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ABSTRACT. Let G be one of the three-dimensional compact simple Lie
groups SU(2) or SO(3). The Laplace-Beltrami spectrum is shown to mu-
tually distinguish isometry classes of left-invaraint metrics on G. Conse-
quently, the rotational spectrum of a molecule determines its moments
of inertia.

1. Introduction

Riemannian homogeneous spaces are not, in general, determined by their
Laplace spectrum. For example, Schueth demonstrated that the classical
Lie groups SO(n > 8), SU(n > 6) and Sp(n > 8) each admit continuous
one-paramter families of isospectral left-invariant metrics [Sc]. In fact, the
Lie groups SO(n > 11), SO(9), SU(n > 8), and Sp(n > 4) each admit
continuous multi-dimensional families of isospectral left-invariant metrics
[Pr]. Although the isospectral deformations produced in [Sc, Pr| can be
arranged to occur arbitrarily close to a bi-invariant metric, it is interesting to
note that a bi-invariant metric on a compact Lie group is spectrally isolated
within the space of all left-invariant metrics [GSS]; consequently, there are
no paths of isospectral left-invariant metrics passing through a bi-invariant
metric.

The construction method used in [Sc, Pr| exploits the fact that the Lie
groups in question have rank at least two. We demonstrate that there are
no non-trivial isospectralities among the left-invariant metrics on a compact
Lie group of rank one.

Theorem 1.1. Let G be either SU(2) or SO(3). If g1 and g2 are isospec-
tral left-invariant metrics on G, then g1 and go are isometric. Specifically,
the first four heat invariants mutually distinguish isometry classes of left-
invariant metrics on G.

As spectral geometry has its origins in spectroscopy and quantum mechan-
ics, we note that Theroem 1.1 has the following application to physical
chemistry, which we will explain in Section 7.
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Theorem 1.2 (Physical Chemistry Application of Theorem 1.1). The ro-
tational spectrum of a molecule determines its moments of inertia.

Riemannian homogeneous manifolds (M, g) and (M §) have identical cur-
vature tensors R and R if for each p e M, p € M there is an isometry
F:(T,M,g,) — (T M , Gp) such that F*R = R,. In dimension 2 it is clear
that homogeneous manifolds with 1dentlcal curvature tensors are locally
isometric. In contrast, continuous families of non-isometric left-invariant
metrics on SU(2) (resp. SO(3), SL(2,R)) with identical curvature tensor
are exhibited in [La, ScWol, ScWo2]. The methods employed in proving
Theorem 1.1 allow us to show that these ambiguities can be resolved by
considering the volume.

Theorem 1.3. Let G be either SU(2) or SO(3). Left-invariant metrics on
G with identical volume and curvature tensors are isometric.

The first three heat invariants of a left invariant metric g on SU(2) or
SO(3) are ag = V, a1 = VS, and az = 555V (2(|R|* — |p|*) 4+ 552), where
V, S, R, and p denote the volume, scalar curvature, curvature tensor, and
Ricci tensor of g, respectively. Although volume and the curvature tensor
determine {ag, a1, a2}, these heat invariants need not determine the isometry
class of g. Examples presented in Section 6 illustrate this fact. Nevertheless,
{ap, a1, as} nearly specify isometry classes.

Theorem 1.4. Let G be SU(2) or SO(3) and let g be a left-invariant metric
on G.

(1) If g is scalar flat, then the first three heat invariants determine the
isometry class of g among left-invariant metrics.

(2) There is at most one additional isometry class of left-invariant met-
rics on G having the same first three heat invariants as g.

To the best of our knowledge there are no known examples of isospectral
compact homogeneous 3-manifolds. This contrasts with the case of locally
homogeneous 3-manifolds [Vi, R, DoRo]. Theorem 1.1 and the non-existence
of isospectralities amongst flat 3-tori [Schi] motivates the following problem.

Problem. Does the Laplace spectrum mutually distinguish compact homo-
geneous 3-manifolds?

We conclude with a brief outline. Heat invariants are a family of spectral
invariants obtained by integrating universal polynomials in the components
of the curvature tensor over the manifold. They are computable at a point
in a homogeneous manifold. Section 2 reviews this material and introduces
the modified heat invariants for a homogenous manifold. These determine
and are determined by the ordinary heat invariants. Section 3 reviews a
parameterization of the isometry classes of left-invariant metrics on SU(2)
and SO(3) in terms of points (z,y,2) from a convex subset M of R? and
expresses the modified heat invariants (implicitly) as functions on M. A
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preliminary analysis of the modified heat invariants as (implicit) functions
on M is carried out in Section 4. The main theorems are proven in Section
5, followed by an example in Section 6, and the application to Physical
Chemistry in Section 7.
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2. Heat invariants

The Laplace-Beltrami operator of a closed and connected Riemannian n-
manifold (M, g) is the (essentially) self-adjoint operator Ay = —divograd,
on L%(M, vg). The sequence \g = 0 < Ay < Ay < -+ 7 oo of eigenvalues
of Ay, repeated according to multiplicity, is the spectrum of (M, g) and we
will say that two manifolds are isospectral when their spectra agree.

The heat semi-group {e **};~0 is a family of self-adjoint operators on
L*(M,v,) defined by e ¢ = e for each t > 0 and A-eigenfunction
¢, and extended linearly to all of L?(M, vg). The trace of these operators,
Z(arg)(t) = Tr(e *), admits an asymptotic expansion

o
Z(M,g) (t) ~ (47Tt)_n/2 Z am(M7 g)tma
m=0
as t approaches 0 from above [MiP]].

The coefficients {am (M, g)}or_, in this expression are the heat invariants
of (M, g). Isospectral manifolds clearly have equal heat invariants. There
are universal polynomials in the components of the curvature tensor and its
covariant derivatives, uy, (M, g), such that an, (M, g) = [}, um(M, g) dvy [Be,
p. 145] or [Sa2, Chp. VL5|. Explicit formulae for the heat invariants are
known in few cases (cf. [Po]).

Let V, R = (R;.kl), p = (py = R;il), S = (¢'pj1), and v, denote the
Levi-Civita connection, Riemannian curvature tensor, Ricci curvature ten-
sor, scalar curvature, and Riemannian density, respectively. We follow the
sign convention for the curvature tensor in [Ta] and [Sal]; namely, for smooth
vector fields X,Y, Z € x(M)

(2.1) R(X,Y)Z =V xy1Z — [Vx, Vy]Z.
The first four heat invariants are given by ([Ta]):
(2.2) aop(g) = vol(M, g) = / ldvy,

M

(2.3) alo) = [ S,
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1
(2.4) alg) = g [ 2RE ~[6f?) + 55" d,
360 /5
and
(2.5)
1 142

2 5
az(g) |VS|2+§S(|R’2—|P‘2)+§53 dvy,

o 26
—— | A-= 2_O\g2_1*
6! /M oI VEI = G3IVel =53

where A is defined by

8 8 20 4
(RRR) — —(pRR +=(p:p:R) — =
21( R, R) 63(/), , )+63(p,p, ) 7(ppp),

and where for tensor fields P = (Pijn), Q = (Qiji), T = (Tijm), U = (Uij),
V = (Vij), and W = (W;;) on (M, g), we have the following products

/_1:

(P,Q) = PijuQ"™,
|P* = (P, P),
(P7 Q7T) = P]g féTZZ‘S,
(U;Q,T) = U™ QuynTI¥,
(U:ViT) = UV Ty,
UVW) = UV Wk,
Specialization to three-manifolds. Assume that (M, g) is three-dimensional.

At each point p € M there is a local orthonormal framing {e1, e, e3} of TM
that diagonalizes the Ricci curvature tensor. With respect to this framing,

(2.6) R(ei,ej)ek =0

whenever i, j, and k are distinct. For i # j, let K;; = g(R(es, e5)es, e5) de-
note the principal curvatures and Ff’j = g(Ve,ej, e) the Christoffel symbols.
Routine calculations yield the following expressions derived with respect to
a local framing satisfying (2.6):

(2.7) S =2{Ki2 + Ki3 + K3},

(2.8) [RI> = 4{(K12)* + (K13)* + (K23)*},

(2.9) o = (K12 + K13)* + (K12 + Ka3)* + (K13 + Kas)*.
With the additional hypothesis that

(2.10) leiy ej] L eisej,

maintained in the cases of interest, we obtain:
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(2.11)  |VR]> = 8{(I'}yK13+T3;K19)? + (' Ko3 + T3 K12)?
+(I'3, Ka3 + I'3,K13)%},

(2.12) Vol = JIVRP
(2.13) (R, R, R) = 8{(K12)> + (K13)3 + (K23)3},
(2.14) (p;R,R) = 2{(Kis+ Ki3)[(K12)* + (K13)?]

+(K12 + Ka3)[(K12)? + (Ka3)]
+(Ks + Ka3)[(K13)* + (Ka23)%]},

(2.15) (pipsR) = 2{Ki2(K12 + Ki13)(K12 + K»3)
+K13(K12 + K13)(K13 + Koa3)
+Ko3(K12 + Ko3) (K13 + Ka3) },

(2.16) (ppp) = (K12 + K13)® + (K12 + Ka3)® + (K13 + Ka3)®.

Specialization to locally homogeneous manifolds. Assume that (M, g)
is a closed locally homogeneous Riemannian manifold. Then S, |R| and |p|
IVR[?, |Vp|?, |[VS|?, and A are constant functions on M. It follows that
{ao, a1, az, az} determine and are determined by {vol(M, g), S, |R|*>—|p|?, ©}
where

-1 26
= A— Z|VR]> = = |Vp|*.
S) 9] R| 63‘ ]

Consider the following modified heat invariants of a closed locally homoge-
neous space (M, g). For w > 0, define

(2.17) Vigw) = (29
(2.18) folgi0) = 64V (g, )%
(2.19) ar(g;w) = 25V (g,w),
(2.20) in(g:0) = 8V (g, (R~ 1ol?),
and

i 630(4V (g, w))?

(2.21) s g w) = SOUV (9,07
16

For each j € {0,1,2,3} and w > 0, the collection of modified heat invari-

ants ao(g,w), . .. a;j(g,w) determine and are determined by the ordinary heat

invariants ao(g), ... a;j(g,w).
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3. Isometry classes of left-invariant metrics on SU(2)

Let G be a compact Lie group endowed with a fixed bi-invariant metric gg
induced by an Ad-invariant inner product (-, -)o on the Lie algebra g. Let g
be an arbitrary left-invariant metric on G induced by an inner product (-, -)
on g. Define a positive self-adjoint isomorphism € : (g, (-,)o) — (g, (-, )o)
by (X,Y) = (Q2(X),Y)o, for each X,Y € g.

Let {u1,...,un} C g be an (-, -)g-orthonormal basis consisting of eigen-
vectors of { with corresponding positive eigenvalues u3, u2, ..., u2 > 0. The
vectors {uy, ..., u,} are referred to as eigenvectors of the metric g (with re-

spect to the background metric gg) and the corresponding eigenvalues are
referred to as the eigenvalues of the metric g (with respect to the back-
ground metric go). Isometry classes of left-invariant metrics on SO(3) are
classified by the multi-set of their eigenvalues [BESTW].

Proposition 3.1 ([BESTW]). Two left-invariant metrics on SO(3) have
the same multi-set of eigenvalues (with respect to a background bi-invariant
metric go) if and only if they are isometric.

The following corollary is immediate since the two-fold covering map 7 :
SU(2) — SO(3) = SU(2)/Z(SU(2)) induces a bijection between isometry
classes of left-invariant metrics on SU(2) and SO(3).

Corollary 3.2. Two left-invariant metrics on SU(2) have the same multi-
set of eigenvalues (with respect to a background bi-invariant metric go) if
and only if they are isometric.

Let G = SU(2). Its Cartan-Killing form, B(x,y) = trace(ad(x)ad(y))
for z,y € su(2), is symmetric and negative-definite. For each ¢ > 0, the
inner-product —cB induces a bi-invariant metric on SU(2). Let {u1, ua, us}
be a —cB orthonormal basis of su(2).

Define structure constants ;i by [us, u;] = 22:1 a;jrug. Use the fact
that B([us, uj], ur) = B(ui, [uj,ur]) to deduce ayjr, = ajri = oy; for any
i,7,k € {1,2,3}. Therefore, there is a nonzero ¢ such that the only nonzero
structure constants are 123 = ao31 = agie = 6. After possibly replacing
uy with —u; we may assume that § > 0. Calculate —cB(u;,u;) = 2¢6% so
that 2c6? = 1. Summarizing, after possibly replacing u; with —u; in a —cB
orthonormal basis of su(2),

1 1 1
[u, ug] = T3 [ug, us] = NoTh [ug, u1] = e

The bi-invariant metric on SU(2) induced from —¢B is isometric to the
round three-sphere of radius v/8¢, constant sectional curvatures é, and vol-
ume 32\/§7r203/2.

Convention. In the remainder of this paper, gy denotes the bi-invariant
metric on SU(2) defined by go = —3 B, making (SU(2), go) isometric to the

round 3-sphere with radius 2, constant sectional curvatures %, and volume
1672,

(3.1)

ug.
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Let g denote a left-invariant metric on SU(2) with eigenvectors {u1, ug, us}
and corresponding eigenvalues y?, u3, u% > 0. Set

(3.2) T=p3 y=p3, 2=

Letting the symmetric group on three elements, Ss3, act on ordered triples
in the usual way, Corollary 3.2 implies that isometry classes of left-invariant
metrics can be identified with M = Ri /S3, where R is the set of positive
real numbers.

Given an isometry class [g] € M, its standard representation is the or-
dered triple (z,y,z) € R3, where z >y > z > 0, so that M is in bijective
correspondence with the set {(z,y,2) € R®|z > y > 2z > 0}. Under this
parametrization the isometry classes of the constant curvature metrics are
given by [(r,r,r)], with » > 0; in particular, the isometry class of gy corre-
sponds to [(1,1,1)].

Following Section 2 (see p. 5), let w = vol(gp) and define the positive
function V : M — RT by

for [(x,y, z)] € M. Verify that V is the elementary symmetric polynomial
of degree three in the variables z, vy, z:

(3-3) V([(z,y,2)]) = zyz = (papzps)’.

The following scaled eigenvectors of the metric g form a g-orthonormal basis
of su(2):
{61 = —€=—,63 = — .
H1 H2 M3
After possibly replacing u; with —uy the Lie bracket structure of su(2) is
given by (3.1) with ¢ = 3:

(3.4) [u1,ug] = u3, [ug,us] =u1, [uz,u1] = us.

Letting ;i denote the structure constants o i, = g([es, €j], ex) of the basis
{e1, e2, ez} with respect to the metric g, the nonzero structure constants are
(3.5)

3 M1
Q123 = —Q213 = ﬁ7 (231 = —Q321 = ﬁ; 312 = —(Q132 = MT
1H2 243 1HM3

Let V denote the Levi-Civita connection for the metric g. The Christoffel
symbols Ffj = g(Ve,ej, ex) for the metric g are determined by substituting
the expressions from (3.5) into Koszul’s formula

QFZ- = aijk — Oéj]m' + akij-
The nonzero Christoffel symbols are given by

2 2,2 .
(3.6) r§2:_p§3:ﬂ2+us pi_ytz—z

2011 papis 2/V
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s _ Mt wtz—y

(3.7) 2 2 21 popis 2VV
2,22
+us —p rTH+y—=z
3.8 I3 = -Th,=H TR .
( ) 31 32 2#1/*‘2/‘3 2\/V
Use (2.1) and (3.6)-(3.8) to deduce
(3.9) R(e;,ej)ep =0

whenever 4, j, and k are all distinct. Use (2.1) and (3.6)-(3.8) to calculate
the principal curvatures K;; = K;;(x,y, 2) = g(R(e;, €5)ei, e5):

A B C

(3.10) Kwo=17 Ks=,7  Ks= 5
where
(3.11) A=Az, y,2) = 2%+ 9% — 322+ 2(zz + yz — xy),
(3.12) B = B(x,y,2) = 2° 4+ 2* — 3y* 4+ 2(zy + yz — x2),
(3.13) C=0C(x,y,2) =y* + 22 — 322 + 2(zy + x2 — y2).
Introduce new variables

A+B A+C B+C
(3.14) e
Then
(3.15) A=a+b—c¢, B=a+c—b, C=b+c—a.
Use (3.11)-(3.14) to derive
(3.16) 0= alzy,2) = (@ +y— )@ -y +2)
(3.17) b=b(z,9,2) = (¢ +y - 2)(~z+y+2),
(3.18) c=clz,y,2z)=(r—y+2)(—x+y+2).

For [g] € M with standard representation (z,y, z) the inequalities x > y >
z > 0 imply that (z +y —2) > 0 and (x — y + z) > 0. Use (3.16)-(3.18) to
deduce

(3.19) a >0 and bc > 0,

with equality if and only if b = ¢ = 0 (equivalently, x = y + 2).
We conclude this section by noting that it will be advantageous for us to
partition M into two disjoint subsets.

Definition 3.3. An isometry class of left-invariant metrics [g] € M is said
to be of Type I if its standard representation (z,y, z) satisfies © # y + z;
otherwise, it is said to be of Type II. Equivalently, [g] € M is of Type I if
its standard representation satisfies b(z,y, z) - ¢(x,y, z) > 0; otherwise, it is
of Type II.
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4. Preliminary analysis of the a; as functions on M

This section derives expressions for the modified heat invariants in terms
of the variable a, b and c.

Section 3 paramaterizes isometry classes of left-invariant metrics on SU(2)
by points in the convex set M ~ {(z,y,2) € R® : 2 >y > 2z > 0}. The
modified heat invariants a;(g,w), with g a left-invariant metric on SU(2)
and w = vol(gg) = 1672, descend to well-defined functions a;([(z,y, 2)],w)
on M

In this section, all variables are implicitly functions of isometry classes
[(z,y,2)] € M. Let a; := a;([(x,y, 2)],w) and V := V([(z,y, z)]) through-
out. By (3.4) and (3.9), the g-orthonormal frame ey, e, e3 satisfies condition
(2.6). Therefore, (2.7)-(2.9) are valid in this frame, a fact used in the re-
mainder of the paper. Let

P1($1,$2,x3) =1+ T2+ X3
P2($1,$2,x3) = X129 + x123 + T2X3
P3(x1, 2, 73) = 212273
denote the elementary homogeneous polynomials in the variables x1, 2, x3.

Lemma 4.1. The modified heat invariants a1 and ao satisfy

a; = Pi(a,b,c) g = 4P%(a,b,¢) — 12P5(a, b, c).

Proof. Compute using (2.7), (2.8), (2.9), (2.19), (2.20), (3.9), (3.10), and
(3.15). O
Lemma 4.2. An isometry class with modified heat invariants a1 and aso is
of Type II if and only if ay = 4a3.

Proof. An isometry class is of Type Il if and only if b=¢=0. If b=¢ =0,
then Py(a,b,c) = ab+ ac + bc = 0. Lemma 4.1 then implies dp = 4a?.
Conversely, if Gy = 4a, Lemma 4.1 implies that P»(a, b, ¢) = ab+ac+bc = 0.
Substituting (3.16)-(3.18) and simplifying yields (z —y — 2)(z +y — 2)(x —
y+z)(x+y+2) =0, whence x =y + z. O

Specialization to Type I isometry classes. In this subsection, [(z,y, z)] €
M denotes a Type I isometry class of metrics.

Lemma 4.3. If [(z,y,2)] € M is a Type I isometry class of metrics, then

2 a(b+ c)? )2 = b(a + c)? s cla+ b)2.

4bc 4ac 4ab
xy:(b—l—c)(a—kc) mz:(a—kb)(b—i—c) yzz(a—i—b)(a—l—c).
4c 4b 4a

Proof. As [(z,y,z)] is of Type I, abc > 0. Substitute expressions (3.16) -

(3.18) for a, b, ¢ in terms of x,y, z into the above formulae and simplfy.
O
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Corollary 4.4. If [(z,y,2)] € M is a Type I isometry class of metrics, then

be
V(T =2 = av(rh,)?
ac
V(T = % = av(r, Y,
ab
W32 =2 = av(rhy)?

Proof. Use (3.6)-(3.8) to derive expressions for 4V(Ffj)2 in terms of 22, y?

2%, xy, xz, and yz; substitute the expressions for these monomials as rational
functions of a, b, and ¢ in Lemma 4.3, and then simplify. (|

Corollary 4.5. If [(z,y,2)] € M is a Type I isometry class of metrics, then
P} — 2P PP + P2P3
3 L2l + 1 2)(a,b,c).
Ps
Proof. Compute using (2.18), (3.3) and Lemma 4.3.

ao = (

O
Corollary 4.6. If [(z,y,2)] € M is a Type I isometry class of metrics, then

—135PF +44P Py — 198P P, Py — 2TP2 P3 + 108P23) (a.b.0)
P3 ) *

Proof. Use (2.11)-(2.16), (2.20), (3.10), and the symmetry Ffj = —ng, to
derive

a5 = (

4az = 32[A% + B3 + C3] + 30[ABC]

(4.1) —21[A%2(B+ C) + B*(A+ C) + C*(A+ B)]
_27(V)[(T%,)%(A — B)? + (T§)2(A — C)? + (T3,)2(B — O,

Use Corollary 4.4 and (4.1) to derive

daz = 32[A% + B3 + C3] + 30[ABC]
(4.2) —21[A%(B+ C) + B*(A+ C) + C*(A+ B)]

—27[%(A— B)? + (A - C0)? + %(B-C)2.

Use (3.15) and (4.2) to obtain the desired expression for ag after simplifica-

tion. O

Specialization to Type II isometry classes. In this subsection, [(z,y, 2)] €
M denotes a Type II isometry class of metrics so that its standard repre-
sentation (x,y, z) satisfies z = y + z. Use (3.16)-(3.18) and Lemma 4.1 to
derive

(4.3) ap=a=4yz >0, b=c=0.

Use (3.3) and (4.3) to derive

alxr  ax

4.4 _ oy = 2T _
(4.4) V =2ayz 1
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5. Proofs of Theorems 1.1, 1.3, and 1.4

We will use the following well-known lemma.

Lemma 5.1. Values of the elementary symmetric polynomials P;(z1, ..., y),
i =1,...,n, in complex variables x1,...,x, uniquely specify the multi-set
{l’l, ey .’L'n}

Proof. The lemma is a consequence of the fundamental theorem of algebra
and the factorization II7_, (x + z1) = X7 Po—i(x1,. .., 2n)2". O

Remark 5.1. The two fold covering 7 : SU(2) — SO(3) induces a bijection
between isometry classes of left-invariant metrics on SO(3) and SU(2) pre-
serving the properties of having identical volumes, curvature tensors, and
(modified) heat invariants.

Proof of Theorem 1.3. By Remark 5.1, it suffices to prove the Theorem
when G = SU(2).

Given an isometry class [g] € M the curvature tensor determines and
is determined by the multi-set {K7i2, K13, K23} of principal curvatures. By
(3.10) and (3.14), isometry classes of metrics [g] and [¢'] with identical cur-
vature tensors and volumes have the same associated multi-set {a, b, ¢} and
{d,b/,}. Lemma 4.1 implies that a;([g]) = a;([¢']) for i = 1,2 and Lemma
4.2 implies that the classes [g] and [¢'] have the same type.

Case I: Suppose g = (x,y,2),9 = (2/,y,2') € M are both of Type I. By

the preceding discussion the multisets {a,b,c} and {a’,V’, '} are identical.
By Lemma 4.3 the multi sets {x,y, 2z} ad {z/,/,2'} are identical, showing
that the isometry classes agree.

Case II: Suppose g = (2,9, 2), ¢ = (2/,y/,2) € M are both of Type II.

As noted above, the corresponding multisets {a,b,c} = {a,0,0} and
{a',V/, '} = {d’,0,0} agree. From (4.4), z = 2¥ = 2/, Therefore Py(y,z) =
x =2 = P(y,7). From (4.3), 4Ps(y,z) = a = 4P»(y’,2’). Lemma 5.1
implies that the multi-sets {z,y,z} and {2/,y/, 2’} agree, concluding the
proof. O

Proof of Theorem 1./. By Remark 5.1, it suffices to prove the Theorem
when G = SU(2).

Proof of (1): Let [g] be an isometry class with zero scalar curvature. As-
sume that [¢'] is an isometry class with a;([g]) = a;([¢]) for i = 0,1,2. Then
ai([g]) = ai(lg]) for i = 0,1,2 and a; = 2S5V = 0. By (4.3) both classes
are Type I. By Lemma 4.1, Pi(a,b,c) = Pi(a’,V',c') = 0 and Py(a,b,c) =
Py(d', V', ) = —ag/12. By Lemma 4.5, Ps(a,b,c) = P3(a,b',) = ag. The
multi-sets {a,b,c} and {a’,V/,¢'} coincide by Lemma 5.1. The isometry
classes [g] = [¢/] by Lemma 4.3.
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Proof of (2): Let [g] and [¢'] be isometry classes with a;([g]) = a;([¢']) for
i =0,1,2. Then a;([g]) = ai([g]) for ¢ =0, 1,2. By (4.3), the classes [¢g] and
[¢'] have the same type. Lemma 4.1 implies that P;(a,b,c) = Pi(a,b,c) for
i=1,2.

If [g] and [¢'] are both of Type I, then Lemma 4.5, shows that Ps(a,b,c)
and P3(a’,b', ') are both roots of the quadratic polynomial

p(z) = 2% — (2P Py — ag)x + PEP}.

The Theorem now follows from Lemma 5.1 and Lemma 4.3.
If [g] and [¢'] are both of Type II, then Case II in the proof of Theorem
1.3 proves that [g] = [¢']. O

Proof of Theorem 1.1. By Remark 5.1, it suffices to prove the Theorem
when G = SU(2).

Assume that [g] and [¢'] are isometry classes with a;() = a;() for i =
0,1,2,3. Then a;([g]) = a;([g]) for i = 0,1,2,3. By Lemma 4.2, the classes
[g] and [¢'] are of the same type.

If [g] and [¢'] are both of Type I, then Lemma 4.1 implies that P;(a,b,c) =
Pi(a', ¥/, ) for i = 1,2. Solving for P§ in the formula for ao in Corollary 4.5
and then substituting into the expression for a3 in Corollary 4.6 expresses
P; as a rational function in Py, P», ag, and as. Therefore P3(a,b,c) =
Ps(d’,b', ). The multisets {a,b,c} and {da’,¥’,} coincide by Lemma 5.1
and the isometry classes [g] = [¢] by Lemma 4.3.

If [g] and [¢'] are both of Type II, then Case II in the proof of Theorem
1.3 proves that [g] = [¢']. O

6. Left-invariant metrics with equal ag, a1, and as

In this section, we demonstrate that the heat invariants ag, a1, as do not
in general determine the isometry class of a left-invariant metric on SU(2)
(or on SO(3)). Equivalently, the first three modified heat invariants ao, a1,
and as do not determine the isometry class of a left-invariant metric on
SU(2).

Lemma 6.1. If L, K € R satisfy A(L,K) := —4L> + L?> + 18K L — 27TK? —
4K > 0, then the multi-set {a,b,c} of solutions to the system

Pi(a,b,c) =1
Py(a,b,c) =L
Pg(a, b, C) =K

is a multi-set of real (nonzero when K # 0) numbers.

Proof. If a, b, and ¢ are solutions to the above system, then a, b, c are roots
of the polynomial p(z) = (z — a)(z — b)(x — ¢) = 2 — 2? + Lr — K. The
polynomial p(z) has three real roots when its discriminant A = A(L, K) >
0. O
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Let L = —100, K1 = 150 — 50\/5, Ko = 150 + 50v/5 and verify that
A(L, K1) =~ 3901700,
A(L, K9) ~ 1687099.

By Lemma 6.1, there exist distinct multi-sets {aj, b1, c1} and {ag, by, ca}
of nozero real numbers that solve the systems P, = 1, P, = —100, and
P; = K; for i = 1,2, respectively. Note that since a;b;c; = K; > 0 and
a;b; + a;c; + bjc; = —100, we have (up to reordering), a; > 0 and b;, ¢; < 0.

These two multi-sets determine isometry classes of metrics on SU(2) via
Lemma 4.3 and these isometry classes are distinct by (3.16)-(3.18). Lemma
4.1 implies that a; = 1 and as = —1196 for both classes. Finally, use
Corollary 4.5 to calculate that ag = 500 for both classes.

7. An application to physical chemistry

Consider a rigid three-dimensional body W with center of mass at the ori-
gin. The moment of inertia tensor of W is a positive, self-adjoint linear
isomorphism I : (R3, (-,-)) — (R3, (-,-)) with respect to the Euclidean inner
product (-,-). The moment of inertia of W about an axis Rv, where v € 52,
is the scalar (I(v),v) and measures the resistance of W to rotation about
the axis Rv.

The moment of inertia tensor has an orthonormal eigenbasis {e1, ez, es},
with corresponding eigenvalues 0 < I} < Iy < I3. The numbers Iy, Io,
and I3 are the principal moments of inertia of the body and the vectors
e1, e and e are the principal azes. A body is spherical when all principal
moments of inertia are equal (e.g., the molecule methane), symmetric when
exactly two of the principal moments of inertia are equal (e.g., benzene and
chloromethane), and asymmetric otherwise (e.g., water).

The principal moments of inertia 0 < I1 < I, < I3 determine a left-
invariant metric g, 1, r,) on SO(3) as follows. Let B(-,-) denote the Killing
form on the Lie algebra s0(3) and let ©1, O3, O3 denote the usual orthonor-
mal basis of s0(3) with respect to the inner product —B. The triple 0 < I} <
I, < I3 determines a self-adjoint map Iy, 1, 1, : (s0(3), —B) — (s0(3), —B)
defined by ©; — %j@iv for j = 1,2,3. Then g, 1, 1,) 18 the left-invariant
metric on SO(3) induced by the inner product (A, B) = —B(Iy, 1,,1,(A), B)
on s0(3). For example, the metric g(; ) is the unique (up to scaling) bi-
invariant metric on SO(3). Letting Z = {(I1,I2,1I3) : 0 < [} < I, < I3} and
letting Mo (SO(3)) denote the space of isometry classes of left-invariant
metrics on SO(3), Proposition 3.1 implies that the map Z — M. (SO(3))
defined by (I1, I2, I3) = 9(1,,1,1;) is a bijection.

Classical mechanics implies that the geodesics in SO(3) with respect to
the left-invariant metric g(y, 1, 1,) describe free rotations of W about its cen-
ter of mass (cf. [GuSt, Section 28]). When W is a molecule, Schrédinger’s
equation implies that the eigenvalues associated to the Laplacian of g7, 1, 1,)
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describe the rotational spectrum (or energy levels) of the molecule. Spe-
cializing Theorem 1.1 to the class of left-invaraint metrics on SO(3) yields
Theorem 1.2 from the introduction:

Theorem 1.2: The rotational spectrum of a molecule determines its mo-
ments of inertia.

Theorem 1.2 improves [Su, Corollary 1.4], where the second author estab-
lishes this result for spherical and symmetric molecules via wave-trace tech-

niques.
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