the lemmas that associate the quantities
∑

s∈S10
ω(a)−scs and

∑
s∈S11

ω(a)−scs
to hypergeometric sums, we need the following lemma.

Lemma B.2.10. Suppose q ≡ 1 (mod 8) and q = pr for some natural number r and prime p. Then

g(3q
×

4 )g( q
×

8 )g(5q
×

8 )

g( q
×

2 )
= ω(2)q

×/4q.

Proof. Since q ≡ 1 (mod 8), we can use Hasse–Davenport with N = 2 and m = q×

8 to get that

(B.2.11) g( q
×

4 ) = ω(2)q
×/4 g(

q×

8 )g(5q
×

8 )

g( q
×

2 )
.
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By multiplying both sides by g(3q
×

4 ), and dividing by ω(2)q×/4, we have

ω(2)−q
×/4g( q

×

4 )g(3q
×

4 ) =
g( q

×

8 )g(5q
×

8 )g(3q
×

4 )

g( q
×

2 )
.

We obtain the identity above after noting that g( q
×

4 )g(3q
×

4 ) = (−1)q×/4q = q, since q ≡ 1 (mod 8)

and that ω(2)q×/4 = ±1 when q ≡ 1 (mod 8) hence ω(2)q×/4 = ω(2)−q
×/4. □

Lemma B.2.12. Suppose q ≡ 1 (mod 8). Then for

S10 = {k(1, 1, 1, 1,−4) + q×

8 (0, 2, 1, 5, 0) : k ∈ Z/q×Z}

we have∑
s∈S10

ω(a)−scs = ω(2)q
×/4qHq(

1
8 ,

5
8 ; 0,

1
4 |ψ

4)− 1

q
g( q

×

8 )g(5q
×

8 )g( q
×

4 )− 1

q
g(3q

×

8 )g(7q
×

8 )g(3q
×

4 ).

Proof. First, we take the definition of the sum and take out all terms that are of the form ℓ q
×

4 to
obtain the equality:

(B.2.13)

∑
s∈S10

ω(a)−scs =
1

qq×
g( q

×

4 )g( q
×

8 )g(5q
×

8 )− 1

qq×
g( q

×

4 )g( q
×

2 )g(3q
×

8 )g(7q
×

8 )

− 1

qq×
g( q

×

2 )g(3q
×

4 )g( q
×

8 )g(5q
×

8 ) +
1

qq×
g(3q

×

4 )g(7q
×

8 )g( q
×

8 )

+
1

qq×

q−2∑
k=0

4k ̸≡0 (mod q×)

ω(4ψ)4kg(k)g(k + q×

4 )g(k + q×

8 )g(k + 5q×

8 )g(−4k).

Next, we use the Hasse–Davenport relationship to expand g(−4k) and then use relation from 3.1.3(b)
to cancel out the g(k + q×

4 ) factor in the summation. Through this, we obtain:

(B.2.14)

∑
s∈S10

ω(a)−scs =
1

qq×
g( q

×

4 )g( q
×

8 )g(5q
×

8 )− 1

qq×
g( q

×

4 )g( q
×

2 )g(3q
×

8 )g(7q
×

8 )

− 1

qq×
g( q

×

2 )g(3q
×

4 )g( q
×

8 )g(5q
×

8 ) +
1

qq×
g(3q

×

4 )g(7q
×

8 )g( q
×

8 )

+
1

q×

q−2∑
k=0

4k ̸≡0 (mod q×)

ω(ψ)4k
g(k + q×

8 )g(k + 5q×

8 )g(−k + q×

4 )g(−k + q×

2 )

g( q
×

2 )
.

Here, we re-index the summation by m = k + q×

2 to obtain:

(B.2.15)

∑
s∈S10

ω(a)−scs =
1

qq×
g( q

×

4 )g( q
×

8 )g(5q
×

8 )− 1

qq×
g( q

×

4 )g( q
×

2 )g(3q
×

8 )g(7q
×

8 )

− 1

qq×
g( q

×

2 )g(3q
×

4 )g( q
×

8 )g(5q
×

8 ) +
1

qq×
g(3q

×

4 )g(7q
×

8 )g( q
×

8 )

+
1

q − 1

q−2∑
m=0

4m̸≡0 (mod q×)

ω(ψ)4m
g(m+ q×

8 )g(m+ 5q×

8 )g(−m− q×

4 )g(−m)

g( q
×

2 )
.
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We now multiply the final form by the expression

g(3q
×

4 )g( q
×

8 )g(5q
×

8 )

g(3q
×

4 )g( q
×

8 )g(5q
×

8 )
= 1.

We put the denominator of this factor into the summation to relate the summation to a hyper-
geometric function but factor out the numerator along with a factor of g( q

×

2 ). We then apply
Lemma B.2.10 to this factor ahead of the summation. We thus obtain:
(B.2.16)∑

s∈S10

ω(a)−scs =
1

qq×
g( q

×

4 )g( q
×

8 )g(5q
×

8 )− 1

qq×
g( q

×

4 )g( q
×

2 )g(3q
×

8 )g(7q
×

8 )

− 1

qq×
g( q

×

2 )g(3q
×

4 )g( q
×

8 )g(5q
×

8 ) +
1

qq×
g(3q

×

4 )g(7q
×

8 )g( q
×

8 )

− ω(2)q
×/4q

q×

q−2∑
m=0

4m̸≡0 (mod q×)

ω(ψ)4m
g(m+ q×

8 )g(m+ 5q×

8 )g(−m− q×

4 )g(−m)

g( q
×

8 )g(5q
×

8 )g(− q×

4 )g(0)
.

By comparing terms of the summations above and the hypergeometric function itself, we obtain the
desired result. □

Lemma B.2.17. Suppose q ≡ 1 (mod 8). Then for

S11 = {k(1, 1, 1, 1,−4) + q×

8 (0, 6, 7, 3, 0) : k ∈ Z/q×Z}

we have∑
s∈S11

ω(a)−scs = ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4)− 1

q
g( q

×

8 )g(5q
×

8 )g( q
×

4 )− 1

q
g(3q

×

8 )g(7q
×

8 )g(3q
×

4 ).

Proof. The proof is analogous to the proof in Lemma B.2.12 except we substitute m = k + q×

2 .
Alternatively, apply complex conjugation to the conclusion of Lemma B.2.12, negating indices as in
the proof of Lemma 3.5.6. □

Step 3: Count points when at least one coordinate is zero.

Lemma B.2.18. The following statements hold.
(a) If q ≡ 3 (mod 4), then

#XF2L2,ψ(Fq)−#UF2L2,ψ(Fq) = 2q.

(b) If q ≡ 5 (mod 8), then

#XF2L2,ψ(Fq)−#UF2L2,ψ(Fq) = 2q − 2 + 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
.

(c) If q ≡ 1 (mod 8), then

#XF2L2,ψ(Fq)−#UF2L2,ψ(Fq) = 10q − 6 + 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
+ 4

q g(
q×

4 )g( q
×

8 )g(5q
×

8 )

+ 4
q g(

3q×

4 )g(3q
×

8 )g(7q
×

8 ).
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Proof. We do this case by case. If x1 is the only variable equaling zero, then we must count the
number of solutions in the open torus for the hypersurface Z(x4 + y3z + z3y) ⊂ P2. We can see by
using Theorem 3.3.3 that this depends on q. Here, in case (a) we get q − 1 points, in case (b) we
get q − 3 + (g( q

×

4 )2 + g(3q
×

4 )2)g( q
×

2 )−1, and in case (c) we get q − 3 + (g( q
×

4 )2 + g(3q
×

4 )2)g( q
×

2 )−1 +

2q−1(g( q
×

4 )g( q
×

8 )g(5q
×

8 ) + g(3q
×

4 )g(3q
×

8 )g(7q
×

8 )). There are two such cases, when either x1 or x2 is
the only variable equaling 0.

Next is when both x1 and x2 are zero and the other two variables are nonzero. Here the number
of solutions is 1 + (−1)q×/2.

Next is when x3 is zero but the rest are nonzero. Here this is (q−1) times the number of solutions
of Z(x4+y4) in the open torus of P1. We then get that the number of solutions is 0 if q ̸≡ 1 (mod 8)
and 4 if q ≡ 1 (mod 8), hence 4q − 4 points. There are two such cases, when x3 or x4 are uniquely
zero.

The next case is when x3 and x4 are both zero. Then the number of nonzero solutions is exactly
the number of solutions of Z(x4+ y4) in the open torus of P1, i.e., 0 if q ̸≡ 1 (mod 8) and 4 if q ≡ 1
(mod 8).

There are no rational points where x1, and x3 are both zero and x2 nonzero and the same when
you swap x1 with x2 or x3 with x4. Finally, there are two more solutions: (0 : 0 : 1 : 0) and
(0 : 0 : 0 : 1). We now count.

(a) If q ̸≡ 1 (mod 4) and q is odd, then

#XF2L2,ψ(Fq)−#UF2L2,ψ(Fq) = 2(q − 1) + 0 + 0 + 0 + 2 = 2q.

(b) If q ≡ 5 (mod 8), then

#XF2L2,ψ(Fq)−#UF2L2,ψ(Fq) = 2

(
q − 3 +

g( q
×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
+ 2 + 0 + 0 + 2

= 2q − 2 + 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
.

(c) If q ≡ 1 (mod 8), then

#XF2L2,ψ(Fq)−#UF2L2,ψ(Fq) = 2

(
q − 3 +

g( q
×

4 )2 + g(3q
×

4 )2

g( q
×

2 )
+

2

q
g( q

×

4 )g( q
×

8 )g(5q
×

8 )

+
2

q
g(3q

×

4 )g(3q
×

8 )g(7q
×

8 )

)
+ 2 + 2(4(q − 1)) + 4 + 2

= 10q − 6 + 2
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )
+ 4

q g(
q×

4 )g( q
×

8 )g(5q
×

8 )

+ 4
q g(

3q×

4 )g(3q
×

8 )g(7q
×

8 ). □

Step 4: Combine Steps 2 and 3 to reach the conclusion.

Proof of Proposition 3.6.1. We now combine Lemmas B.2.3 and B.2.18 as follows. For (a), for q ≡ 3
(mod 4),

#XF2L2,ψ(Fq) = q2 − 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4) + 2q

= q2 − q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

For (b), for q ≡ 5 (mod 8),

#XF2L2,ψ(Fq) = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)
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− 2qHq(
1
2 ; 0 |ψ

−4)− 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
+ 2q − 2 + 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
= q2 − q + 1 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)− 2qHq(
1
2 ; 0 |ψ

−4)

Finally, for (c) with q ≡ 1 (mod 8),

#XF2L2,ψ(Fq) = q2 − 3q + 5 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2qHq(
1
2 ; 0 |ψ

−4) + 2ω(2)q
×/4qHq(

1
8 ,

5
8 ; 0,

1
4 |ψ

4) + 2ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4)

− 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
− 4

q g(
q×

8 )g(5q
×

8 )g( q
×

4 )− 4
q g(

3q×

8 )g(7q
×

8 )g(3q
×

4 )

+ 10q − 6 + 2

(
g( q

×

4 )2 + g(3q
×

4 )2

g( q
×

2 )

)
+ 4

q g(
q×

4 )g( q
×

8 )g(5q
×

8 )

+ 4
q g(

3q×

4 )g(3q
×

8 )g(7q
×

8 )

= q2 + 7q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2qHq(
1
2 ; 0 |ψ

−4) + 2ω(2)q
×/4qHq(

1
8 ,

5
8 ; 0,

1
4 |ψ

4) + 2ω(2)q
×/4qHq(

3
8 ,

7
8 ; 0,

3
4 |ψ

4).□

B.3. The pencil L2L2.

Proposition B.3.1. The number of Fq-points on L2L2 can be written in terms of hypergeometric
functions, as follows:

(a) If q ≡ 3 (mod 4), then

(B.3.2) #XL2L2,ψ(Fq) = q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

(b) If q ≡ 1 (mod 4), then

(B.3.3)
#XL2L2,ψ(Fq) = q2 + 9q + 1 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2(−1)q×/4ω(ψ)q×/2qHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4).

Remark B.3.4. Again, notice that the hypergeometric functions appearing in the point count corre-
spond to exactly one of the Picard–Fuchs equations in Proposition A.2.2. We also see the appearance
of eight additional trivial factors.

Step 1: Computing and clustering the characters. As with all the previous families, we first compute
the set S of solutions to the system of congruences given by Theorem 3.3.3:

(a) If q ̸≡ 1 (mod 4), and q is odd, then S consists of
(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z} and
(ii) the set S4 = {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}.
(b) If q ≡ 1 (mod 4), then

(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z},
(ii) the set S4 = {k(1, 1, 1, 1,−4) + q×

2 (0, 0, 1, 1, 0) : k ∈ Z/q×Z}, and
(iii) two sets of the form S12 = {k(1, 1, 1, 1,−4) + q×

4 (0, 2, 3, 1, 2) : k ∈ Z/q×Z}.

Step 2: Counting points on the open subset with nonzero coordinates.

Lemma B.3.5. Suppose ψ ∈ F×
q . For q, we have:

(a) If q ≡ 3 (mod 4), then

(B.3.6) #UL2L2,ψ(Fq) = q2 − 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).
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(b) If q ≡ 1 (mod 4), then

(B.3.7)
#UL2L2,ψ(Fq) = q2 − 3q + 5 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2(−1)q×/4ω(ψ)q×/2qHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4).

Proof. We do this by cases. For (a), where q ≡ 3 (mod 4), then by using Theorem 3.3.3 with
Lemmas 3.4.4 and 3.4.7 we have that

(B.3.8)

#UL2L2,ψ(Fq) =
∑
s∈S1

ω(a)−scs +
∑
s∈S4

ω(a)−scs

= q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− 2− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

= q2 − 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

For (b) with q ≡ 1 (mod 4), by using Theorem 3.3.3 with Lemmas 3.4.4, 3.4.7, and B.3.10 below,
we have that

#UL2L2,ψ(Fq) =
∑
s∈S1

ω(a)−scs +
∑
s∈S4

ω(a)−scs + 2
∑
s∈S12

ω(a)−scs

= q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 2 + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2(−1)q×/4ω(ψ)q×/2qHq(
1

8
,
3

8
,
5

8
,
7

8
; 0,

1

4
,
1

2
,
3

4
|ψ−4)(B.3.9)

= q2 − 3q + 5 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2(−1)q×/4ω(ψ)q×/2qHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4). □

Lemma B.3.10. Suppose that q ≡ 1 (mod 4). Then∑
s∈S12

ω(a)−scs = (−1)q×/4ω(ψ)q×/2qHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4).

Proof. We start with the definition, factor out ω(ψ)q×/2, and then use the Hasse–Davenport rela-
tion (3.1.4) with N = 4 with respect to m = k to obtain:

(B.3.11)

∑
s∈S12

ω(a)−scs =
1

qq×

q−2∑
k=0

ω(−4ψ)4k+
q×

2 g(k)g(k + q×

4 )g(k + q×

2 )g(k + 3q×

4 )g(−4k + q×

2 )

=
ω(ψ)q

×/2

qq×

q−2∑
k=0

ω(−4ψ)4kg(4k)ω(4)−4kg( q
×

2 )g( q
×

4 )g(3q
×

4 )g(−4k + q×

2 ).

Simplify with Lemma 3.1.3(b) to get

(B.3.12)
∑
s∈S12

ω(a)−scs =
(−1)q×/4ω(ψ)q×/2

q − 1

q−2∑
k=0

ω(−ψ)4kg(4k)g( q
×

2 )g(−4k + q×

2 ).

Now we use the Hasse–Davenport relation again with N = 2 and m = −4k to find:

(B.3.13)
∑
s∈S12

ω(a)−scs =
(−1)q×/4ω(ψ)q×/2

q − 1

q−2∑
k=0

ω(−ψ)4kg(4k)g( q
×

2 )

(
g(−8k)g( q

×

2 )ω(2)8k

g(−4k)

)
.
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We now simplify using Lemma 3.1.3(b) again and then expand the summation to get:
(B.3.14)

∑
s∈S12

ω(a)−scs = (−1)q×/4ω(ψ)q×/2q

− 4

q×
+

1

q×

q−2∑
k=0

4k ̸≡0 (mod q×)

ω(4ψ)4kq−1g(4k)2g(−8k)

 .

We finally reindex the sum with m = −k, yielding
(B.3.15)

∑
s∈S12

ω(a)−scs = (−1)q×/4ω(ψ)q×/2q

− 4

q×
+

1

q×

q−2∑
m=0

4m̸≡0 (mod q×)

ω(4ψ)−4mq−1g(−4m)2g(8m)


= (−1)q×/4ω(ψ)q×/2qHq(

1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4)

relating back to the finite field hypergeometric sum. □

Step 3: Count points when at least one coordinate is zero.

Lemma B.3.16. Let q be an odd prime that is not 7. Then
(a) If q ≡ 3 (mod 4), then

#XL2L2,ψ(Fq)−#UL2L2,ψ(Fq) = 4q.

(b) If q ≡ 1 (mod 4), then

#XL2L2,ψ(Fq)−#UL2L2,ψ(Fq) = 12q − 4.

Proof. Suppose that x1 = 0 and the rest are nonzero. Then, by using Theorem 3.3.3, we can see
that there are (q−1)((−1)q×/2+1) such points. Since there are four choices of one coordinate being
zero, this counts 4(q − 1)((−1)q×/2 + 1) points.

Suppose now that x1 = x2 = 0 and the rest nonzero, then by Theorem 3.3.3 again, we have
((−1)q×/2 + 1) points. By symmetry, this is the same as the case where x3 = x4 = 0 and the rest
nonzero, so we now count 2((−1)q×/2 + 1).

Next, suppose x1 = x3 = 0 and the rest nonzero. Automatically, the polynomial vanishes, hence
there are q − 1 such points. There are 4 such cases from choosing one of x1 and x2 and another
from x3 and x4 to equal zero, hence we count 4(q − 1) points. Finally, the four points where three
coordinates are zero are all solutions, hence we count 4 more points. Thus

#XL2L2,ψ(Fq)−#UL2L2,ψ(Fq) = 4(q − 1)((−1)q×/2 + 1) + 2((−1)q×/2 + 1) + 4(q − 1) + 4.

If q ≡ 3 (mod 4), then (−1)q×/2 = −1, so #XL2L2,ψ(Fq) − #UL2L2,ψ(Fq) = 4q. If q ≡ 1 (mod 4),
then (−1)q×/2 = 1, so #XL2L2,ψ(Fq)−#UL2L2,ψ(Fq) = 12q − 4. □

Step 4: Combine Steps 2 and 3 to reach the conclusion.

Proof of Proposition 3.6.2. If q ̸≡ 1 (mod 4) then, by Lemmas B.3.5 and B.3.16, we have that

(B.3.17)
#XL2L2,ψ(Fq) = (q2 − 3q + 1 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)) + 4q

= q2 + q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)− qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4).

If q ≡ 1 (mod 4) then, by Lemmas B.3.5 and B.3.16, we have that

#XL2L2,ψ(Fq) = q2 − 3q + 5 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)

+ 2(−1)q×/4ω(ψ)q×/2qHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4) + 12q − 4
65



= q2 + 9q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + qHq(
1
4 ,

3
4 ; 0,

1
2 |ψ

−4)(B.3.18)

+ 2(−1)q×/4ω(ψ)q×/2qHq(
1
8 ,

3
8 ,

5
8 ,

7
8 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

−4). □

B.4. The pencil L4.

Proposition B.4.1. The number of Fq points on L4 for q odd is given in terms of hypergeometric
functions as follows.

(a) If q ̸≡ 1 (mod 5), then

#XL4,ψ(Fq) = q2 + 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

(b) If q ≡ 1 (mod 5), then

#XL4,ψ(Fq) = q2 + 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 4qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4).

Remark B.4.2. As before, we can identify the parameters of the hypergeometric function

Hq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4)

with the parameters of the second Picard–Fuchs equation in Proposition A.3.2. If we use Theorem
3.4 of [BCM15] again to shift parameters, then we see that in fact all of the Picard–Fuchs equations
satisfied by the non-holomorphic periods correspond to this same hypergeometric motive over Q.

Also notice that in the discussion following Proposition A.3.2, we see two periods that are “missed"
by the Griffiths–Dwork method, and here they clearly correspond to the two additional trivial factors
coming from the 3q term in the point count.

Step 1: Computing and clustering the characters. Again, we compute the solutions to the system
of congruences given by Theorem 3.3.3. We obtain

(a) If q ̸≡ 1 (mod 5), the solution set is
(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z}.

(b) If q ≡ 1 (mod 5), then clusters of solutions are
(i) the set S1 = {k(1, 1, 1, 1,−4) : k ∈ Z/q×Z} and
(ii) four sets of the form S13 = {k(1, 1, 1, 1,−4) + q×

5 (1, 2, 4, 3, 0) : k ∈ Z/q×Z}.

Step 2: Counting points on the open subset with nonzero coordinates.

Lemma B.4.3. Suppose ψ ∈ F×
q . For q odd, we have:

(a) If q ̸≡ 1 (mod 5), then

(B.4.4) #UL4,ψ(Fq) = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

(b) If q ≡ 1 (mod 5), then

(B.4.5) #UL4,ψ(Fq) = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 4qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4).

Proof. When q ̸≡ 1 (mod 5), we know that there is only one cluster of characters, S1. By
Lemma 3.4.4, we know that

(B.4.6) #UL4,ψ(Fq) =
∑
s∈S1

ω(a)−scs = q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

When q ≡ 1 (mod 5) we have two types of clusters of characters. By Lemmas 3.4.4 and B.4.8,

#UL4,ψ(Fq) =
∑
s∈S1

ω(a)−scs + 4
∑
s∈S13

ω(a)−scs

= q2 − 3q + 3 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)(B.4.7)

+ 4qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4). □
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We now just need a hypergeometric way to write the point count associated to the cluster S13.

Lemma B.4.8. If q ≡ 1 (mod 5) and q is odd then

(B.4.9)
∑
s∈S13

ω(a)−scs = qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4)

Proof. By using the hybrid hypergeometric definition, this equality is found quickly:

(B.4.10)

∑
s∈S13

ω(a)−scs =
1

qq×

q−2∑
k=0

ω(−44ψ4)g(k + q×

5 )g(k + 2q×

5 )g(k + 3q×

5 )g(k + 4q×

5 )g(−4k)

=
1

qq×

q−2∑
k=0

ω(44ψ4)g(k + q×

5 )g(k + 2q×

5 )g(k + 3q×

5 )g(k + 4q×

5 )g(−4k)

=
q

q×

q−2∑
k=0

ω(44ψ4)
g(k + q×

5 )g(k + 2q×

5 )g(k + 3q×

5 )g(k + 4q×

5 )

q2
g(−4k)

=
q

q×

q−2∑
k=0

ω(44ψ4)
g(k + q×

5 )g(k + 2q×

5 )g(k + 3q×

5 )g(k + 4q×

5 )

g( q
×

5 )g(2q
×

5 )g(3q
×

5 )g(4q
×

5 )
g(−4k)

= qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4)

The last line uses the hybrid definition (Definition 3.2.7) of the hypergeometric function

Hq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4).

Even though the hypergeometric function is defined over Q, we can get to the relation much more
quickly using the hybrid definition. □

Step 3: Count points when at least one coordinate is zero.

Lemma B.4.11. If q is odd and not 7, then

#XL4,ψ(Fq)−#UL4,ψ(Fq) = 6q − 2.

Proof. First, we count the number of rational points when exactly variable equals zero. Without
loss of generality, assume x1 = 0. Then we want solutions of

x32x3 + x33x4 = 0

which we can solve for x4. Since x4 is completely determined by x2 and x3, we can normalize x2 = 1
and see there are exactly q − 1 solutions when only x1 is zero. By symmetry, this shows that there
are 4q−4 solutions when exactly one variable equals zero. If two consecutive variables are zero (say
x1 = x2 = 0) then we then want solutions of the form x33x4 = 0 which implies that a third variable
equals zero. Thus there are 4 solutions with 3 variables equaling zero and no solutions when exactly
two variables equal zero and those variables are consecutive. Lastly, if two non-consecutive variables
are zero then any other solution works. For any pair of non-consecutive variables (of which there
are two), we then have q − 1 solutions. Therefore

#XL4,ψ(Fq)−#UL4,ψ(Fq) = 4q − 4 + 4 + 2(q − 1) = 6q − 2.

□
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Step 4: Combine Steps 2 and 3 to find conclusion. We now prove Proposition 3.6.3.

Proof of Proposition 3.6.3. Combining Lemmas B.4.3 and B.4.11, we have
(a) If q ̸≡ 1 (mod 5), then

(B.4.12)
#XL4,ψ(Fq) = (q2 − 3q + 3 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4)) + (6q − 2)

= q2 + 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4).

(b) If q ≡ 1 (mod 5), then
(B.4.13)
#XL4,ψ(Fq) = (q2 − 3q + 3 +Hq(

1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 4qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4)) + (6q − 2)

= q2 + 3q + 1 +Hq(
1
4 ,

1
2 ,

3
4 ; 0, 0, 0 |ψ

−4) + 4qHq(
1
5 ,

2
5 ,

3
5 ,

4
5 ; 0,

1
4 ,

1
2 ,

3
4 |ψ

4).

This completes the proof. □

References

[BEW98] Berndt, B., Evans, R., Williams, K.: Gauss and Jacobi Sums. Wiley & Sons, Inc., New York (1998).
[Beu18] Beukers, F.: Fields of definition of finite hypergeometric functions. In: Hypergeometric Motives and

Calabi–Yau Differential Equations, MATRIX Book Series, Springer (2018).
[BCM15] Beukers, F., Cohen, H., Mellit, A.: Finite hypergeometric functions. Pure Appl. Math. Q. 11 (2015),

no. 4, 559-589.
[BH89] Beukers, F., Heckman, G.: Monodromy for the hypergeometric function nFn−1, Invent. Math. 95(2),

325–354 (1989).
[Bin11] Bini, G.: Quotients of hypersurfaces in weighted projective space. Adv. Geom. 11(4), 653-667 (2011).
[BG14] Bini, G., Garbagnati, A.: Quotients of the Dwork pencil, J. Geom. Phys. 75, 173–198 (2014).
[BvGK12] Bini, G., van Geemen, B., Kelly, T. L.: Mirror quintics, discrete symmetries and Shioda maps. J. Alg.

Geom. 21, 401-412 (2012).
[BCP97] Bosma, W., Cannon, J., and Playoust, C.: The Magma algebra system. I. The user language. J.

Symbolic Comput. 24 (3–4), 235-265 (1997).
[CDRV00] Candelas, P., de la Ossa, X., Rodríguez Villegas, F.: Calabi–Yau manifolds over finite fields, I. https:

//arxiv.org/abs/hep-th/0012233 (2000).
[CDRV01] Candelas, P., de la Ossa, X., Rodríguez Villegas, F.: Calabi–Yau manifolds over finite fields II. In:

Calabi–Yau varieties and mirror symmetry. Fields Inst. Commun., vol. 38, pp. 121-157. Amer. Math.
Soc., Providence (2003).

[Cl03] Clemens, C. H.: A scrapbook of complex curve theory, 2nd ed. Graduate Studies in Mathematics, vol.
55. Amer. Math. Soc., Providence (2003).

[Coh2] Cohen, H.: Number Theory, Volume I: Tools and Diophantine Equations, Grad Texts in Math., 239,
Springer Verlag, 2007.

[Coh] Cohen, H.: Counting points of Calabi-Yau Manifolds after P. Candelas, X. de la Ossa, and F. Rodrigez-
Villegas. unpublished notes, 2010.

[CT14] Costa, E. and Tschinkel, Y.: Variation of Néron-Severi ranks of reductions of K3 surfaces. Exp. Math.
23 (4), 475–481 (2014).

[CK99] Cox, D.A. and Katz, S.: Mirror symmetry and algebraic geometry. Mathematical Surveys and Mono-
graphs 68, American Mathematical Society, Providence, RI, 1999.

[Del51] Delsarte, J.: Nombre de solutions des équations polynomiales sur un corps fini. Sém. Bourbaki 39-01
(1951).

[DGJ08] Doran, C. F., Greene, B., Judes, S.: Families of Quintic Calabi–Yau 3-folds with Discrete Symmetries.
Comm Math Phys 280, 675–725 (2008).

[DKSSVW17] Doran, C. F., Kelly, T. L, Salerno, A., Sperber, S., Voight, J., Whitcher, U.: Zeta functions of alternate
mirror Calabi–Yau families. Israel J. Math. 228 (2018), no. 2, 665-705.

[Dua18] Duan, L.: Galois action on Néron-Severi Group of Dwork surfaces. https://arxiv.org/abs/1809.
08693 (2018).

[Dwo69] Dwork, B.: p-adic cycles. Inst. Hautes Études Sci. Publ. Math. 37, 27–115 (1969).
[ES08] Elkies, N. D., Schütt, M.: K3 families of high Picard rank. http://www2.iag.uni-hannover.de/

~schuett/K3-fam.pdf (2008). Accessed 14 December 2017.
[FG51] Furtado Gomide, E.: On the theorem of Artin-Weil. Soc. Mat. São Paulo 4, 267–277 (1951).

68

https://arxiv.org/abs/hep-th/0012233
https://arxiv.org/abs/hep-th/0012233
https://arxiv.org/abs/1809.08693
https://arxiv.org/abs/1809.08693
http://www2.iag.uni-hannover.de/~schuett/K3-fam.pdf
http://www2.iag.uni-hannover.de/~schuett/K3-fam.pdf


[FLRST15] Fuselier, J., Long, L., Ramakrishna, R., Swisher, H., and Tu, F.-T.: Hypergeometric Functions over
Finite Fields. https://arxiv.org/abs/1510.02575 (2017).

[Gäh13] Gährs, S.: Picard-Fuchs equations of special one-parameter families of invertible polynomials. In:
Arithmetic and geometry of K3 surfaces and Calabi-Yau threefolds. Fields Inst. Commun. vol. 67, pp.
285–310. Springer, New York (2013).

[Goo17a] Goodson, H.: A Complete Hypergeometric Point Count Formula for Dwork Hypersurfaces, J. Number
Theory 179, 142–171 (2017).

[Goo17b] Goodson, H.: Hypergeometric functions and relations to Dwork hypersurfaces. Int. J. Number Theory
13 (2) 439–485 (2017).

[Gre87] Greene, J.: Hypergeometric Functions over Finite Fields. Trans. of the Am. Math. Soc. 301 (1) 77–101
(1987).

[Gri69] Griffiths, P: On the Periods of Certain Rational Integrals. I. Ann. of Math. (2) 90, 460-495 (1969).
[Igu58] Igusa, J.. Class number of a definite quaternion with prime discriminant. Proc. Nat. Acad. Sci. U.S.A.

44, 312-314 (1958).
[Kad04] Kadir, S.: The Arithmetic of Calabi–Yau Manifolds and Mirror Symmetry. Oxford DPhil Thesis.

https://arxiv.org/abs/hep-th/0409202 (2004).
[Kat90] Katz, N.: Exponential Sums and Differential Equations. Annals of Mathematics Studies, vol. 124.

Princeton University Press, Princeton (1990).
[Kat09] Katz, N. M.: Another look at the Dwork family. In: Algebra, arithmetic, and geometry: in honor of

Yu. I. Manin, Progr. Math., vol. 270, Birkhäuser Boston, 2009, 89–126.
[Kel13] Kelly, T. L.: Berglund-Hübsch-Krawitz Mirrors via Shioda Maps. Adv Theor Math Phys. 17 (6),

1425–1449 (2013).
[Klo07a] Kloosterman, R.: The zeta function of monomial deformations of Fermat hypersurfaces. Algebra &

Number Theory 1 (4) 421–450, 2007.
[Klo07b] Kloosterman, R.: Group actions on rigid cohomology with finite support - Erratum to “The zeta

function of monomial deformations of Fermat hypersurfaces”. http://www.math.unipd.it/~klooster/
ANT_erratum.pdf. Accessed 14 December 2017.

[Klo17] Kloosterman, R.: Zeta functions of monomial deformations of Delsarte hypersurfaces. SIGMA 13
(087), 22 pages (2017).

[Kob83] Koblitz, N.: The number of points on certain families of hypersurfaces over finite fields. Comp. Math.
48, Fasc. 1, 3–23 (1983).

[McC12a] McCarthy, D.: On a supercongruence conjecture of Rodríguez-Villegas. Proc. Amer. Math. Soc. 140,
2241–2254 (2012).

[McC12b] McCarthy, D.: Transformations of well-poised hypergeometric functions over finite fields. Finite Fields
Appl. 18 (6) 1133–1147 (2012).

[McC13] McCarthy, D.: The trace of Frobenius of elliptic curves and the p-adic gamma function. Pacific J.
Math., 261(1) (2013), 219–236.

[McC16] McCarthy, D.: The number of Fp-points on Dwork hypersurfaces and hypergeometric functions. Res.
Math. Sci. 4, Paper No. 4, 15 pp. (2017).

[Miy15] Miyatani, K.: Monomial deformations of certain hypersurfaces and two hypergeometric functions. Int.
J. Number Theory 11 (8), (2015).

[Nas17] Naskręcki, B.: On a certain hypergeometric motive of weight 2 and rank 3. arXiv:1702.07738 (2017).
[Nas] Naskręcki, B.: On realisations of weight 0 hypergeometric motives of small degrees. Preprint.
[Sal09] Salerno, A.: Hypergeometric Functions in Arithmetic Geometry. PhD. Thesis, University of Texas at

Austin (2009).
[Sal13a] Salerno, A.: Counting points over finite fields and hypergeometric functions. Funct. Approx. Comment.

Math. 49 (1), 137-157 (2013).
[Shi86] Shioda, T.: An explicit algorithm for computing the Picard number of certain algebraic surfaces,

Amer. J. Math. 108 (2) 415–432, (1986).
[Sla66] Slater, L.J.: Generalized Hypergeometric Functions, Cambridge University Press, Cambridge (1966).
[V18] Voight, J.: Supplementary code. Available at https://www.math.dartmouth.edu/~jvoight/magma/

fiveK3fam.zip (2018).
[Wei49] Weil, A.: Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55, 497–508 (1949).

69

https://arxiv.org/abs/1510.02575
https://arxiv.org/abs/hep-th/0409202
http://www.math.unipd.it/~klooster/ANT_erratum.pdf
http://www.math.unipd.it/~klooster/ANT_erratum.pdf
https://www.math.dartmouth.edu/~jvoight/magma/fiveK3fam.zip
https://www.math.dartmouth.edu/~jvoight/magma/fiveK3fam.zip


University of Alberta, Department of Mathematics, Edmonton, AB Canada
Email address: doran@math.ualberta.edu

School of Mathematics, University of Birmingham, Edgbaston, Birmingham, UK, B15 2TT
Email address: t.kelly.1@bham.ac.uk

Department of Mathematics, Bates College, 3 Andrews Rd., Lewiston, ME 04240, USA
Email address: asalerno@bates.edu

School of Mathematics, University of Minnesota, 206 Church Street SE, Minneapolis, MN 55455
USA

Email address: sperber@umn.edu

Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA
Email address: jvoight@gmail.com

Mathematical Reviews, American Mathematical Society, 416 Fourth St, Ann Arbor, MI 48103,
USA

Email address: uaw@umich.edu

70


	1. Introduction
	2. Picard–Fuchs equations
	3. Explicit formulas for the number of points
	4. Proof of the main theorem and applications
	Appendix A. Remaining Picard–Fuchs equations
	Appendix B. Finite field hypergeometric sums
	References

