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Abstract. The moments of inertia of a molecule can be used to help recover information

about its structure. We show that for a spherical or symmetric molecule (e.g., methane,

benzene and chloromethane) its moments of inertia are determined by its rotational spectrum.

As we will explain, this is a corollary of the following geometric result: the left-invariant

naturally reductive metrics on SO(3) can be mutually distinguished via the Laplace spectrum.

We will establish this geometric result by first demonstrating that the systole of each left-

invariant naturally reductive metric on SO(3) is “clean” and “audible.” We then use the wave

invariants associated to the systole to show that within this class of metrics, each metric can

be uniquely identified by its spectrum.

1. Introduction

The spectrum of a (connected) closed Riemannian manifold (M, g) is defined to be the

sequence λ0 = 0 < λ1 ≤ λ2 ≤ · · · ↗ +∞ consisting of the eigenvalues (counting multiplicities)

of the associated Laplace operator ∆g acting on L2(M,dνg). The inverse spectral problem is

concerned with the extent to which one can recover the geometry of a Riemannian manifold

from its spectrum. Two classes of spectral invariants that are widely used in inverse spectral

geometry are the heat invariants and the wave invariants. The heat invariants are defined via

the asymptotic expansion of the trace of the heat semi-group at its singularity at t = 0:

Trace(e−t∆g) =
∞∑
k=0

e−tλk
t↘0+∼ (4πt)−n/2

∞∑
k=0

ak(M, g)tk,

where n is the dimension of M . The coefficients ak(M, g) of this asymptotic expansion are

known as the heat invariants of the Riemannian manifold and they are clearly spectral invari-

ants. For each k, the heat invariant ak(M, g) can be expressed as ak(M, g) =
∫
M uk(x)dνg,

where uk(x) is a universal homogeneous polynomial of degree 2k in the coefficients of the

curvature tensor R and its higher order derivatives. For instance, a0(M, g) = vol(M, g) and

a1(M, g) = 1
6

∫
M Scal(x)dνg, where Scal denotes the scalar curvature. Therefore, the short-time

asymptotics of the heat trace reveals that the dimension, volume and total scalar curvature
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of a Riemannian manifold are encoded in its spectrum. The expressions for the higher heat

invariants are more convoluted. For example, a2(M, g) = 1
360

∫
M 2(|R|2 − |Ric |2) + 5 Scal2 dνg

(cf. [Pol]). In spite of the fact that the heat invariants are determined by local geometric

data, they have been used to prove spectral uniqueness results. For instance, Tanno used the

first four heat invariants to establish that a round sphere of dimension 1 ≤ n ≤ 6 is uniquely

determined by its spectrum among all Riemannian manifolds [T1]. It is perhaps surprising

that four decades later it is still unresolved whether this is true for round spheres in dimension

7 and higher (cf. [T2]).

The wave invariants of a Riemannian manifold arise by considering the asymptotic behavior

of the trace of the wave group at its singularities. The wave group associated to (M, g) is the

family of operators Ug(t) = eit
√

∆g : L2(M,νg) → L2(M,νg), indexed by t ∈ R and defined

via the functional calculus. That is, for each t ∈ R, eit
√

∆g acts on the λ-eigenspace of ∆g

via multiplication by the scalar eit
√
λ, and we extend this to all of L2(M,νg) by linearity. The

wave group is the quantum mechanical analogue of the geodesic flow and its orbits u(t, x) =

Ug(t)f(x) satisfy the wave equation ∂2

∂t2
u(t, x) + ∆gu(t, x) = 0. The trace of the wave group,

denoted by Trace(Ug(t)), is a tempered distribution on R defined by

〈Trace(Ug(t)), ϕ〉 = Trace

∫
Ug(t)ϕdt,

and one can see that it is the Fourier transform of the “spectral distribution” σ(t) =
∑∞

j=1 δ(t−√
λj). Therefore, the distribution Trace(Ug(t)) is completely determined by the spectrum of

(M, g) and is given by Trace(Ug(t)) =
∑∞

j=1 e
it
√
λj .

As with the heat semi-group, one considers the asymptotic behavior of the trace of the wave

group at its singularities. Interestingly, the singular support of the trace of the wave group,

denoted SingSupp(Trace(Ug(t))), is a subset of the length spectrum of our manifold, whereby

the length spectrum of (M, g) we mean the set SpecL(M, g) consisting of the lengths of the

smoothly closed geodesics in (M, g) [Ch, DuGu]. It is a major open problem to determine

whether this containment, known as the Poisson relation, is actually an equality. Indeed,

equality in the Poisson relation—which is known to hold generically [DuGu, p. 61]—would

show that the length spectrum of a manifold can be recovered from its spectrum.

Now, if we let Φ : R × SM → SM signify the geodesic flow on the unit tangent bundle of

our Riemannian manifold and let Φt(·) = Φ(t, ·), then a length τ ∈ SpecL(M, g) is said to be

clean if

(1) the fixed-point set of Φτ , denoted Fix(Φτ ), is a disjoint union of finitely many closed

manifolds;

(2) for each u ∈ Fix(Φτ ) the fixed point set of DuΦτ is precisely equal to Tu Fix(Φτ ).

Otherwise, we will say that τ is unclean or dirty. Under the assumption that the length

τ ∈ SpecL(M, g) is clean, Duistermaat and Guillemin determined that there is an interval

I containing τ on which the wave trace can be expressed as a sum of compactly supported
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distributions

Trace(Ug(t)) = R(t− τ) + βeven(t− τ) + βodd(t− τ),

where R(x) is smooth on a neighborhood of 0 and the distributions βeven(x) and βodd(x) are

singular at 0 [DuGu, Theorem 4.5]. Since the distributions βeven and βodd are compactly

supported their Fourier transforms are given by the smooth functions αeven and αodd, respec-

tively. Furthermore, Duistermaat and Guillemin showed that αeven and αodd have the following

asymptotic expansions:

αeven(s)
s→+∞∼

∞∑
k=0

Waveeven
k (τ)s(Deven−2k−1)/2

and

αodd(s)
s→+∞∼

∞∑
k=0

Waveodd
k (τ)s(Dodd−2k−1)/2,

where Deven (respectively, Dodd) equals the maximum taken over the dimensions of the even-

dimensional (respectively, odd-dimensional) components of Fix(Φτ ) (see [DuGu, Theorem 4.5]

or Theorem 2.4). We note that the faster αeven (respectively, αodd) decays at infinity the less

singular βeven (respectively, βodd) is at 0. The coefficients Waveeven
k (τ) and Waveodd

k (τ) in the

asymptotic expansions above are complex numbers known as the k-th wave invariants of the

clean length τ . In contrast with the heat invariants, the wave invariants are semi-global in

nature and the trace formula implies that a clean length τ is in the singular support of the

trace of the wave group if and only if at least one of its wave-invariants is non-zero.

We will agree to say that a Riemannian manifold is clean if each length in its length spectrum

is clean. And, in this case, the asymptotic behavior of the wave trace at its singularities provides

a wealth of spectral invariants. It can be seen that “cleanliness” is a generic property, so that

generically we have wave invariants at our disposal to address the inverse spectral problem.

Indeed, let M be a closed manifold and M(M) denote the space of all smooth Riemannian

metrics on M (equipped with the C∞-topology). A metric g ∈ M(M) is said to be bumpy if

each smoothly closed geodesic γ with respect to g has the property that the space of periodic

Jacobi fields along γ is spanned by J(t) = γ′(t). Equivalently, the metric g is bumpy if for

each u ∈ SM such that Φτ (u) = u for some τ 6= 0, we have that 1 is the only root of unity

that is an eigenvalue of DuΦτ and it occurs with multiplicity one. A bumpy metric g ∈M(M)

has the property that for any length τ ∈ SpecL(M, g) there are finitely many geometrically

distinct closed geodesics of length τ (see [A, Theorem 2] and [An, Section 4]). Therefore, we

may conclude that all bumpy metrics are clean. Now, the bumpy metric theorem of Abraham

[A, Theorem 1] states that the set of bumpy metrics on M contains a residual set (see [An] for

a complete proof), which establishes that cleanliness is a generic property.

Given that homogeneous spaces are far from generic (i.e., bumpy) and serve as important

model spaces in geometry, this article is motivated by the following questions:

(1) To what extent is “cleanliness” a common trait among homogeneous manifolds?
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(2) Among those homogeneous spaces that are clean, to what extent can wave invariants

be employed to distinguish these spaces via the spectrum?

As a test case, we consider the family of left-invariant naturally reductive metrics on SO(3),

which we will denote byMNat(SO(3)). In a sense, the naturally reductive metrics on SO(3) are

close relatives of the metric of constant curvature on SO(3) (see Section 3), and in Theorem 5.14

we provide necessary and sufficient conditions for a naturally reductive left-invariant metric

on SO(3) to be clean. From this we are able to deduce that cleanliness is a generic property

within MNat(SO(3)).

1.1. Theorem. Within the class of naturally reductive left-invariant metrics on SO(3) the clean

metrics form a residual set. In particular, the bi-invariant metric on SO(3) is clean. However,

the collection of unclean or dirty metrics contains certain normal homogeneous metrics.

For the dirty metrics in Theorem 1.1 and those observed by Gornet [Gt], the issue is the

existence of a length τ that satisfies condition (1) of cleanliness, but fails to satisfy condition

(2). In our case, satisfying condition (2) will hinge on the behavior of the Poincaré map along

so-called Type II geodesics (cf. Remark 5.16), which (up to translation by the isometry group)

turn out to be iterates of certain one-parameter subgroups of SO(3). We pause to note that

we are not aware of any examples where cleanliness fails at condition (1).

Although the previous theorem tells us that there are left-invariant naturally reductive

metrics on SO(3) with dirty lengths, we will see that for any left-invariant naturally reductive

metric g on SO(3) the length of the shortest non-trivial closed geodesic, denoted τmin(g), is

always clean and “audible.”

1.2. Theorem. Let g be a naturally reductive left-invariant metric on SO(3). Then, τmin(g) is

clean and appears in the singular support of Trace(Ug(t)).

We note that in this setting a closed geodesic of length τmin(g) is always non-contractible, so

τmin(g) is also the systole of the metric.

In Theorem 1.2 we reach the conclusion that τmin(g) is in the singular support of Trace(Ug(t))

by noticing that for each naturally reductive metric g on SO(3) exactly one of its 0-th wave

invariants is non-zero (see Proposition 5.18). It will follow from the wave-trace formula that

dim Fix(Φτmin(g)) is spectrally determined. This along with Corollary 5.19—which establishes

that the volume of any left-invariant naturally reductive metric g on SO(3) is a function of

τmin(g), dim Fix(Φτmin(g)), and Wave•0(τmin(g)), where • denotes the parity of dim Φτmin(g)—will

allow us to conclude that within this class each metric g can be completely recovered from the

asymptotic expansion of the wave trace at the “audible” singularity τmin(g).

1.3. Theorem. Within the class of left-invariant naturally reductive metrics on SO(3) each

metric is uniquely determined by its Laplace spectrum.

This theorem is an improvement of [GS, Theorem 4.1] in the case of SO(3), where (in collabora-

tion with Gordon) we demonstrated that within the class of naturally reductive left-invariant
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metrics on any simple Lie group each metric is spectrally isolated. Of particular interest,

however, is the following interpretation of Theorem 1.3 in terms of physical chemistry.

Consider a three-dimensional rigid body W with its center of mass located at the origin.

We recall that the moment of inertia of W about the axis Rv determined by the unit vector

v ∈ R3 is given by the scalar 〈I(v),v〉, where I : R3 → R3 is the moment of inertia tensor

associated to W and 〈·, ·〉 is the standard euclidean inner product. The quantity 〈I(v),v〉
measures the resistance of the rigid body to rotation about the axis Rv. For example, a figure

skater who wishes to increase their angular momentum during a spin does so by bringing in

their arms, which reduces the moment of inertia about the axis of rotation. The moment of

inertia tensor I is symmetric with respect to the standard inner product and, therefore, there is

an orthonormal basis e1, e2, e3 of R3, with 〈I(ej), ej〉 = Ij for 0 < I1 ≤ I2 ≤ I3. The numbers

I1, I2 and I3 are known as the principal moments of inertia of the body and the vectors e1, e2

and e3 are named the principal axes.

Now, the moments of inertia 0 < I1 ≤ I2 ≤ I3 determine a left-invariant metric g(I1,I2,I3)

on SO(3) as follows. Let B(·, ·) denote the Killing form on so(3) and let Θ1,Θ2,Θ3 denote

the usual orthonormal basis of so(3) with respect to the inner product −B (see 5.3). For each

triple 0 < I1 ≤ I2 ≤ I3 we obtain a self-adjoint map II1,I2,I3 : (so(3),−B)→ (so(3),−B) given

by Θj 7→ 1
Ij

Θj , for j = 1, 2, 3. We then let g(I1,I2,I3) denote the left-invariant metric on SO(3)

induced by the inner product −B(II1,I2,I3(·), ·) on so(3). Then, according to Proposition 5.2,

the map (I1, I2, I3) 7→ g(I1,I2,I3) is a bijection onto the isometry classes of left-invariant metrics

on SO(3). With respect to the metric g(I1,I2,I3), classical mechanics tells us that the geodesics

in SO(3) describe the free rotations of the rigid body W about its center of mass (cf. [GuSt,

Section 28]). Furthermore, in the event that W is a molecule, Schrödinger’s equation tells us

that the eigenvalues associated to the Laplacian of g(I1,I2,I3) describe the rotational spectrum

(or energy levels) of the molecule.

A molecule with moments of inertia 0 < I1 ≤ I2 ≤ I3 is said to be spherical in the event that

all the moments of inertia are equal (e.g., methane), symmetric in the case where exactly two of

the moments of inertia are identical (e.g., benzene and chloromethane) and asymmetric when

the moments of inertia are all distinct (e.g., water). It follows from 5.3 and Proposition 5.2

that the left-invariant metrics on SO(3) describing the free rotations and energy levels of the

spherical and symmetric molecules are precisely the left-invariant naturally reductive metrics.

Consequently, we have the following corollary of Theorem 1.3.

1.4. Corollary. Within the class of spherical and symmetric molecules, the rotational spectrum

of a molecule determines its moments of inertia.

In light of the discussion above it would appear to be an interesting problem to study whether

the left-invariant metrics on SO(3) can be mutually distinguished via their spectra. More

generally, one can ask whether homogeneous 3-manifolds can be mutually distinguished via
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their spectra.1 An affirmative answer to this question would stand in stark contrast to the state

of affairs for homogeneous spaces of higher dimension. For example, Schueth has demonstrated

the existence of continuous families of isopsectral left-invariant metrics on classical Lie groups

of sufficiently large rank [Sch]. We note that the results in this paper rely on our ability to

explicitly compute the geodesic flow and analyze the Poincaré map of the naturally reductive

metrics on SO(3). This appears to be infeasible for an arbitrary left-invariant metric on SO(3)

and most other homogeneous 3-manifolds; hence, a different approach appears to be needed

to address this problem.

The outline of this article is as follows. In Section 2 we review the trace formula of Duis-

termaat and Guillemin and discuss the ingredients needed to compute the 0-th wave invariant

associated to a clean length. In Section 3 we recall the definition of a naturally reductive met-

ric, review the classification of left-invariant naturally reductive metrics on simple Lie groups

due to D’Atri and Ziller and say a few words about geodesics on such spaces. In particular, we

recall a necessary and sufficient condition for a geodesic with respect to a naturally reductive

left-invariant metric to be closed. While on the topic of closed geodesics we note in Proposi-

tion 3.11 that there are no geodesic lassos in a homogeneous space, a fact previously known

to hold for naturally reductive spaces and left-invariant metrics on Lie groups. In Section 4

we study the derivative of the geodesic flow. In particular, we review Ziller’s method for com-

puting the Poincaré map along closed geodesics in naturally reductive spaces. The balance of

the paper, which is contained in Section 5, is devoted to proving Theorems 1.2 and 1.3. And,

we conclude Section 5 with a few comments on the feasibility of establishing equality in the

Poisson relation for the clean left-invariant naturally reductive metrics on SO(3) by making

use of the 0-th wave invariants.

Acknowledgments. We thank Alejandro Uribe for useful conversations concerning the trace

formula.

2. Wave invariants and the Duistermaat-Guillemin Measure

In this section we will outline how one can compute the 0-th wave invariants associated to

a clean length. In particular, we will review the method of Brummelhuis, Paul and Uribe for

constructing the Duistermaat-Guillemin measure on clean fixed point sets of the geodesic flow.

Throughout we will adopt the following notation.

2.1. Notation.

(1) (M, g) will denote a closed Riemannian manifold

(2) ∆g will denote the associated Laplacian and Spec∆(M, g) its spectrum;

1The existence of isospectral hyperbolic 3-manifolds (e.g., [Vi, R]) and the presence of a pair of isospectral flat

3-manifolds [DoRo] shows that this type of rigidity cannot hold within the larger class of locally homogeneous

3-manifolds.
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(3) SpecL(M, g) will denote the length spectrum of (M, g); i.e., it is the set consisting of

the lengths of all smoothly closed geodesics in (M, g);

(4) TM will denote the tangent bundle;

(5) q : TM → R will be given by q(Xp) = g(Xp, Xp)
1
2 . q is smooth on the punctured

tangent bundle TM − {0} and q(tX) = |t|q(x) for all t ∈ R;

(6) SM = q−1(1) is the unit tangent bundle;

(7) We will let Ω denote the standard symplectic form on TM induced by the Sasaki metric

g̃ corresponding to g (see [Sa, Chp. 2 Sec. 4]).

(8) Hq will denote the Hamiltonian vector field associated to q; i.e., dq(·) = Ω(Hq, ·);
(9) For each τ ∈ R we will let Φ̃τ denote the time τ map of the geodesic flow on TM and

we will let Φτ denote its restriction to SM ;

(10) For each τ ∈ R we let Fix(Φτ ) denote the fixed point set of Φτ .

2.2. Definition. A length τ ∈ SpecL(M, g) is said to be clean if

(1) Fix(Φτ ) is a disjoint union of finitely many closed manifolds Θ1, . . . ,Θr of dimension

d1, . . . , dr, respectively;

(2) For each u ∈ Fix(Φτ ) we have ker(DuΦτ − Idu) = Tu Fix(Φτ ). That is, J(t) is a

periodic Jacobi field along a geodesic of length τ if and only if (J(0), J ′(0)) is tangent

to Fix(Φτ ).

Otherwise, we say that τ is unclean or dirty. In the event that all lengths τ ∈ SpecL(M, g) are

clean, we will say that (M, g) is a clean manifold.

As is shown in [DuGu], if τ is a clean length, then each component Θj of Fix(Φτ ) admits a

canonical positive measure µτj , which we will refer to as the Duistermaat-Guillemin Measure

(or density). We will now review the construction of the Duistermaat-Guillemin measure as

discussed in the appendix of [BPU].

Constructing the Duistermaat-Guillemin Measure. For simplicity we will assume that

Θ = Fix(Φτ ) is connected and we will let Θ̃ = {tXp : Xp ∈ F and t > 0}. We will exploit

the symplectic structure of the tangent bundle to construct a canonical measure µ̃τ on Θ̃ and

obtain a canonical measure on Θ be dividing by the measure |dq| (in the transverse direction).

Indeed, one can check that Θ̃ is a clean fixed point set of Φ̃τ . Now, let z ∈ Θ̃ and consider

T = Idz −DzΦτ : V → V , where V ≡ TuTM . Following [BPU, p. 524-525] we can construct

a density on TzΘ̃ as follows.

• Let E = {e1, . . . , ek} be a basis for W ≡ TzΘ̃;

• Let WΩ = {v ∈ V : Ω(w, v) = 0 for each w ∈ W} be the Ω-orthogonal complement of

W in V .

• Let F = {f1, f2, . . . , fk} be a basis for a complement of WΩ satisfying

Ω(ei, fj) = δij .

• Let V = {v1, . . . , v2n−k} be a basis for a complement of W in V .
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With the above notation we have the following lemma.

2.3. Lemma (Lemma A.2 [BPU]).

(1) ker(T ) = W and the image of T equals WΩ, so that TV ∪ F is a basis for V .

(2) Let ϕ ∈ |V |1/2 be an arbitrary half-density on V . Then the DG-density µ̃τ on W ≡ TzΘ̃
is given by

µ̃τ (E) =
ϕ(V ∧ E)

ϕ(TV ∧ F)
=

1

|α(u)|1/2
,

where we abuse notation and have E = e1 ∧ · · · ∧ ek, F = f1 ∧ · · · ∧ fk, V = v1 ∧ · · · ∧
v − 2n− k, TV = Tv1 ∧ · · · ∧ Tv2n−k and α(u) 6= 0 satisfies TV ∧ F = α(z)V ∧ E.

It then follows that if we let νg̃�Θ denote the Riemannian density on Θ induced by the Sasaki

metric g̃ on TM , then the Duistermaat-Guillemin measure µτ on Θ is given by

µτ =
1

|α|1/2
νg̃�Θ,

where for each z ∈ Θ the function α(z) is computed as in the preceding lemma.

The Duistermaat-Guillemin Trace Formula. The trace of the wave group Trace(Ug(t)) =∑∞
j=0 e

it
√
λj is a spectrally determined tempered distribution on R that is equal to the Fourier

transform of the “spectral distribution” σ(t) =
∑∞

j=1 δ(t −
√
λj). As we noted in the intro-

duction, Chazarain [Ch] and the pair of Duistermaat and Guillemin [DuGu] independently

established the so-called Poisson relation which states that the singular support of this dis-

tribution is contained in the length spectrum of the Riemannian manifold (M, g). It is a

long-standing open problem to determine whether these sets are actually equal. The trace

formula of Duistermaat and Guillemin describes the nature of the singularities of Trace(Ug(t))

that occur at clean lengths and, in the event the manifold is clean, it establishes that equality

in the Poisson relation is synonymous with each length in the length spectrum having at least

one non-vanishing wave-invariant.

2.4. Theorem (Theorem 4.5 [DuGu]). Suppose that τ ∈ SpecL(M, g) is clean and let Deven

(resp. Dodd) denote the maximum dimension of an even-dimensional (resp. odd-dimensional)

component of Fix(Φτ ). Then we have the following.

(1) There is an open interval I ⊂ R such that I ∩ SpecL(M, g) = {τ};
(2) On the interval I, Trace(Ug(t)) is the sum of compactly supported distributions:

Trace(Ug(t)) = βeven(t− τ) + βodd(t− τ) +R(t− τ),

where R is smooth in a neighborhood of 0 and βeven(x) and βodd(x) are singular at

0. Furthermore, the Fourier transforms of βeven(x) and βodd(x) are smooth functions

αeven(s) and αodd(s) having the following asymptotic behavior behavior: αeven(s)
s→−∞∼

0, αodd(s)
s→−∞∼ 0
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αeven(s)
s→+∞∼

∞∑
k=0

Waveeven
k (τ)s

Deven−2k−1
2

αodd(s)
s→+∞∼

∞∑
k=0

Waveodd
k (τ)s

Dodd−2k−1

2 ,

where Waveeven
k (τ),Waveodd

k (τ) ∈ C for all k.

(3) Letting Θ1, . . . ,Θs denote the components of Fix(Φτ ) of dimension Deven and µτ1 , . . . , µ
τ
s

denote the corresponding Duistermaat-Guillemin measures, we see that

Waveeven
0 (τ) = (

1

2πi
)(Deven−1)/2

s∑
j=1

i−σj
∫

Θj

dµτj ,(2.5)

where σj equals the Morse Index (in the space of closed loops) of a geodesic γj with

γ′j(t) ∈ Θj (see [DuGu, p. 69-70]). And, an analogous expression holds for Waveodd
0 (τ).

(4) τ is in the singular support of Trace(Ug(t)) if and only if there is a non-negative integer

k such that at least one of Waveeven
k (τ) and Waveodd

k (τ) is non-zero.

2.6. Remark.

(1) From (1) we see that the length spectrum of a clean manifold is a countable and discrete

subset of R. However, in general, this need not be the case. In fact, the length spectrum

of a manifold can even be uncountable [SS].

(2) In our proofs of Theorems 1.2 and 1.3, we will make use of the 0-th wave invariants

associated to τmin. And, from Equation 2.5 we see that in order to compute the 0-th

wave invariants it is generally necessary to compute the Morse index. However, as we

will only need the absolute value of these invariants, it will not be necessary to compute

the Morse index. Indeed, as we will see in Corollary 5.13, for each g ∈MNat(SO(3)), the

submanifold Fix(Φτmin(g)) will have at most two components, and in the case where it

has two components it will be clear that the Morse index coming from each component

will be identical. Nevertheless, it is possible to compute these indices, an exercise that

we omit.

2.7. Definition. The constants Waveeven
k (τ) and Waveodd

k (τ) in the asymptotic expansion

above are known as the k-th wave invariants associated to the length τ , for k ∈ N ∪ {0}.

2.8. Corollary ([DuGu]). If (M, g) is a clean manifold, then the singular support of its wave

group equals the length spectrum if and only if each τ ∈ SpecL(M, g) has a non-zero wave

invariant.

2.9. Example (Recovering the length spectrum of a CROSS). A Riemannian manifold (M, g)

is said to be a C`-manifold, for some ` > 0, if every non-trivial geodesic is closed and has the

same minimal period ` [Be]. It is then clear that each τ in the length spectrum of (M, g) is
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clean, since Fix(Φτ ) = SM . Therefore, since Fix(Φτ ) = SM is odd dimensional and connected,

we see that for each τ ∈ SpecL(M, g) the wave invariant Waveodd
0 (τ) is non-zero. Hence, the

length spectrum of any C`-manifold is encoded in its Laplace spectrum. In particular, the

length spectrum of a compact rank-one symmetric space (i.e., a CROSS) can be recovered

from its spectrum.

3. Naturally reductive metrics and their Geodesics

3.1. Classification of Naturally Reductive Metrics on Lie Groups. Let (M, g) be a

connected homogeneous Riemannian manifold. Choose a base point p0 ∈ M . Let H be a

transitive group of isometries of (M, g), and let K be the isotropy group of p0. Now, suppose

the Lie algebra h of H decomposes into a direct sum h = K+p, where K is the Lie algebra of K

and p is an Ad(K)-invariant complement of K. Given a vector X ∈ h we obtain a Killing field

X∗ on M by X∗p ≡ d
dt |t=0 expH tX · p for p ∈M . The map X 7→ X∗ is an antihomomorphism

of Lie algebras. We may identify p with Tp0M by the linear map X 7→ X∗p0 . Thus, the

homogeneous Riemannian metric g on M corresponds to an inner product 〈·, ·〉 on p. For

X ∈ g, write X = XK +Xp with XK ∈ K and Xp ∈ p. Recall that for X,Y ∈ p,

(∇X∗Y ∗)p0 = −1

2
([X,Y ]∗p)p0 + U(X,Y )∗p0 ,(3.1)

where U : p× p→ p is the symmetric bilinear map defined by

2〈U(X,Y ), Z〉 = 〈[Z,X]p, Y 〉+ 〈X, [Z, Y ]p〉.

3.2. Definition. Let (M, g) be a Riemannian homogeneous space and let H be a transitive

group of isometries of (M, g), so that M = H/K.

(1) (M, g) is said to be reductive (with respect to H) if there is an Ad(K)-invariant com-

plement p of K in h.

(2) (M, g) is said to be naturally reductive (with respect to H) or H-naturally reductive, if

there exists an Ad(K)-invariant complement p of K (as above) such that

〈[Z,X]p, Y 〉+ 〈X, [Z, Y ]p〉 = 0,

or equivalently U ≡ 0. That is, for any Z ∈ p the map [Z, ·]p : p→ p is skew symmetric

with respect to 〈·, ·〉.
(3) (M, g) is said to be normal homogeneous if there is an Ad(H)-invariant inner product

Q on h such that

Q(p,K) = 0 and Q � p = 〈·, ·〉.

At our preferred point p0, the Levi-Civita connection ∇ of a naturally reductive space (M, g)

is given by

(∇vX∗)(e) =

{
[X, v] if X ∈ K
1
2 [X, v]p if X ∈ p.
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In subsequent sections of this article, it will be useful to recall that there is a metric connection

∇̃ whose geodesics coincide with those of ∇, but whose torsion tensor T ∇̃ and curvature

tensor R∇̃ are both ∇̃-parallel. The relationship between ∇ and ∇̃ is given by ∇XY =

∇̃XY − 1
2T
∇̃(X,Y ). At p0, we notice that ∇̃, T ∇̃ and R∇̃ can be expressed in terms of the Lie

bracket. Indeed, for v ∈ Tp0M ≡ p and X ∈ h we have

(∇̃vX∗)(e) =

{
[X, v] if X ∈ K

[X, v]p if X ∈ p

and for X,Y, Z ∈ p we have T ∇̃(X,Y ) = −[X,Y ]p and R∇̃(X,Y )Z = −[[X,Y ]K, Z].

3.3. Remark.

(1) Any homogeneous Riemannian manifold is reductive. This is essentially a consequence

of the fact that for any Riemannian manifold (M, g) (not necessarily homogeneous)

and p ∈ M the subgroup of the full isometry group of (M, g) fixing p is compact in

the compact open topology [Hel, Theorem IV.2.5]. The reader can consult [KS] for a

complete proof.

(2) M being reductive implies [K, p] ⊂ p.

(3) Normal homogeneous metrics are naturally reductive. Indeed, with respect to the

Killing form B the map [Z, ·] : g→ g is skew-symmetric. Then, for X,Y, Z ∈ p we have

〈[Z,X]p, Y 〉 = 〈[Z,X], Y 〉 = −〈X, [Z, Y ]〉 = −〈X, [Z, Y ]p〉.

(4) Note that if H1 ≤ H2 are two transitive groups of isometries on (M, g), then the metric

can be naturally reductive with respect to H2 while failing to be naturally reductive

with respect to H1 and vice versa. See [DZ, p.20] for an example.

(5) As is noted in [DZ, p. 5], a theorem of Kostant implies that in order to find all naturally

reductive metrics on a manifold M one must (a) find all groups H which act transitively

on M ; (b) for each such group H, find all Ad(H)-invariant bilinear forms Q on h such

that Q � p is positive definite, where p = K⊥ ≡ Tp0M . The normal homogeneous

metrics are obtained from positive definite Q on h.

Naturally reductive spaces are a generalization of symmetric spaces. Although the geodesic

symmetries of naturally reductive metrics need not be isometries, they are (up to sign) volume

preserving [D]. Moreover, every geodesic in a naturally reductive space M = H/K is the orbit

of a one-parameter subgroup of the transitive group H. In fact, every geodesic through our

base point p0 is of the form expH(tX) · p0, where X ∈ p, and it follows from Equation 3.1 and

Remark 3.3(1) that the naturally reductive spaces are precisely the homogeneous Riemannian

manifolds with this property.

In [DZ], D’Atri and Ziller addressed the problem of classifying the naturally reductive left-

invariant metrics on compact Lie groups. Recalling that for any subgroup K of G the natural
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action of G×K on G is defined by (g, k) · x = gxk−1, D’Atri and Ziller’s classification of such

metrics is as follows.

3.4. Theorem ([DZ] Theorems 3 and 7). Let G be a connected compact simple Lie group

and let g0 be the bi-invariant Riemannian metric on G induced by the negative of the Killing

form B. Let K ≤ G be a connected subgroup with Lie algebra K = K0 ⊕ K1 ⊕ · · · ⊕ Kr, where

K0 = Z(K) is the center of K and K1, . . . ,Kr are the simple ideals in K. Let u be a g0-orthogonal

complement of K in g. Given any α, α1, . . . , αr > 0 and an arbitrary inner product h on K0,

then the Ad(K)-invariant inner product on g given by

αg0 � u⊕ h � K0 ⊕ α1g0 � K1 ⊕ · · · ⊕ αrg0 � Kr(3.5)

induces a left-invariant metric gα,α1,...,αr,h on G. Then:

(1) gα,α1,...,αr,h is naturally reductive with respect to the natural action of G×K on G;

(2) every left-invariant naturally reductive metric on G arises in this fashion;

(3) gα,α1,...,αr,h is normal homogeneous if and only if h ≤ αg0 � K.

(4) Isom(gα,α1,...,αr,h)0, the connected isometry group, is given by G × NG(K)0, where

NG(K) denotes the normalizer of K in G.

3.6. Remark.

(1) If g is naturally reductive with respect to G × K, then it is also naturally reductive

with respect to G × xKx−1 for any x ∈ G. Conjugating K corresponds to changing

the choice of base point p0 in G.

(2) There is a finite collection K of connected subgroups of a simple Lie group G such that

up to isometry every left-invariant naturally reductive metric on G is G×K naturally

reductive for some K ∈ K [GS, Corollary 3.7].

(3) A Lie group G can admit metrics naturally reductive with respect to H × K where

H,K < G, but which are not left-invariant [DZ, p. 12–14]. Such metrics are sometimes

called semi-invariant.

(4) If G is an arbitrary connected compact Lie group it is known that left-invariant metrics

induced by inner products of the form given by Equation 3.5 are naturally reductive,

where we allow g0 to denote any bi-invariant metric on G. However, it is unknown

whether (up to isometry) this list is exhaustive (see [DZ, Theorem 1 and p. 20]).

3.2. Geodesics. In our proof of Theorems 1.1 and 1.2 we will need an explicit description of

the closed geodesics of an arbitrary left-invariant naturally reductive metric on SO(3). There-

fore, since the geodesics through e with respect to a metric on G as in Equation 3.5 are of the

form expG×K(tX) ·e, where X is an element of p (the Ad(∆K)-invariant complement of ∆K in

g×K), it will be beneficial to review the recipe provided by D’Atri and Ziller for constructing

p.
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3.7. Constructing an Ad(∆K)-invariant Complement. To begin we let A : Ko → Ko
denote the g0-symmetric endomorphism satisfying h(X,Y ) = g0(AX,Y ) for each X,Y ∈ K0.

Then as is described in [DZ, p. 9-11] there are two cases to consider:

(1) α is not an eigenvalue of A and αj 6= α for each j = 1, . . . , r.

In this case we consider the symmetric bi-linear form Q on g× K given by

Q = β g � g⊕ 0 + h̄ � 0⊕ K0 + β1 g � 0⊕ K1 + · · ·+ βr g � 0⊕ Kr,

where β = α, βj =
βαj
α−αj , and h̄(X,Y ) = g0(AX,Y ) is defined by the g0-symmetric

endomorphism A : K0 → K0 satisfying A = βA(A + βI)−1. Q can be seen to be non-

degenerate on g × K and ∆K. We then take p to be the Q-orthogonal complement of

∆K which is given by

p = p1 ⊕ q0 ⊕ q1 ⊕ · · · ⊕ qr,(3.8)

where

(a) p1 = {(X, 0) : X ∈ u};
(b) q0 = {(AX,−βX) : X ∈ K0};
(c) qj = {(βjX,−βX) : X ∈ Kj} for j = 1, . . . , r.

From this one may conclude that the metric gα,α1,...,αr,h is naturally reductive.

(2) α is an eigenvalue of A or αj = α for some j = 1, . . . , r.

We find the Ad(∆K)-invariant complement p of ∆K in g×K by considering a proper

subgroup K ′ ≤ K with respect to which the metric gα,α1,...,αr,h falls into the previous

case. Indeed, consider the Lie algebra

K′′ = K′′0 ⊕ (⊕αj=αKj),

where K′′0 = {X ∈ K0 : AX = αX}. Then we let K′ denote the g0-orthogonal comple-

ment of K′′ in K and let K ′ denote the corresponding connected proper subgroup of K.

One can check that

K′ = K′0 ⊕ (⊕αj 6=αKj),
where K′0 is the g0-orthogonal complement of K′′0 in K0. We can then view the metric

gα,α1,...,αr,h as being induced by the inner product

αg0 � u′ ⊕ h � K′0 ⊕ (⊕αj 6=ααjg0 � Kj),

where u′ = u⊕K′′ is the g0 orthogonal complement of K′. The metric then falls into the

previous case with respect to K ′ and we take p to be the corresponding complement of

∆K′ in g× K′:

p = p′1 ⊕ q′0 ⊕ (⊕αj 6=αqj),(3.9)

where

(a) p′1 = {(X, 0) : X ∈ u′};
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(b) q′0 = {(AX,−βX) : X ∈ K′0};
(c) qj = {(βjX,−βX) : X ∈ Kj} for j = 1, . . . , r.

However, one can check that p is also an Ad(∆K)-invariant complement of ∆K in g×K

and we can then see that the metric is naturally reductive with respect to G×K.

For convenience we summarize our discussion of geodesics with respect to a left-invariant

naturally reductive metric on a simple Lie group.

3.10. Proposition. Let G be a simple Lie group and K a connected subgroup. Now, let

gα,α1,...,αr,h be a G×K naturally reductive metric on G and p ≤ g× k the Ad(∆K)-invariant

complement given by 3.7. Then the geodesics through g ∈ G with respect to gα,α1,...,αr,h are of

the form

expG×K(tAd(g)X,Y ) · g = g expG(tX) expG(−tY ),

where (X,Y ) ∈ p, and such a geodesic is smoothly closed if and only if expG(tX) = expG(tY )

for some t > 0.

Since, as we remarked earlier, the geodesics in a naturally reductive space are integral curves

of Killing fields, we see there are no geodesic lassos in a naturally reductive space (i.e., all self-

intersections of a geodesic are smooth). Although it is not needed elsewhere in the paper, we

observe that every homogeneous Riemannian manifold has this property.

3.11. Proposition. Let (M, g) be a homogeneous Riemannian manifold and γ : R → M a

geodesic. If γ(t0) = γ(t1), then γ′(t0) = γ′(t1). That is, any self-intersection of a geodesic in

a homogeneous space is smooth.

Proof. As noted earlier in Remark 3.3(1), Kowalski and Szenthe have shown that any homo-

geneous Riemannian manifold (M, g) is reductive with respect to any connected Lie group H

acting transitively via isometries on (M, g). Let H ≤ Isom(M, g) be a connected group acting

transitively on M with isotropy group K, and let p be the attendant Ad(K)-invariant comple-

ment of K in h. Then we recall that p may be identified with Tp0M via the map X 7→ X∗p0 ,

where for any X ∈ h, X∗ is the Killing filed X∗p ≡ d
dt |t=0 expG(tX) ·p0, which is a complete vec-

tor field. We now recall that it follows from Noether’s theorem (cf. [Tak, Theorem 1.3]) that if

Z is a Killing field and γ(t) is a geodesic on a Riemannian manifold (N,h), then h(Zγ(t), γ
′(t))

is constant. Now, let γ be a geodesic in (M, g) such that γ(t0) = γ(0) = p0, for some t0 6= 0,

and let X∗ be a killing vector field on M , then we have

g(γ′(0), X∗p0) = g(γ′(0), X∗γ(0)) = g(γ′(t0), X∗γ(t0)) = g(γ′(t0), X∗p0).

Therefore, since every vector in Tp0M is of the form X∗p0 for some Killing field X∗, we conclude

that γ′(0) = γ′(t). �

3.12. Remark. In the case of left-invariant metrics on Lie groups, this proposition was previ-

ously demonstrated to the author by Dorothee Schueth in 2008.
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4. The Poincaré map of naturally reductive metrics

We recall that given a Riemannian manifold (M, g) the geodesic flow is the map Φ : R ×
TM → TM given by

Φ(t, v) =
d

dt
γv(t),

where γv is the unique geodesic with γ′v(0) = v. Throughout we will set Φt(v) = Φ(t, v). Of

particular interest to us is the derivative of Φτ . If for each v ∈ TM we let TvTM = Hv ⊕ Vv
be the decomposition into the horizontal and vertical spaces, then for any (A,B) ∈ TvTM we

have

Φt∗(A,B) = (Y (t),∇Y (t)),

where Y (t) is the Jacobi field along γv such that Y (0) = A and ∇Y (0) = B (see [Sa, p. 56]).

If the geodesic γv is periodic of period τ , then we set

P = Φτ∗ : TvTM → TvTM.

Since γ′v(t) and tγ′v(t) are Jacobi fields along γv we see that

P (v, 0) = (v, 0) and P (0, v) = (τv, v).

Hence, in order to understand P we must analyze how it behaves on the orthogonal complement

of (v, 0) and (0, v); that is, we seek to understand

P : E ⊕ E → E ⊕ E,

where E = {u ∈ TpM : 〈u, v〉 = 0}. This map is called the (linearized) Poincaré map and from

the above if Y is a Jacobi field with initial data (Y (0),∇Y (0)) ∈ E ⊕ E, then

P (Y (0),∇Y (0)) = (Y (τ),∇Y (τ)).

In the case of (compact) naturally reductive manifolds the Poincaré map has been completely

determined by Ziller as follows.

Let M = H/K be a naturally reductive space and as before let p ≤ h be an Ad(K)-invariant

complement. For any unit vector v ∈ p ≡ Tp0M we let γv(t) be the unit speed geodesic

given by expH(tv) · p0. Now, let v ∈ p be a unit vector such that the geodesic γv(t) is closed

and set E = {u ∈ p : 〈u, v〉 = 0}. Then the restriction of the maps B(·) = −[v, [v, ·]K] and

T (·) = −[v, ·]p to E are symmetric and skew-symmetric, respectively. Now let E0 denote the

0-eigenspace of B : E → E and E1 be the sum of its non-zero eigenspaces, and we express E0

as the orthogonal direct sum E0 = E2 ⊕ E3, where E2 = {X ∈ E0 : T (X) ∈ E1}. Then as in

[Z2, p. 579] we define the following subspaces of E ⊕ E:

(1) V1 = {(X, 1
2 [X, v]p) : X ∈ E1 ⊕ E3}

(2) V2 = {(0, X) : X ∈ E1}
(3) V3 = {(X, 1

2 [v,X]p) : X ∈ E2}
(4) V4 = {(X, 1

2 [v,X]p) : X ∈ E3} = {(X,−1
2T (X)) : X ∈ E3}

(5) V5 = {(Z,X + 1
2 [v, Z]p) : X ∈ E2, Z ∈ E1 and B(Z) = T (X) ≡ [X, v]p}
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4.1. Remark.

(1) In [Z2] there is an omission in the definition of V5 (cf. [Z1, p. 73]).

(2) We note that since B : E1 → E1 is an isomorphism, V5 is non-trivial if and only if E2

is non-trivial. In particular, for each X ∈ E2, there exists a unique Z ∈ E1 such that

B(Z) = T (X).

(3) It will be useful later to notice that E1 ≤ [K, v]. Indeed, following [Z1, p. 72], we

recall that B : E → E is a self-adjoint map. Let X1, . . . , Xq be an orthonormal

basis of eigenvectors with eigenvalues λ1, . . . , λq, and set Zi ≡ [v,Xi]K ∈ K. Then

λiXi = B(Xi) = [Zi, v] and for λi 6= 0 we get Xi = 1
λi

[Zi, v] ∈ [K, v], which establishes

the claim.

With the notation as above we have the following theorem due to Ziller.

4.2. Theorem. Let (M = H/K, g) be a (compact) naturally reductive space and let γv(t) =

expH(tv) · p0 be a smoothly closed unit speed geodesic in M of length τ with γ′v(0) = v ∈ p ≡
Tp0M . Then

(1) ([Z2, Theorem 1]) E ⊕ E = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5

(2) ([Z1, Theorem 1]) The Poincaré map P : E ⊕ E → E ⊕ E along γv is described as

follows:

(a) P � V1 ⊕ V2 ⊕ V3 = Id;

(b) P (X, 1
2 [v,X]p) = (Ψ(X),Ψ(1

2 [v,X]p)) = (Ψ(X), 1
2 [v,Ψ(X)]p), for (X, 1

2 [v,X]p) ∈
V4, where Ψ is the isometry ead(τv) = Ad(expH(τv)), we recall that because γv is a

geodesic it is given by expH(tv) · p0 and since it is closed of length τ we have that

expH(τv) ∈ K;

(c) P (Z,X + 1
2 [v, Z]p) = τ(X, 1

2 [v,X]p) + (Z, 1
2 [v, Z]p), for (Z,X + 1

2 [v, Z]p) ∈ V5.

4.3. Remark. The compactness condition in the above was used by Ziller to establish that a

Jacobi filed J(t) along γv with J(0) ∈ V5 must have unbounded length, which is used to show

that V5 ∩ (V1 ⊕ V2 ⊕ V3 ⊕ V4) is trivial [Z2, p. 579-80]. However, this argument only really

requires completeness, which is enjoyed by all naturally reductive spaces since geodesics are

precisely the orbits of one-parameter groups of isometries. Therefore, the above is true for all

naturally reductive manifolds.

The following observation is an immediate consequence of the previous proposition.

4.4. Corollary. Let γv(t) be a closed unit speed geodesic as above and let Y (t) be a Jacobi field

along γv. Then Y (t) is periodic if and only if Y (t) has the following initial conditions:

(Y (0),∇Y (0)) ∈ V1 ⊕ V2 ⊕ V3 ⊕ V per
4 ⊕ SpanR{(v, 0)},

where V per
4 ≡ {(X, 1

2 [v,X]p) : X ∈ E3 and ψ(X) = X} ≤ V4.
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5. Distinguishing naturally reductive metrics on SO(3) via the spectrum

Let G be an arbitrary compact semi-simple Lie group with bi-invariant metric g0 induced

by the negative of the Killing form B on TeG. Now for any left-invariant metric g on G there

is a linear transformation Ω : TeG→ TeG that is self-adjoint with respect to −B and such that

for any v, w ∈ TeG we have 〈v, w〉 = −B(Ω(v), w), where 〈·, ·〉 is the restriction of g to TeG.

5.1. Definition. With the notation as above, the eigenvalues 0 < µ1 ≤ µ2 ≤ · · · ≤ µn of Ω are

called the eigenvalues of the metric g.

5.2. Proposition ([BFSTW] Proposition 3.2). Two left-invariant metrics g1 and g2 on SO(3)

are isometric if and only if g1 and g2 have the same eigenvalues counting multiplicities.

5.3. Notation and Remarks. We will now establish notation and collect some facts that will

prove useful throughout the remainder of this section.

(1) For the remainder of this section we will let G denote the Lie group SO(3), g denote its

Lie algebra so(3), and g0 will denote the bi-invariant metric on SO(3) induced by −B,

where B denotes the Killing form. Additionally, we will let exp denote the exponential

map expG : g→ G.

(2) With Proposition 5.2 in mind we let

Θ1 =
1

2
√

2

(
−i 0

0 i

)
, Θ2 =

1

2
√

2

(
0 −i
−i 0

)
, Θ3 =

1

2
√

2

(
0 −1

1 0

)
denote the standard g0-orthonormal basis of so(3) ' su(2). Then for any choice of

positive constants c1, c2 and c3 the self-adjoint map Ω : (so(3),−B) → (so(3),−B)

given by Ω(Θj) = cjΘj defines a left-invariant metric g(c1,c2,c3) on SO(3) and, by

Proposition 5.2, these account for all of the left-invariant metrics on SO(3) up to

isometry. Now, since SO(2) is the only non-trivial connected proper subgroup of SO(3)

it follows from Theorem 3.4 that up to isometry the left-invariant naturally reductive

metrics on SO(3) are the metrics g(α,α,A) given by:

g(α,α,A) = αg0 � u⊕Ag0 � K,(5.4)

where K = so(2) = Span(Θ3) and u = K⊥0 = Span{Θ1,Θ2} is the orthogonal comple-

ment of K with respect to g0. We set K = expH(K).

(3) Let p denote the Ad(K)-invariant complement of ∆K ≤ g × K discussed in 3.7. Then

we have the following.

(a) If α = A, then by Equation 3.9 we see p = g⊕ 0. In which case

p = Span{ 1√
α

(Θ1, 0),
1√
α

(Θ2, 0),
1√
α

(Θ3, 0)}

and

∆K = Span{D = (Θ3,Θ3)},
where by Span{A1, . . . , Ak} we denote the linear span of A1, . . . , Ak over R.
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(b) If α 6= A, then by Equation 3.8 p = p1 ⊕ q0, where p1 = {(X, 0) : X ∈ u = K⊥0}
and q0 = {(AZ,−αZ) : Z ∈ K} for A = Aα

α−A . In which case

p = Span{Z1 = (
1√
α

Θ1, 0), Z2 = (
1√
α

Θ2, 0), Z3 =
1√

A(A+ α)
(AΘ3,−αΘ3)}

and

∆K = Span{D = (Θ3,Θ3)}.
It is clear that the adjoint action of ∆K ≤ G ×K on p fixes Z3 and acts as the

group of rotations on SpanR{Z1, Z2} = p1.

(4) For any (V,W ) ∈ p, where p is as above, the geodesic γ(V,W )(t) with γ(V,W )(0) = e and

γ′(V,W )(0) = V −W is given by

γ(V,W )(t) = exp(tV ) exp(−tW ).

The geodesic γ(V,W ) is a one-parameter subgroup of SO(3) if and only if V,W ∈ so(3)

are linearly dependent.

(5) For any compact Lie group endowed with a bi-invariant metric the sectional curvature

of a 2-plane σ in the Lie algebra spanned by two orthonormal vectors X and Y is given

by Sec(σ) = 1
4‖[X,Y ]‖2. Consequently, with respect to the metric g0, the Lie group

SO(3) has constant sectional curvature 1
8 and is double covered by S3(2

√
2), the round

3-sphere of radius 2
√

2. It follows that the geodesics in (SO(3), g0) are all closed, have

a common (primitive) length `0 ≡ 2
√

2π.

(6) It follows from the previous remark that any two primitive geodesics through a given

point of SO(3) with respect to g0 = g(1,1,1) have only one point in common or have

exactly the same image. Furthermore, since g0 is bi-invariant, its geodesics through e

coincide with the one-parameter subgroups of SO(3). Given a vector X ∈ g = so(3) we

then define its period to be Per(X) = `0
‖X‖0 , so Per(X) is the amount of time it takes

for the one-parameter subgroup exp(tX) to return to the identity element for the first

time.

(7) It will be useful to observe that vol(g(α,α,A)) = α
√
AV0, where V0 ≡ vol(g(1,1,1)) =

1
2 vol(S3(2

√
2)) = 16

√
2π2.

We now describe the closed geodesics of an arbitrary naturally reductive metric on SO(3)

and compute the length spectrum.

5.5. Theorem. Consider the naturally reductive metric g(α,α,A) on SO(3) and let `0 be as in

5.3(5).

(1) If α = A, then the closed geodesics through the identity are precisely the one-parameter

subgroups of SO(3) and the non-trivial primitive geodesics are all of length
√
A`0.

(2) If A 6= α, then the geodesic γ(V,W ) is closed if and only if one of the following holds:

(a) (V,W ) ∈ p1, in which case γ(V,W ) is a one-parameter subgroup of SO(3) with

primitive length
√
α`0.
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(b) (V,W ) ∈ q0, in which case γ(V,W ) is a one-parameter subgroup of SO(3) with

primitive length
√
A`0.

(c) (V,W ) = (X + AZ,−αZ) ∈ p, where X 6= 0 ∈ u and Z 6= 0 ∈ K and there exist

p, q ∈ N relatively prime integers such that:

(i) q2

p2
> A2

(A−α)2

(ii) ‖X‖20 = σ(p, q, α,A)‖Z‖20, where σ(p, q, α,A) ≡ q2α2

p2
− A2α2

(α−A)2
.

In this case we see that the closed geodesic γ(V,W ) is not a one-parameter subgroup

and its primitive length is given by
√
α`0[q2 + p2 A

α−A ]
1
2 , which is always strictly

larger than
√
α`0.

Consequently, the length spectrum of g(α,α,A) is given by

SpecL(g(α,α,A)) =

{
{k
√
α`0 : k ∈ N} ∪ {0} α = A

{0} ∪ {k
√
α`0, k

√
A`0, kτ : k ∈ N and τ > 0 with Eτ,α,A 6= ∅} A 6= α,

where for each τ > 0 we let Eτ,α,A denote the finite collection of relatively prime ordered pairs

(p, q) ∈ N× N satisfying q
p > |

A
A−α | and

√
α`0[q2 + p2 A

α−A ]
1
2 = τ .

5.6. Definition. Let g(α,α,A) be a naturally reductive metric on SO(3) with α 6= A.

(1) A geodesic of the form given in Theorem 5.5(2a) or a translate thereof is said to be of

Type I.

(2) A geodesic of the form given in Theorem 5.5(2b) or a translate thereof is said to be of

Type II.

(3) A geodesic of the form given in Theorem 5.5(2c) or a translate thereof is said to be of

Type III.

5.7. Remark. Theorem 5.5 shows us that if α 6= A, then the shortest non-trivial closed ge-

odesic with respect to g(α,α,A) is always of Type I or Type II. Therefore, since (primitive)

one-parameter subgroups of SO(3) are homotopically non-trivial, it follows that the systole

with respect to any metric in MNat(SO(3)) coincides with the length of the shortest non-

trivial closed geodesic. We also note that it is easy to show that a prime geodesic of Type III

is homotopically trivial if and only if p+ q is even.

5.8. Remark. In the case where A ≤ α the primitive geodesics of Type I and II are shorter

than the primitive geodesics of Type III. However, when A > α, this need not be the case.

For example, if we let α = 1 and A = 10, then (p, q) = (1, 2) gives rise to a primitive geodesic

that is not a one-parameter subgroup and is of length `0

√
4 + 10

9 . However, if A > α and

(A − α)2 < α, then the prime geodesics of Type I and II will still be shorter than the prime

geodesics of Type III.

Proof of Theorem 5.5. For any vector U ∈ TG we will let ‖U‖0 (respectively ‖U‖) denote its

length with respect to the metric g0 (respectively g(α,α,A)).
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In the case where α = A we recall from 5.3 that p = p′1 = g ⊕ 0. Hence, the geodesics

γ(V,0)(t) = exp(tV ) are one-parameter subgroups of G and the primitive non-trivial geodesics

are of length
√
A`0 =

√
α`0 with respect to g(A,A,A). Thus establishing (1).

In the case where α 6= A we recall that p = p1 ⊕ q0, where p1 = {(X, 0) : X ∈ K⊥0} and

q0 = {(AZ,−αZ) : Z ∈ K} (since K is abelian). To find the closed geodesics and their lengths

we consider the following three cases.

Case I: (V,W ) = (X, 0) ∈ p1 for some X 6= 0 ∈ K⊥0 .

In this case the geodesic γ(V,W )(t) = exp(tX) is a non-trivial one-parameter subgroup of

SO(3). Consequently, it is closed and has primitive length

L(γ(V,W )) = Per(X) · ‖X‖
= Per(X)

√
α‖X‖0

=
√
α`0.

Case II: (V,W ) = (AZ,−αZ) ∈ q0 for some Z 6= 0 ∈ K

In this case the geodesic γ(V,W )(t) = expG(t(A+α)Z) is a non-trivial one-parameter subgroup

of SO(3). Consequently, it is closed and has primitive length

L(γ(V,W )) = Per((A+ α)Z) · ‖(A+ α)Z‖

= Per((A+ α)Z)
√
A‖(A+ α)Z‖0

=
√
A`0.

Case III: (V,W ) = (X +AZ,−αZ), where X 6= 0 ∈ K⊥0 and Z 6= 0 ∈ K.

The geodesic γ(V,W )(t) = exp(t(X+AZ)) exp(tαZ) is clearly not a one-parameter subgroup

of SO(3), and it is closed if and only if there is a t0 > 0 such that

exp(t0(X +AZ)) = exp(−t0αZ).(5.9)

As noted in 5.3(5), the images of two non-trivial one-parameter subgroups exp(tX1) and

exp(tX2) in SO(3) either have only the identity element in common or are identical, and

the latter occurs if and only if X1 and X2 are linearly dependent. Therefore, since X + AZ

and αZ are linearly independent we see that Equation 5.9 holds if and only if there is a t0 > 0

such that

et0(X+AZ) = e−t0αZ = e,(5.10)

which is equivalent to the existence of relatively prime integers p, q ∈ N such that pPer(αZ) =

qPer(X+AZ). Writing out the period of αZ and X+AZ explicitly we find that Equation 5.10

holds if and only if there exist relatively prime p, q ∈ N such that
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(1) σ(p, q, α,A) ≡ α2( q
2

p2
− A2

(α−A)2
) > 0;

(2) ‖X‖20 = σ(p, q, α,A)‖Z‖20.

The function σ has the property that σ(p, q, α,A) = σ(p̃, q̃, α,A) if and only if q
p = q̃

p̃ and

clearly σ(p, q, α,A) > 0 is equivalent to q2

p2
> A2

(A−α)2
.

Now, let X 6= 0 ∈ u, Z 6= 0 ∈ K and let p, q ∈ N be relatively prime integers such that

Equation 5.10 holds. Then γ(V,W ) is closed and its primitive length is given by

L(γ(X+AZ,−αZ))
2 = [qPer(X +AZ)‖X + (A+ α)Z‖]2

= [
q`0

‖X +AZ‖0
‖X + (A+ α)Z‖]2

=
q2`20

‖X‖20 +A
2‖Z‖20

‖X + (A+ α)Z‖2

=
q2`20

‖X‖20 +A
2‖Z‖20

(‖X‖2 + (A+ α)2‖Z‖2)

=
q2`20

‖X‖20 +A
2‖Z‖20

(α‖X‖20 + (A+ α)2A‖Z‖20)

=
q2`20

‖X‖20 +A
2‖Z‖20

(α‖X‖20 + (
α2

α−A
)2A‖Z‖20)

= q2`20
(α‖X‖20 + ( α2

α−A)2A‖Z‖20)

‖X‖20 +A
2‖Z‖20

= q2`20
(α‖X‖20 + Aα4

(α−A)2
‖Z‖20)

‖X‖20 +A
2‖Z‖20

= αq2`20 ·
‖X‖20 + Aα3

(α−A)2
‖Z‖20

‖X‖20 + A2α2

(α−A)2
‖Z‖20

= αq2`20 ·
‖X‖20 + Aα3

(α−A)2σ(p,q,α,A)
‖X‖20

‖X‖20 + A2α2

(α−A)2σ(p,q,α,A)
‖X‖20

= αq2`20 ·
‖X‖20 + Aα3

(α−A)2
‖Z‖20

‖X‖20 + A2α2

(α−A)2
‖Z‖20

= αq2`20 ·
‖X‖20 + Aα3

(α−A)2σ(p,q,α,A)
‖X‖20

‖X‖20 + A2α2

(α−A)2σ(p,q,α,A)
‖X‖20
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= αq2`20 ·
1 + Aαp2

q2(α−A)2−p2A2

1 + A2p2

q2(α−A)2−p2A2

= αq2`20 · (1 +
p2A(α−A)

q2(α−A)2
)

= α`20 · (q2 + p2 A

(α−A)
).

In the event that α > A it is clear that this geodesic will have length strictly greater than√
α`0. To handle the case where α < A we note that α`20 · (q2 + p2 A

(α−A)) is greater than

α`20 if and only if A
A−α = | A

A−α | <
q2−1
p2

. But we recall that p, q ∈ N were chosen so that
q
p > |

A
A−α | =

A
A−α > 1, and notice that for q > p we have q2−1

p2
> q

p . Hence, for A 6= α, we see

that L(γ(V,W )) >
√
α`0.

Cases I-III establish statement (2) of the theorem and the statement concerning the length

spectrum of an arbitrary naturally reductive metric g(α,α,A) is now immediate. We conclude

the proof by showing that the set Eτ,α,A is finite.

Indeed, in the case where A < α, we see that Eτ,α,A is a subset of the intersection of an

ellipse with the integer lattice in R2, which implies it is finite. In the event that A > α, the

points (p, q) ∈ Eτ,α,A are a subset of the intersection of the integral lattice with the hyperbola

y2

τ2/α`20
− x2

τ2(A− α)/α`20A
= 1

having asymptotes y = ±
√

A
A−αx. Now, suppose Eτ,α,A is infinite, then, since q

p > |
A

A−α | =
A

A−α > 1, we see that q must become arbitrarily large. Then, since the hyperbola is asymptotic

to y =
√

A
A−αx, we see that the expression |p−

√
A−α
A q| can be made arbitrarily small in Eτ,α,A.

However, q
p >

A
A−α > 1 implies

p <
A− α
A

q <

√
A− α
A

q

for any (p, q) ∈ Eτ,α,A, which implies the quantity |p −
√

A−α
A q| cannot be made arbitrarily

small. So, we see Eτ,α,A is finite. �

For any τ in the length spectrum of a symmetric metric g(α,α,α) on SO(3), we see that

Fix(Φτ ) is the entire unit tangent bundle and it follows that such metrics are clean. We now

wish to examine the “cleanliness” of the other naturally reductive metrics on SO(3). Towards

this end we begin by examining the fixed point sets of the geodesic flow for naturally reductive

metrics that are not symmetric.

5.11. Lemma. Consider the naturally reductive metric g(α,α,A) on SO(3) where α 6= A and let

G ×K = SO(3) × SO(2) be the connected component of the identity in the isometry group of
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g(α,α,A). We let v = c1Z1 + c2Z2 + c3Z3 ∈ p ≡ TeG be a unit vector where Z1, Z2, Z3 ∈ TeG is

the orthonormal basis given in 5.3(3).

(1) If c2
1 + c2

2 = 1, then (G ×K) · v ' SO(3) × S1 and this 4-dimensional submanifold of

T 1 SO(3) accounts for all the unit speed primitive geodesics of Type I, all of which have

length
√
α`0. The manifold (G×K) · v is said to be a Type I component.

(2) If c3 = ±1, then (G×K) · v ' SO(3) and the 3-dimensional submanifold (G×K) · v ∪
(G×K) · (−v) of T 1 SO(3) accounts for all the unit speed primitive geodesics of Type

II, all of which have length
√
A`0. The manifold (G × K) · v is said to be a Type II

component.

(3) Let τ > 0 be such that Eτ,α,A is non-empty. For each (p, q) ∈ Eτ,α,A fix a unit vector

v(p,q) = c1Z1 + c2Z2 + c3Z3, where c2
1 + c2

2 = σ(p,q,α,A)
σ(p,q,α,A)+1 and c2

3 = 1
σ(p,q,α,A)+1 . Then

(G×K)·v(p,q) ' SO(3)×S1
(p,q), where S1

(p,q) = {xZ1+yZ2+zZ3 : x2+y2 = σ
σ+1z = c3},

and the 4-dimensional submanifold ∪(p,q)∈Eτ,α,A(G×K) · (±v(p,q)) accounts for the unit

speed primitive geodesics of Type III having length τ . The manifold (G×K) · v(p,q) is

said to be a Type III component.

Proof. We recall that the isotropy group of the identity element corresponding to the natural

action of G × K on SO(3) is ∆K = SO(3), and as we noted in 5.3(3) the isotropy action of

∆K on p ≡ TeG acts via rotations on p1 = SpanR{Z1, Z2} and fixes q0 = SpanR{Z3}. The

lemma now follows from Theorem 5.5. �

5.12. Lemma. For any B > 0, there are finitely many 0 < τ < B such that Eτ,α,A is non-empty.

Proof. This follows immediately from the fact that a Type III geodesic has length of the form√
α`0[q2 + p2 A

α−A ]
1
2 , where p, q,∈ N, and the values of this function form a discrete subset of

R. �

Using Theorem 5.5 and Lemmas 5.11 and 5.12 the following is immediate.

5.13. Corollary. Let g(α,α,A) be a naturally reductive metric on SO(3) with unit tangent bundle

T 1 SO(3) and corresponding geodesic flow Φt : T 1 SO(3) → T 1 SO(3), t ∈ R. Then for each τ

in the length spectrum of g(α,α,A) we see that Fix(Φτ ) is a union of finitely many (homogeneous)

submanifolds of T 1 SO(3) and for each u ∈ Fix(Φτ ) the connected component of Fix(Φτ ) con-

taining u is given by Isom(g(α,α,A))
0 ·u, where Isom(g(α,α,A))

0 denotes the connected component

of the identity in the isometry group. In particular, we have the following:

(1) α = A if and only if τ =
√
α`0 is the length of the shortest non-trivial closed geoedesic

and Fix(Φτ ) = T 1 SO(3) is 5-dimensional.

(2) A < α if and only if τ =
√
A`0 is the length of the shortest non-trivial closed geodesic

and Fix(Φτ ) ' SO(3) ∪ SO(3) is 3-dimensional. In which case all geodesics of length

τ =
√
A`0 are of Type II.
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(3) A > α if and only if τ =
√
α`0 is the length of the shortest non-trivial closed geodesic

and Fix(Φτ ) ' SO(3) × S1 is 4-dimensional. In which case all geodesics of length

τ =
√
α`0 are of Type I.

We now give an explicit description of the naturally reductive metrics on SO(3) which fail

to satisfy the clean intersection hypothesis of Duistermaat and Guillemin.

5.14. Theorem. The naturally reductive metric g(α,α,A) is unclean if and only if A ∈ αQ+ −
{α}, where Q+ denotes the positive rational numbers. Moreover, if we express A ∈ αQ+−{α}
as A = 2αj

k , where k, j ∈ N are relatively prime, then τ ∈ SpecL(g(α,α,A)) is unclean if and

only if τ = mk
√
A`0 for some m ∈ N.

5.15. Corollary. The length of the shortest non-trivial closed geodesic with respect to a left-

invariant naturally reductive metric on SO(3) is clean.

Proof. Let g(α,α,A) ∈MNat(SO(3)) and τmin denote the length of its shortest non-trivial closed

geodesic. If A ≤ α, then τmin =
√
A`0 and in the event that A > α we see that τmin =√

α`0. Now, let τ ∈ SpecL(g(α,α,A)) be a dirty length. Then, by Theorem 5.14, we have

that A ∈ αQ+ − {α} and, if we express A as 2j
k α, where j, k are relatively prime, then

τ = mk
√
A`0 for some positive integer m. It follows that if A < α, then k ≥ 3 and, therefore,

τ = mk
√
A`0 > τmin =

√
A`0. Similarly, if A > α, then τ = mk

√
A`0 > τmin =

√
α`0.

Therefore, τmin is always clean. �

Proof of Theorem 5.14. In Corollary 5.13 we have already established that for each τ ∈ SpecL(g(α,α,A))

the fixed point set Fix(Φτ ) is the disjoint union of finitely many homogeneous submani-

folds N1, . . . , Nq. Hence, our objective is to show that for each τ ∈ SpecL(g(α,α,A)), each

j = 1, . . . , q ≡ q(τ) and each u ∈ Nj we have

ker(DuΦτ − Idu) = Tu(Nj).

That is, we must show that the periodic Jaocbi fields Y (t) along the geodesic γv(t) are precisely

those whose initial conditions satisfy (Y (0),∇Y (0)) ∈ Tv(Nj). Since g(α,α,A) is a homogeneous

metric, it is enough to verify this for some v ∈ TeG ∩ Fix(Φτ ). And, since the connected

components are homogeneous, Corollary 4.4 informs us that ker(DvΦτ − Idv) = Tv(Fix(Φτ ))

if and only if V per
4 = V iso

4 .

In the case where A = α, it is clear that the metric is clean since all geodesics are closed

and have the same primitive length `0. Therefore, the remainder of our discussion will focus

on the case where A 6= α.

Suppose that A 6= α. Now, let p ≡ TeG denote the Ad(∆K)-invariant complement of

∆K = Span{D} in g × K. Then, following 5.3(3), the collection {Z1, Z2, Z3} forms a g-

orthonormal basis for p. Hence, any unit vector v ∈ p ≡ TeG is of the form c1Z1 + c2Z2 + c3Z3,

where c2
1 + c2

2 + c2
3 = 1. By Theorem 5.5 the geodesic γv(t) = expG×K(tv) · e is closed if and

only if one of the following hold:
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A B [A,B]∆K [A,B]p

Z1 Z2
1√

2(A+α)
D

√
A

α
√

2
Z3

Z1 Z3 0 −
√
A

α
√

2
Z2

Z2 Z3 0
√
A

α
√

2
Z1

Z1 D 0 − 1√
2
Z2

Z2 D 0 1√
2
Z1

Z3 D 0 0

Figure 1. The Lie Bracket in g× K = p⊕∆K

(1) c2
1 + c2

2 = 1 (i.e., γv is of Type I);

(2) c3 = ±1 (i.e., γv is of Type II);

(3) c2
1 + c2

2 = σ(p,q,α,A)
σ(p,q,α,A)+1 and c3 = ±

√
1

σ(p,q,α,A)+1 for some choice of p, q ∈ N relatively

prime with q2

p2
> ( A

A−α)2 (i.e., γv is of Type III).

In the case where γv is closed we must determine the fixed point set of the associated Poincaré

map P : E ⊕ E → E ⊕ E, where (as in Section 4) E = {u ∈ p : 〈u, v〉 = 0}. By Corollary 4.4,

this means we must determine the subspaces V1, . . . , V
per

4 , V5 ≤ E⊕E. In particular, as noted

above, we want to determine whether V per
4 = V iso

4 . Towards this end, in Figure 1 we have

collected information concerning Lie brackets in g × K = p ⊕ ∆K that will be useful in our

computations. We now examine the behavior of the Poincaré map associated to the three types

of closed geodesics listed above.

Case I: v = c1Z1 + c2Z2 with c2
1 + c2

2 = 1.

By Theorem 5.5 and Corollary 5.13 we see that v ∈ Fix(Φτ ) if and only if τ = k
√
α`0 for

k ∈ N, in which case the connected component of Fix(Φτ ) containing v is the 4-dimensional

manifold (G×K) · v ' SO(3)× S1.

Fix τ = k
√
α`0. Since v = c1Z1 + c2Z2 with v2

1 + c2
2 = 1 we see that E = Span{c2Z1 −

c1Z2, Z3}. We now compute the eigenspaces of the self-adjoint map B : E → E given by

B(·) = −[v, [v, ·]∆K]. We have

B(Z3) = −[c1Z1 + c2Z2, [c1Z1 + c2Z2, Z3]∆K]

= −[c1Z1 + c2Z2, 0]

= 0
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and

B(c2Z1 − c1Z2) = [c1Z1 + c2Z2, [Z1, Z2]∆K]

= [c1Z1 + c2Z2,
1√

2(A+ α)
D]

=
c1√

2(A+ α)
[Z1, D] +

c2√
2(A+ α)

[Z2, D]

= − c1√
2(A+ α)

Z2 +
c2√

2(A+ α)
Z1

= − 1√
2(A+ α)

(c2Z1 − c1Z2).

Hence, E0 = Span{Z3} and E1 = Span{c2Z1 − c1Z2}. Now, let T : E → E be the skew-

symmetric map T (·) = −[v, ·]p. Then

T (Z3) = −c1[Z1, Z3]p − c2[Z2, Z3]p

= c1

√
A

α
√

2
Z2 − c2

√
A

α
√

2
Z1

= −
√
A

α
√

2
(c2Z1 − c1Z2),

which is an element of E1, and by skew-adjointness we have T (c2Z1− c1Z3) =
√
A

α
√

2
Z3 which is

an element of E0. Therefore, E2 = E0 and E3 = 0 which implies E = E1 ⊕ E2. We then find

that

E ⊕ E = V1 ⊕ V2 ⊕ V3 ⊕ V5.

In particular, V4 = 0. Consequently, we conclude that the fixed vectors of P coincide with the

isotropic Jacobi fields. It then follows that

ker(DvΦτ − Idv) = Tv Fix(Φτ ).

Case II: v = ±Z3

By Theorem 5.5 and Corollary 5.13 we see that v ∈ Fix(Φτ ) if and only if τ = k
√
A`0 for

k ∈ N, in which case the connected component of Fix(Φτ ) containing v is the 3-dimensional

manifold (G×K) · v ' SO(3).

Fix τ = k
√
A`0, form some k ∈ N. Since v = ±Z3, we find that E = Span{Z1, Z2}. It is

then clear that B ≡ 0, and we conclude that E0 = E and E1 = 0. The skew-adjoint map

T : E → E is given by the following:

T (Z1) = −[Z3, Z1]p = −
√
A

α
√

2
Z2

and

T (Z2) = −[Z3, Z2]p =

√
A

α
√

2
Z1.



DETECTING THE MOMENTS OF INERTIA OF A MOLECULE 27

Hence, E2 ≡ {Θ ∈ E0 : T (Θ) ∈ E1} = 0, E3 = E0 = E and we conclude that

E ⊕ E = V1 ⊕ V4.

Therefore, since V1 is 2-dimensional and the connected component of Fix(Φτ ) containing v is

3-dimensional we see that Tv(Fix(Φτ )) = V1 ⊕ Span{(v, 0)}, which implies V iso
4 = 0. This last

equality can also be seen by recalling that (X, 1
2 [v,X]p) ∈ V4 gives rise to a non-trivial isotropic

Jacobi field along γv if and only if X 6= 0 ∈ E3 is such that T (X) ∈ [∆K, v]. However, since

[∆K, v] = 0 and T : E → E is an isomorphism, no such vector exists and we see that V iso
4 = 0 .

Hence, if P has non-trivial fixed vectors in V4 (i.e., V per
4 6= 0), they will not lie in Tv(Fix(Φτ )).

We now recall that (X, 1
2 [v,X]p) ∈ V4 is fixed by P if and only if Ψ(X) = X, where

Ψ : E → E is given by Ψ = ead(k
√
A`0v). Now, since Z1 and Z2 span E and v = Z3, it follows

that ad v = −T ; therefore,

Ψ = e−k
√
A`0T .

With respect to the basis {Z1, Z2} of E we see that −k
√
A`0T is represented by the following

matrix (
0 −θ(α,A)

θ(α,A) 0

)
,

where θ(α,A) = kA`0
α
√

2
= kAπ

α . Hence, with respect to the basis {Z1, Z2}, Ψ has the following

matrix (
cos θ(α,A) sin θ(α,A)

− sin θ(α,A) cos θ(α,A)

)
.

Therefore, Ψ has a fixed vector if and only if θ(α,A) ∈ 2πN, which is equivalent to A ∈ 2α
k N.

This implies that ker(DvΦτ − Idv) 6= Tv(Fix(Φτ )) if and only if A ∈ 2α
k N. Since k ∈ N

is arbitrary, we may conclude that in the case where A 6= α we have ker(DvΦτ − Idv) 6=
Tv(Fix(Φτ )) if and only if A = 2αj

k , where j and k are relatively prime, and τ = m(k
√
A`0) for

some m ∈ N.

Case III: v = c1Z1 + c2Z2 + c3Z3, where c2
1 + c2

2 = σ(p,q,α,A)
1+σ(p,q,α,A) and c3 = ±

√
1

1+σ(p,q,α,A) for

unique p, q ∈ N relatively prime such that q2

p2
> ( A

α−A)2.

By Theorem 5.5 and Corollary 5.13, we see that in this case v ∈ Fix(Φτ ) if and only if

τ = k
√
α`0(q2 + p2 A

(α−A))
1
2 for k ∈ N, in which case the connected component of Fix(Φτ )

containing v is the 4-dimensional manifold (G×K) · v ' SO(3)× S1.
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Fix τ = k
√
α`0(q2+p2 A

(α−A))
1
2 for some k ∈ N and notice that E = Span{c2Z1−c1Z2, c1c3Z1+

c2c3Z2 − (c2
1 + c2

2)Z3}. To find the eigenspaces of B : E → E we observe that

B(c2Z1 − c1Z2) = −[v, [v, c2Z1 − c1Z2]∆K]

= −[c1Z1 + c2Z2 + c3Z3,−(c2
1 + c2

2)[Z1, Z2]∆K]

= −[c1Z1c2Z2 + c3Z3,−
(c2

1 + c2
2)√

2(A+ α)
D]

=
(c2

1 + c2
2)√

2(A+ α)
(c1[Z1, D] + c2[Z2, D] + c3[Z3, D])

=
(c2

1 + c2
2)√

2(A+ α)
(c2Z1 − c1Z2)

and

B(c1c3Z1 + c2c3Z2 − (c2
1 + c2

2)Z3) = −[v, [v, c1c3Z1 + c2c3Z2 − (c2
1 + c2

2)Z3]∆K]

= −[c1Z1 + c2Z2 + c3Z3, c1c2c3[Z1, Z2]∆K − c1c2c3[Z1, Z2]∆K]

= 0.

Hence, E0 = Span{c1c3Z1 + c2c3Z2 − (c2
1 + c2

2)Z3} and E1 = Span{c2Z1 − c1Z2}. We now

determine E2 and E3 by computing T : E → E:

T (c1c3Z1 + c2c3Z2 − (c2
1 + c2

2)Z3) = −[c1Z1 + c2Z2 + c3Z3, c1c3Z1 + c2c3Z2 − (c2
1 + c2

2)Z3]p

= c1[Z1, Z3]p + c2[Z2, Z3]p

=

√
A

α
√

2
(c2Z1 − c1Z2)

and we also see that

T (c2Z1 − c1Z2) = −
√
A

α
√

2
(c1c3Z1 + c2c3Z2 − (c2

1 + c2
2)Z3).

It follows that E2 = {X ∈ E0 : T (X) ∈ E1} = E0 and E3 = 0, which allows us to see that

E = E1 ⊕ E2. Therefore, V4 = 0 and

E ⊕ E = V1 ⊕ V2 ⊕ V3 ⊕ V5.

Hence, the only fixed vectors of P come from isotropic Jacobi fields and we have

ker(DvΦτ − Iv) = Tv(Fix(Φτ )).

Cases I - III now clearly imply the theorem. Indeed, when α 6= A, we see that the cleanliness

of τ ∈ SpecL(g(α,α,A) hinges on the behavior of the Poincaré map along geodesics of length τ

having Type II. The conclusion of Case II, then gives us the main statement of the theorem.

�
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5.16. Remark. It is clear from the proof of Theorem 5.14 that the cleanliness of a metric is

dictated by the behavior of the Poincaré map along Type II geodesics.

Proof of Theorem 1.1. The space of naturally reductive left-invariant metrics on SO(3) is iden-

tified with A = {(α,A) : α,A > 0} ⊂ R2. Now for each r ∈ Q+ let Ar ≡ {(α,A) : A = rα}.
Then it follows from Theorem 5.14 that the class of clean metrics in A is given by C =

∩r 6=1∈Q+(A−Ar), which is a residual set containing the bi-invariant metrics A1.

The final statement follows from the fact that the normal homogeneous metrics on SO(3) are

identified with the set N = {(α,A) : α ≤ A} and, by Theorem 5.14, we see that N ∩ (A−C) 6=
∅. �

5.17. Proposition. Let g = g(α,α,A) be a left-invariant naturally reductive metric on G = SO(3)

with corresponding Sasaki metric g̃ on the tangent bundle. Let τ be a clean length in the length

spectrum of g and dµτ denote the corresponding DG-measure on Fix(Φτ ) as in Section 2. And,

the set Eτ,α,A and function σ(p.q, α,A) are as in Theorem 5.5.

(1) If α = A, then Fix(Φτmin) = T 1 SO(3) = SO(3) × S2
1 and dµτ = dνg̃�Fix(Φτ ). That

is, dµτ is the Riemannian density on Fix(Φτ ) that is induced by the restriction of the

Sasaki metric. And, we have∫
Fix(Φτ )

dµτ = vol(g) · vol(S2
1) = 4π vol(g)

(2) For α 6= A the components of Fix(Φτ ) are of Type I, II or III (see Lemma 5.11).

(a) Suppose Θ ⊂ Fix(Φτ ) is a component of Type I. Then, the restriction of the DG-

measure to Θ is given by dµτ � Θ ≡ 1√
τ
dνg̃�Θ and∫

Θ
dµτ =

1√
τ

vol(g) vol(S1
1) =

2π√
τ

vol(g).

(b) Suppose Θ ⊂ Fix(Φτ ) is a component of Type II. Then, the restriction of the

DG-measure to Θ is given by dµτ � Θ ≡ 1
τ dνg̃�Θ and∫

Θ
dµτ =

1

τ
vol(g).

(c) Suppose Θ ⊂ Fix(Φτ ) is a component of Type III, so that Θ = (G×K) · v(p,q) for

(p, q) ∈ Eτ,α,A and v(p,q) ∈ TeG as in Lemma 5.11(3). Then, the restriction of the

DG-measure to Θ is given by dµτ � Θ ≡ 1√
τ
dνg̃�Θ and∫

Θ
dµτ =

2π√
τ

√
σ(p, q, α,A)

σ(p, q, α,A) + 1
vol(g).

Proof. For this proof, the reader will find it useful to refer to the exposition of the Trace

formula in Section 2 and the corresponding notation. By Corollary 5.13, any component Θ of

Fix(Φτ ) is homogeneous. Therefore, it is enough to compute the value of the DG-density at a

single point z ∈ Θ.
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Case I: α = A

With respect to this metric, the geodesic in G = SO(3) are all closed and have a common

primitive period. Therefore we see that Θ = Fix(Φτ ) = T 1 SO(3) = (G × G) · z for any unit

vector z ∈ TeG. Now, fix a unit vector z ∈ TeG.

Let X1, X2, X3 be an orthonormal basis for Te SO(3) then

• E = {e1 = (X1, 0), e2 = (X2, 0), e3 = (X3, 0), e4 = (0, X1), e5 = (0, X2), e6 = (0, X3)} is

a basis for W ≡ TzΘ = TzΘ̃ = V .

• WΩ is trivial.

• F = {f1 = (0, X1), f2 = (0, X2), f3 = (0, X3), f4 = (X1, 0), f5 = (X2, 0), f6 = (X3, 0)}
is a basis for a complement of WΩ such that

Ω(ei, fj) = δij .

• As the complement of W is trivial we take V = ∅ and it follows that TV = ∅.

• We then see that

TV ∧ F = F
= (0, X1) ∧ (0, X2) ∧ (0, X3) ∧ (X1, 0) ∧ (X2, 0) ∧ (X3, 0)

= (−1)3·3(X1, 0) ∧ (X2, 0) ∧ (X3, 0) ∧ (0, X1) ∧ (0, X2) ∧ (0, X3)

= (−1)E
= (−1)V ∧ E

Therefore, by Lemma 2.3, for any half-density ϕ ∈ |V |1/2 we have the DG-Density is given by

µ̃τ (E) =
ϕ(V ∧ E)

ϕ(TV ∧ F)
=

1

| − 1|1/2
= 1.

It then follows that

µτ = νg̃�Θ.

Case II: α 6= A

Suppose τ is a clean length in the length spectrum of g, then a connected component Θ of

Fix(Φτ ) is of Type I, II or III. We will now compute the restriction of µτ to Θ in each of these

cases.

Subcase IIA: Θ is a Type I component

In this case Θ = (G × K) · z ' SO(3) × S1 for any unit vector z = c1Z+c2Z2 ∈ TG ≡ p.

Then we observe the following.

• E = {e1 = (Z1, 0), e2 = (Z2, 0), e3 = (Z3, 0), e4 = (0, Z1), e5 = (0, Z2), } is a basis for

W = TzΘ̃ .

• WΩ = Span{(Z3, 0)}
• F = {f1 = (0, Z1), f2 = (0, Z2), f3 = (0, Z3), f4 = (−Z1, 0), f5 = (−Z2, 0)} is a basis

for a complement of WΩ such that Ω(ei, fj) = δij .
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• V = {(0, Z3)} is a basis for a complement of W

• TV = {(τZ3, 0)}
• And, we obtain

TV ∧ F = (τZ3, 0) ∧ ((0, Z1) ∧ (0, Z2) ∧ (0, Z3) ∧ (−Z1, 0) ∧ (−Z2, 0)

= τ(Z3, 0) ∧ ((0, Z1) ∧ (0, Z2) ∧ (0, Z3) ∧ (−Z1, 0) ∧ (−Z2, 0)

= −τ(0, Z3) ∧ (Z3, 0) ∧ ((0, Z1) ∧ (0, Z2) ∧ (Z1, 0) ∧ (Z2, 0)

= −τ(0, Z3) ∧ (Z1, 0) ∧ (Z2, 0) ∧ (Z3, 0) ∧ ((0, Z1) ∧ (0, Z2)

= −τV ∧ E

Therefore, by Lemma 2.3 for any half-density ϕ ∈ |V |1/2 we have

µ̃τ (E) =
ϕ(V ∧ E)

ϕ(TV ∧ F)
=

1√
τ
.

It then follows, by homogeneity of Θ, that

µτ � Θ =
1√
τ
νg̃�Θ.

Subcase IIB: Θ is a Type II component

In this case Θ = (G×K) ·z ' SO(3) for v = ±Z3 ∈ TeG ≡ p. Then we observe the following.

• E = {e1 = (Z1, 0), e2 = (Z2, 0), e3 = (Z3, 0), e4 = (0, Z3)} is a basis for W = TzΘ̃ .

• WΩ = Span{(Z1, 0), (Z2, 0)}
• F = {f1 = (0, Z1), f2 = (0, Z2), f3 = (0, Z3), f4 = (−Z3, 0)} is a basis for a complement

of WΩ such that Ω(ei, fj) = δij .

• V = {(0, Z1), (0, Z2)} is a basis for a complement of W

• TV = {(τZ1, 0), (τZ2, 0)}
• We then see that

TV ∧ F = (τZ1, 0) ∧ (τZ2, 0) ∧ (0, Z1) ∧ (0, Z2) ∧ (0, Z3) ∧ (−Z3, 0)

= τ2(0, Z1) ∧ (0, Z2) ∧ (Z1, 0) ∧ (Z2, 0) ∧ (0, Z3) ∧ (−Z3, 0)

= −τ2(0, Z1) ∧ (0, Z2) ∧ (Z1, 0) ∧ (Z2, 0) ∧ (0, Z3) ∧ (Z3, 0)

= τ2(0, Z1) ∧ (0, Z2) ∧ (Z1, 0) ∧ (Z2, 0) ∧ (Z3, 0) ∧ (0, Z3)

= τ2V ∧ E

Therefore, by Lemma 2.3 for any half-density ϕ ∈ |V |1/2 we have

µ̃τ (E) =
ϕ(V ∧ E)

ϕ(TV ∧ F)
=

1

τ
.

The homogeneity of Θ, then allows us to conclude that

µτ � Θ =
1

τ
νg̃�Θ.

Subcase IIC: Θ is a Type III component
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In this case there exists (p, q) ∈ Eτ,α,A and a unit vector z = v(p,q) = c1Z1 + c2Z2 + c3Z3 ∈
TeG ≡ p, where c2

1 + c2
2 = σ(p,q,α,A)

σ(p,q,α,A)+1 and c3 = ±
√

1
σ(p,q,α,A)+1 such that Θ = (G × K) ·

v(p,q) ' SO(3)× S1
r , where r =

√
1

σ(p,q,α,A)+1 . Without loss of generality we may assume that

c1 =
√

σ(p,q,α,A)
σ(p,q,α,A)+1 , c2 = 0 and c3 =

√
1

σ(p,q,α,A)+1 .

Now, let z = c1Z1 + c3Z3 ∈ Θ ⊂ Θ̃ and let v, v⊥ ∈ TzΘ̃ be given by v = c1Z1 + c3Z3 and

v⊥ = c3Z1 − c1Z3. Then

• E = {e1 = (v, 0), e2 = (Z2, 0), e3 = (v⊥, 0), e4 = (0, v), e5 = (0, Z2)} is a basis for

W = TzΘ̃ .

• WΩ = Span{(v⊥, 0)}
• F = {f1 = (0, v), f2 = (0, Z2), f3 = (0, v⊥), f4 = (−v, 0), f5 = (−Z2, 0)} is a basis for a

complement of WΩ such that Ω(ei, fj) = δij .

• V = {(0, v⊥)} is a basis for a complement of W

• TV = {(τv⊥, 0)}
• We then see that

TV ∧ F = (τv⊥, 0) ∧ (0, v) ∧ (0, Z2) ∧ (0, v⊥) ∧ (−v, 0) ∧ (−Z2, 0)

= τ(v⊥, 0) ∧ (0, v) ∧ (0, Z2) ∧ (0, v⊥) ∧ (v, 0) ∧ (Z2, 0)

= −τ(0, v⊥) ∧ (v⊥, 0) ∧ (0, v) ∧ (0, Z2) ∧ (v, 0) ∧ (Z2, 0)

= −τ(0, v⊥) ∧ (v, 0) ∧ (Z2, 0) ∧ (v⊥, 0) ∧ (0, v) ∧ (0, Z2)

= −τV ∧ E

Therefore, by Lemma 2.3 for any half-density ϕ ∈ |V |1/2 we have

µ̃τ (E) =
ϕ(V ∧ E)

ϕ(TV ∧ F)
=

1√
τ
.

From the homogeneity of Θ, we conclude that the DG-measure is give by

µτ � Θ =
1√
τ
νg̃�Θ.

The theorem now follows from Cases I and II. �

5.18. Proposition. Let g = g(α,α,A) be a left-invariant naturally reductive metric on SO(3).

Let τmin = τmin(g) denote the length of the shortest closed geodesic with respect to g and σ

denote the Morse index of any smooth closed geodesic with respect to g having length τmin.

(1) If α = A, then τmin =
√
α`0 is clean, Fix(Φτmin) is a connected manifold of dimension

5, and all of the closed geodesics of length τmin have Morse index σ = 0. Furthermore,

Waveodd
0 (τmin) = − 1

π
vol(g)

and Waveeven
k (τmin) = 0 for k ≥ 0.
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(2) If A < α, then τmin =
√
A`0 is clean, Fix(Φτmin) is a a manifold of dimension 3 having

two connected components, and the closed geodesics of length τmin all have the same

Morse index σ. Furthermore,

Waveodd
0 (τmin) =

i−(σ+1)

π

vol(g)

τmin
.

Waveeven
k (τmin) = 0 for k ≥ 0.

(3) If A > α, then τmin =
√
α`0 is clean, Fix(Φτmin) is a connected manifold of dimension 4,

and the closed geodesics of length τmin all have common Morse index σ. Furthermore,

Waveeven
0 (τmin) =

(
1

2πi

)3/2

i−σ
2π
√
τmin

vol(g).

Waveodd
k (τmin) = 0 for k ≥ 0.

Proof.

(1) By Corollary 5.13 we see that τmin =
√
α`0 and Fix(Φτmin) is the unit tangent bundle

with respect to g. It is also clear that the geodesics of length τmin must have Morse

index 0. It then follows from Theorem 2.4 and Proposition 5.17 that

Waveodd
0 (τmin) =

(
1

2πi

) 5−1
2

i−σ
∫
T 1 SO(3)

dνg̃�T 1 SO(3)

= − 1

4π2
4π vol(g)

= − 1

π
vol(g)

And, since Fix(Φτmin) has no even-dimensional components, we see that Waveeven
k (τmin) =

0 for any k ≥ 0.

(2) By Corollary 5.13 we see that Fix(Φτmin) = Θ+ ∪ Θ− ' SO(3) ∪ SO(3), where Θ± =

(G × K) · (±Z3) = SO(3) × {±Z3} ⊂ T SO(3). It is clear that the geodesics of this

length are translates of each other or the reverse parametrization, thereofre they all

have a common Morse index σ It then follows from Theorem 2.4 and Proposition 5.17

that

Waveodd
0 (τmin) =

(
1

2πi

) 3−1
2

i−σ(

∫
Θ+

dµτmin +

∫
Θ−

dµτmin)

=
1

2πi
i−σ

2

τmin
vol(g)

=
i−(σ+1)

πτmin
vol(g)
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And, since Fix(Φτmin) has no even-dimensional components, we see that Waveeven
k (τmin) =

0 for any k ≥ 0

(3) By Corollary 5.13 we see that Fix(Φτmin) = (G×K) · v ' SO(3)× S1 for a unit vector

v = c1Z1 + c2Z2 ∈ TeG. The geodesics of length τmin are clearly all translates of each

other by the isometry group, so they have a common Morse index σ. It then follows

from Theorem 2.4 and Proposition 5.17 that

Waveeven
0 (τmin) =

(
1

2πi

) 4−1
2

i−σ
∫
SO(3)×S1

dµτmin

=

(
1

2πi

) 3
2

i−σ
2π
√
τmin

vol(g)

And, since Fix(Φτmin) has no odd-dimensional components, we see that Waveeven
k (τmin) =

0 for any k ≥ 0

�

Proof of Theorem 1.2. Let g be a left-invariant naturally reductive metric on SO(3). By Propo-

sition 5.18 the length τmin = τmin(g) is clean and one of Waveeven
0 (τmin) or Waveodd

0 (τmin) is

non-zero. Therefore, by Theorem 2.4(4), τmin is in the singular support of the trace of the wave

group associated to g. And, being the smallest non-zero element in SingSupp(Trace(Ug(t)))

we see that τmin can be recovered from the spectrum of g �

It follows immediately from Theorem 1.2 and Proposition 5.18 that we have the following

result which states that the volume of a left-invariant naturally reductive metric g on SO(3)

can be recovered from the asymptotic expansion of the trace of its wave group at the singularity

τmin(g).

5.19. Corollary. There is a function f(·, ·, ·) such that for any g ∈MNat(SO(3)) we have

vol(g) = f(dim Fix(Φτmin(g)),Wave•0(τmin(g)), τmin(g)),

where • denotes the parity of dim Fix(Φτmin(g)).

Proof of Theorem 1.3. Let g = g(α,α,A) be a left-invariant naturally reductive metric on SO(3)

and let τmin = τmin(g) denote the length of the shortest non-trivial closed geodesic with respect

to g. By Theorem 1.2 τmin is clean and is determined by the spectrum of g. Furthermore,

using the asymptotic expansion of the wave trace at the singularity τmin we conclude that the

dimension of the manifold Fix(Φτmin) is determined by the spectrum of g and takes on the

values 3, 4 or 5. We will now show that in each of these cases α and A can be expressed in

terms of the spectrally determined data τmin and vol(g) = α
√
AV0, where V0 is defined as in

5.3.

Case I: dim Fix(Φτmin) = 5

It follows from Proposition 5.18 that α = A and τmin =
√
α`0, so that α = A =

(
τmin
`0

)2
.
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Case II: dim Fix(Φτmin) = 4

In this case, Proposition 5.18 implies that A > α and τmin =
√
α`0. Therefore, α =

(
τmin
`0

)2
.

Also, since vol(g) = α
√
AV0 we see that A =

(
vol(g)`20
τ2minV0

)2

Case III: dim Fix(Φτmin) = 3

Here, Proposition 5.18 tells us that A < α and τmin =
√
A`0. It follows that A =

(
τmin
`0

)2

and α = vol(g)`0
τminV0

. �

5.20. Remark. In the introduction we noted that in [Sut] we produced examples of normal

homogeneous manifolds of the form SU(n)/H1 and SU(n)/H2, which are isospectral. Hence,

there is no hope of showing that within the class of all naturally reductive manifolds each space

is uniquely determined by its spectrum.

The 0-th wave invariants and the Poisson Relation. In light of comments made in the

Introduction it is natural to wonder whether it is possible to use the 0-th wave invariants to

establish equality in the Poisson relation for the clean metrics inMNat(SO(3)). Let g(α,α,A) be

such a clean metric. When α = A we have a bi-invariant metric on SO(3), which is a CROSS,

and as we noted in Example 2.9 the Poisson relation is an equality for all CROSSes. So, we

consider the case where g(α,α,A) is clean and α 6= A.

First, we fix an element τ in the length spectrum of g(α,α,A) and recall that Fix(Φτ ) consists

of components of Type I, II and III. We observe that Fix(Φτ ) cannot contain components of

Type I and Type II simultaneously. Indeed, if this were the case, then we could find natural

numbers m and n such that τ = m
√
α`0 = n

√
A`0, which would imply that A ∈ αQ+ − {α},

contradicting the fact that the metric g(α,α,A) is clean (see Theorem 5.14). It is also the case

that Type I components cannot occur along with Type III components. For otherwise, there

exist natural numbers m and n such that τ = m
√
α`0 = n

√
α`0(q2 + p2 A

α−A)1/2, which implies

that A ∈ αQ+ − {α} and leads us to conclude that the metric g(α,α,A) is actually unclean,

which is a contradiction.

Now, let τ = n
√
α`0 be the length of Type I geodesic. Then, the previous paragraph dictates

that Fix(Φτ ) consists of the lone Type I component. Therefore, since the Type I component

is of dimension 4 we see that Waveeven
0 (τ) 6= 0. Therefore, the length of any Type I geodesic is

contained in the singular support of the trace of the wave group.

To analyze lengths arising from Type II and Type III geodesics, we recall that the Type

II and Type III components are all of dimension 3. If the only odd-dimensional components

in Fix(Φτ ) are the Type II components Θ1 = (G × K) · v and Θ2 = (G × K) · −v, where v

is the initial velocity of some unit speed Type II geodesic (see Lemma 5.11), then since the

Morse index associated to these components is clearly the same, we conclude that Waveodd
0 (τ)

is non-zero and, therefore, τ is also in the singular support of the trace of the wave group.

An issue arises in using the 0-th wave invariants when Type III components occur in Fix(Φτ ).

Indeed, one can show that the conjugate points along a Type III geodesics are as follows.
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5.21. Proposition. Suppose γv(p,q) is a Type III geodesic with v(p,q) = c1Z1 + c2Z2 + c3Z3 ∈
p ≡ TeG, where c2

1 + c2
2 = σ(p,q,α,A)

σ(p,q,α,A)+1 and c3 = ±
√

1
σ(p,q,α,A)+1 for a unique (p, q) ∈ Eτ,α,A.

And, let a(p, q, α,A) =
√
ϕ2 + σ(p,q,α,A)

σ(p,q,α,A)+1
1

2(A+α)
, where ϕ ≡ 1

α

√
A
2 and A ≡ Aα

α−A .

(1) If α > A, then γv(p,q)(t0), t0 > 0, is conjugate to e = γv(p,q)(0) along γv(p,q) if and only

if t0 6= 0 ∈ 2π
a(p,q,α,A)N. And, in this case the conjugate point has multiplicity one.

(2) If α < A, then γv(p,q)(t0), t0 > 0, is conjugate to e = γv(p,q)(0) along γv(p,q) if and only

if t0 6= 0 ∈ 2π
a(p,q,α,A)N or t0 = 4α2

(A−α)
σ(p,q,α,A)
σ(p,q,α,A)+1

. And, in this case the conjugate point

has multiplicity one.

Proof. We omit the long computation, which makes use of Ziller’s recasting of the Jacobi

equation for naturally reductive metrics [Z2] and our explicit understanding of the Poincaré

map. �

Using the previous proposition one can compute the Morse index associated to each Type III

component (G×K) ·v(p,q) contained in Fix(Φτ ). This, in conjunction with computations in the

spirit of those used to establish Proposition 5.17(2c), allows one to compute the contribution

of each Type III component to the wave invariant Waveodd
0 (τ). However, some inspection will

demonstrate that these contributions behave rather erratically making it difficult to rule out

the possibility of cancellations, in general. Therefore, the best we can say at the moment is

the following.

5.22. Proposition. Let g(α,α,A) be a clean left-invariant naturally reductive metric on SO(3)

and τ an element in the length spectrum of g(α,α,A). If τ is a multiple of
√
α`0, or τ is a

multiple of
√
A for which Fix(Φτ ) contains no Type III components, then τ is in the singular

support of the trace of the wave group of g(α,α,A).
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Math. 27 (1973), 159–184.

[D] J.E. D’Atri, Geodesic spheres and symmetries in naturally reductive spaces, Michigan Math. J. 22

(1975), 71–76.

[DZ] J.E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups,

Mem. of Amer. Math. Soc., 18 (1979), no. 215.



DETECTING THE MOMENTS OF INERTIA OF A MOLECULE 37

[DoRo] P. Doyle and J.P. Rossetti, Tetra and Didi, the cosmic spectral twins, Geom. Topol., 8 (2004), 1227–

1242.

[DuGu] J.J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic bichar-

acteristics, Invent. Math. 29 (1975), 39–79.

[GS] C.S. Gordon and C.J. Sutton, Spectral isolation of naturally reductive metrics on simple Lie groups,

Math. Z. 266 (2010), 979–995.

[Gt] R. Gornet, Riemannian nilmanifolds and the trace formula, Trans. Amer. Math. Soc. 357 (2005), no.

11, 4445–4479.

[GuSt] V. Guillemin and S. Sternberg, Symplectic techniques in physics, Cambridge University Press, New

York, 1984.

[Hel] S. Helgason, Differential geometry, Lie groups, symmetric spaces, Academic Press, San Diego, 1978.

[KT] W. Klingenberg and F. Takens, Generic properties of geodesic flows, Math. Ann. 197 (1972), 323–334.

[KS] O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian

manifolds, Geom. Dedicata 81 (2000), 209–214.

[Pol] I. Polterovich, Heat invariants of Riemannian manifolds, Israel J. Math. 119 (2000), 239–252.

[R] A.W. Reid, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke

Math. J. 65 (1992), no. 2, 215–228.

[Sa] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149, American Mathe-

matical Society (Providence), 1996.

[Sch] D. Schueth, Isospectral manifolds with different local geometries, J. reine angew. Math., 534 (2001),

41–94.

[SS] B. Schmidt and C. J. Sutton, Two remarks on the length spectrum of a Riemannian manifold, Proc.

Amer. Math. Soc. 139 (2011), no. 11, 4113–4119.

[Sut] C. J. Sutton Isospectral simply-connected homogeneous spaces and the spectral rigidity of group ac-

tions, Comment. Math. Helv. 77 (2002), 701–717.

[Tak] L. Takhtajan, Quantum Mechanics for Mathematicians, Graduate Studies in Mathematics 95, Amer-

ican Mathematical Society (Providence), 2008.

[T1] S. Tanno, Eigenvalues of the Laplacian of Riemannian manifolds, Tohoku Math. J. (2) 25 (1973),

391–403.

[T2] S. Tanno, A characterization of the canonical spheres by the spectrum, Math. Z. 175 (1980), 267–274.
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