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ABSTRACT

In this thesis, we propose a heuristic model for class groups (and regulators) of quadratic
number fields, which is then experimentally verified. In the imaginary quadratic case, we
model the class group as the cokernel of a random integer matrix. This in turn suggests that
the log of the class numbers (which are then the determinants of such matrices) is normally
distributed. We also provide related heuristics for the real quadratic case that allow us to

make independent predictions for the class number and the regulator.
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Chapter 1

Introduction

This chapter outlines some basic terms, and then presents our heuristic model for imag-
inary quadratic fields. Experimental and theoretical support for the model is provided in

subsequent chapters.

1.1 Basic Definitions

A number field is a finite extension of the field of rational numbers. For example, consider
quadratic fields, i.e. fields of the form Q(y/m) = {a + by/m : a,b € Q} for an integer
m which is not a perfect square. In this thesis, we are concerned precisely with quadratic
fields. We will discuss both the imaginary and real quadratic case, and see why they must
be dealt with somewhat independently.

Every number field contains a subring, known as the ring of integers, which consists of
the algebraic integers in the field: an algebraic integer is a complex number that is a root
of a monic polynomial with coefficients in Z

For an algebraic integer «, the monic irreducible polynomial over (Q that has « as a root
actually has coefficients in Z. Therefore, the polynomial mentioned in the definition above
is in fact the minimal polynomial of the algebraic integer.

The ring of integers is different from Z but still has the property that ideals in the subring



factor uniquely into prime ideals. Let us denote the ring of integers of a number field K as
Z. For the case of quadratic fields K = Q(+/m) for squarefree m, Zy is easy to describe.

It is:

{a+by/m:a,beZ}ifm=2o0r3 (mod 4)

{CLH;‘/E ca,b,e ZYifm =1 (mod 4)

An integer D is a fundamental discriminant if it is not equal to 1, not divisible by the
square of any odd prime, and for which one of the following is true: either D =1 mod 4
or % = 2,3 mod 4. Quadratic number fields can be ordered by fundamental discriminants
such that every field appears exactly once.

Z[i] € Q(i) is a Buclidean domain, but Z[v/—5] is not even a unique factorization
domain since 6 = 2-3 = (1++/=5)(1—+/—5). We might seek to measure how far a given
number field is from satisfying unique factorisation of elements in its ring of integers (we
already know ideals in it factor uniquely into primes). To do this, we construct the ideal
class group of the number field, which measures how far ideals in the field are from being
principal, or rather how many distinct classes of non-principal ideals there are.

The set of ideals in a number field do not in themselves form a group. In order to create
a group structure, we consider instead the fractional ideals:

Let K be a number field with ring of integers Zy. A subset a C K is called a fractional

ideal if there exists « € K™ such that aa C Zg is an ideal of Zg. Every fractional ideal
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has an inverse a™, a fractional ideal such that aa™" = Z. Thus, this set has the structure
of a finite abelian group under ideal multiplication.

We take the group I of fractional ideals modulo the subgroup Py of principal frac-
tional ideals. The resulting quotient is known as the class group of the number field,
denoted C1(K). For more details on the construction and working of the class group, see
Marcus [1] or Cox [2].

It is a basic but important result in algebraic number theory that the class group is

always a finite abelian group, and we shall see one proof of this due to Minkowski in the
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chapter on factor bases. The order of the class group is known as the class number. The
class number of a quadratic field Q[v/D] is commonly denoted h(D), suggesting one can

look atitasamap h : Z — Z*.

1.2 The Structure of the Class Group

What do we know about class groups and class numbers? The Brauer-Siegel theorem [3][4]
tells us that at least for imaginary quadratic fields the class number tends to infinity with

|DI.

Theorem 1.2.1 (Brauer-Siegel) Let D < 0 range over negative fundamental discrimi-
nants. Then we have:

logh(D) 1

D—o0 log|D| 2

Put another way, the log((D)) tends asymptotically to log 1/]D|. A similar result is
available for the real quadratic case, but it requires an extra term which we will come to
later.

What about the structure of the class group? For cases where h(D) = 9, how often do
we see Z,/97 as compared to Z/3Z & 7Z./37? How are class numbers distributed? Various
results about class groups have been proven in recent decades, but much about the structure
of class groups remains a mystery. About the only concrete thing we know on these groups
comes from Gauss. Gauss’s Genus Theory tells us the precise description for CI(K)[2],
the 2-torsion subgroup of the class group of a number field K. This is the subgroup of
elements that square to the identity. Specifically it tells us that for K = @[\/ﬁ], we have
CI(K)[2] = (7/27)“P)~1, where w(D) is the number of prime divisors of D.

Since we have a clear theoretical description for C1(K)[2], it is useful here to consider
the group CI(K')/ C1(K)[2]. This is the part of the class group that we wish to model using

random integer matrices. In this thesis, we will refer to C1(K')/ C1(K)|2] as the naturalized



class group C1*(K) of K, and denote its order as the naturalized class number h®. We shall

discuss more precise implications of this structure in Chapter 3.

1.3 Regulators and Real Quadratic Fields

In imaginary quadratic fields other than Q(7) and Q(v/—3), the only units are roots of unity.
For real quadratics, in addition to 1 and —1, there is an additional group of units that we
know to be infinite cyclic by Dirichlet’s Unit Theorem. The smallest € > 1 that generates
this group of units is known as the fundamental unit. For Z[v/2], we have ¢ = 1 + /2.
Often, though, it is much larger: Marcus [1] tells us for Z[\/?)_l] it is 1520 + 273+/31, and
even more surprisingly for Z[/94] it is 2143295 +221064+/94. For Z[v/95] it is 39+ 4+/95.
Since the fundamental unit is uniquely determined, the regulator of a number field can be
defined as log |¢|, where € is the fundamental unit.

The regulator encodes certain non-trivial information about the real quadratic field. For
real quadratic fields, we find that the class number is typically small, although it is not
known whether it is 1 for infinitely many cases. In comparison the regulator (as evidenced
above) can be surprisingly large. The Brauer-Siegel Theorem in the real quadratic case tells
us that

log(h(D)R(D)) 1

I =
Dot log |D| 2

. If the class number stays small, we can expect the regulator to grow with increasing D.
We might also expect the distribution of log(hR) in the real case to match that of log h in

the imaginary case. Data on this is presented in the final chapter on real quadratic fields.

1.4 Heuristic Model for Imaginary Quadratics

Cohen and Lenstra [5] give us a heuristic for the distribution of class groups, especially

the odd part of the class group, that comes from considering how random abelian groups



might behave. The Cohen-Lenstra heuristics predict that a particular random abelian group
appears with probability inversely proportional to its number of automorphisms.

So consider again the example of groups of order 9, Z/9Z and Z /37 & 7./ 37.. We know
that Aut(Z/9Z) = (Z/9Z)* and Aut(Z/3Z & Z/3Z) = GLy(Z/37Z). Thus we expect to
see 7,/97 more more often than 7Z /37 & Z/3Z, with a ratio of [8 : 1] in inverse proportion
to their number of automorphisms.

Given the dearth of predictive results on class groups, heuristic models are extremely
important for providing insight into what these abelian groups look like and how they
behave. This thesis hopes to extend the results taken modulo a number of primes and
see if it can be done all at once, so that class groups may be related directly to cokernels
of random integer matrices. It offers some experimental results on how one can make class
groups look like random matrices, considers what parameters on the size of the matrix and
its entries are useful, and suggests that studying the behaviour of random matrices can give
us insight into the functioning of these rather mysterious groups.

To model class groups of imaginary quadratic fields, we propose the following heuristic.

Model 1.4.1 For an imaginary quadratic field K = Q(v/D),|D| — oo, we model the
class group C1(D) as follows:
Let n(D) and X (D) be such that

n(D) is an integer of size (loglog | D|'/?)°0(1)

D: &
n(D)X(D) ~ | Semrar

Let A, be an n(D) x n(D) integer matrix whose elements are drawn from a gaussian
distribution of mean 0 and variance (X (D))2 Then CI*(K) is modelled by coker A,, and
h%(D) by | det A,|.

Combining this with results about the determinants of random matrices suggests that
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log h%(D) is distributed normally with mean = log |D|z — log2loglog|D| and variance
= (logloglog |D|%)O(1). Chapters 3 and 5 motivate these expressions for the mean and
variance. In Chapter 6, we will present a variant of this model for real quadratic fields
(D > 0).

We see that n(D) grows quite slowly with respect to D, and as a result we see X (D)
growing at a much faster rate. This is in accordance with the Cohen-Lenstra heuristics,
which predict that the class group is generally found as the direct product of a small number
of cyclic subgroups. The discussion in Chapter 4 makes clearer the connection between
n(D) and this direct product.

In chapter 2 we present experimental data (for the imaginary quadratic case) on natu-
ralized class groups and random matrices, which are in accordance with our conjectures.
In chapter 3, we discuss theoretical results that allow us to postulate a mean and variance
for h®. The Brauer-Siegel theorem and predictions from Genus Theory suggest the expres-
sion for the mean, and the Analytic Class Number formula gives us the next order term
that indicates what the variance looks like. In Chapter 5 we consider results in random
matrix theory, and see that n(D) — loglog |D|% appears as the most appropriate way to
link matrices and class groups together. The plausibility of this expression for n(D) is ex-
perimentally verified. The somewhat more involved expression for X (D) is derived from
that for n(D) and the requirement that the means for random matrices and naturalized class
groups align. At the end of Chapter 5, we combine the results from genus theory, the Ana-
lytic Class Number formula, and random matrix theory to present calculations that support

our model.



Chapter 2

Data on Class Numbers for Imaginary

Quadratic Fields

In this this chapter, we consider the imaginary quadratic case and present some data. We
compare the distribution of naturalized class numbers to the distribution of log | det | of
appropriately sized matrices and see how they relate, and also verify that the expressions

for n(D) and X (D) are experimentally valid.

2.1 Approach

In the imaginary case there are no nontrivial units or regulators to worry about, so we
just sample class numbers at various orders of magnitude of fundamental discriminant and
consider their distributions. We took 10000 randomly sampled fundamental discriminants
(with replacement) in the range [0, Do], with Dy = —10* for integers k between 5 and
24. For each sample point we then computed the class number. Using the theorem that
# Cl(K)[2] = 2¢(P)~1, we divided the class number by 2“(”)~! to cancel out the contribu-
tion from Genus Theory. Recall that we named the resulting quantity the ‘naturalized class
number’, A%

Finally, we checked the distribution of log h*( D) for D € [Dy, 0] for each choice of Dj.

7



3 2 1 1 2 5 -4 3 -2 1 1 2

Figure 2.1: Naturalized Class Number for Dy = 10° (left) and 10%° (right)

A representative sample of figures is included in this chapter. For a more complete set of
figures, see Appendix A.

In the section on factor bases, we will discuss how class groups can be understood
as cokernels of integer matrices. Our heuristic tries to model the naturalized class group
as the cokernel of a random integer matrix. In the chapter on random matrices, we also
discuss how, given a choice for n(D), we can choose the appropriate X (D) such that
matrices A,, € M,(p)xn(p) With entries taken from N (0, X) are distributed with a mean
that aligns with that of the class numbers. For our tests here, we numerically compute
X (D) for various trial choices of n(D), and compare naturalized class numbers with values

of log | det A,,|

2.2 Sample Data

We have normalized all our results so that data sets have mean 0.

For Dy = 10°, the distribution does not look particularly close to gaussian, but in
Figure 2.1 we see that by Dy = 10 we already have good convergence. To demonstrate
that this really is a gaussian distribution, we compare graphs for the probablity function
P(x < t) for an appropriate range of ¢ for naturalized class numbers and gaussians. Figure

2.2 shows these, again for the cases Dy = 10° and Dy = 10'°. The gaussian was a randomly
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Figure 2.2: Naturalized class number for Dy = 10° (left) and 10'° (right)

generated sample, also of 10000 points, sampled from a distribution having variance equal
to that of the A distribution. We postulated in Chapter 1 that naturalized class numbers
are distributed with a variance log log log |D|%. If we look at Table 2.1, we can see that

experiments are in support of this conjecture.

2.3 Matrices

Results from random matrix theory prove that as n — oo the distribution of log | det | for
n x n matrices approaches N (0, 1). These results are described in the section on random
matrices. Seeing that log h? is already very close to gaussian in the ranges we tested there is
good evidence that, at least for imaginary quadratics, h® can be modelled as the determinant
of a random matrix of appropriate size.

So what does the distribution of the logarithm of random matrix determinants look like?
Again, we sampled 10000 matrices A,, € M,,«,, for different n, and computed log | det A,,|.
Our heuristic model suggests n(D) ~ log log | D|z, which for our ranges of | D| is around 2
or 3. Experimental data also supported this as the most appropriate choice for n. In Figure
2.3 we plot a similar probability curve P(z < t) as before for log | det A,,|. The left plot
compares log h*(D) for D € [—10%4,0] against log | det A, | for n = 3. On the right we

include additionally a gaussian with variance equivalent to that of the log h" distribution.



Table 2.1: Variance for log h? vs. log log log | D2

|Do| Variance for log h* loglog log | D|z

10° 0.576 0.560
106 0.642 0.659
107 0.689 0.736
16" 0.730 0.797
167 0.782 0.849
1010 0.828 0.893
101 0.858 0.931
102 0.893 0.965
g3 0.957 0.995
10M 0.979 1022
10" 1.011 1.047
1016 1.019 1.069
1O 1.069 1.089
1018 1.080 1.109
10 1.124 1.127
10% 1.148 1.143
102 1.146 1.159
10% 1.168 1.173
102 1.209 1.186
10 1.219 1.200

0.8 | 0.8 |

0.6 | 0.6 |

-6 -4 2 2 4 6 6 -4 2 2 4 6

Figure 2.3: Comparing log h” (green) with log det | A,,| (red) for Dy = 10%*. The figure on
the right includes a gaussian (blue) for comparison. In this case where n(D) = 3, X (D)
was approximately 2 x 105,
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Chapter 3

Predictions and Corrections from Genus

Theory

We now present some theoretical calculations involving class numbers and regulators. The
implications of Genus Theory, the Erd6s-Kac Theorem and the Analytic Class Number
formula are discussed to arrive at an expression that motivates our conjectures in Chapter

1.

3.1 Genus Theory, Erdos-Kac, and the Analytic Class Num-
ber Formula

Earlier it was mentioned that Genus Theory gives us a precise formulation of the 2-torsion
subgroup of the class group of a number field K, denoted as C1(K')[2]. Specifically it tells
us that for K = Q(v/D), we have CI(K)[2] & (Z/27)~(P)~1,

Clearly, then, we cannot expect our class groups to behave entirely like randomly ma-
trices. A subsequent idea is to consider C1(K')/ C1(K)[2] = CI*(K), for which we have no

equivalently precise descriptions, and see how ‘random’ the distribution of this part looks.
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Thus

3.2 An Expression for h'R

The Analytic Class Number Formula gives us an analytic expression for the class number
times regulator of a quadratic extension in terms of a Dirichlet L-Function.

Let

(

1, if Disasquare (mod p)

D
5 ) =10 ifplD

—1, if Disnotasquare (mod p)

\

We define xp = <Q> :Z —{-1,0,1} by n — <%) =11 <%)e. Then, we have the
pln
following result:

Theorem 3.2.1 (Analytic Class Number Formula) Ler h = h(D) be the class number
and R = R(D) the regulator of a quadratic field Q[v/D). Then,

> n hR
L(1xp) =Y X2 _
n=1

VDI

where X p is as above andn = 1if D <0andn =7mif D > Q.

Due to a theorem by Littlewood [6], we know that under the Generalized Riemann

Hypothesis this infinite sum can be altered into a finite one

xp(p)

GRH = L(l,xp)= 3
p<log+/ID] P

In order to incorporate Genus Theory and get a prediction for h%(D), we must find a

+ O(1) for p prime.

way to account for the expected number of prime divisors of the discriminant. The Erdds-

Kac theorem [7] gives us an asymptotic result for this w(D):
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Theorem 3.2.2 (from Erdés-Kac) Let w(D) be the number of prime divisors of D. Then,

for any fixed a < b,

, 1 w(n) —loglogn
1 —- Lwral <bp|=%(a,b
s (:17 #{n == loglogn  — (a,9)

b
where ®(a, b) i e~t"/2dt is the standard Gaussian distribution. This in turn implies

E\H
3

that

w(D) € [(1 = p)loglog|D|, (1 + p)loglog | D]

for any fixed > 0 with probability 1—o0(1),as |D| — oo.
By estimating » | XD ) as log log() 4+ + o(1) in the Analytic Class Number formula

P
(where vy is the Euler gamma function) we get:

logn + log(hR) — log | D|"/? = log loglog | D|*/? 4 log(e”) + o(1), or
log(hR) = log | D|"? 4 log loglog | D|*/? + log(e” /n) 4 o(1)

Since h = hoh® where hy = # C1(K)[2], and from Erdds-Kac we have log i < log h¥ +

log 2(loglog |D| — 1) = log h* + log 21log log | D| — log 2, we get:
log(hR) = log(hyhiR) < log(h“R) 4+ log 2loglog | D| — log 2

Putting this all together, we finally get:
v
log(h*R) = log | D|*/? — log 2loglog |D| + log log log [ D|Y? + log(25-) + o(1)  (3.1)
n

which gives a prediction for the logarithm of the naturalized class number times regulator.

From the Brauer-Siegel theorem, we know that log h(D)R(D) — log |D|? as D — oo,
this matches with the first term of the formula. Estimating the size of w(D) from Erdds-Kac
gives us the Genus Theory correction that is the second term, so we expect that log(h'R)

1/2

has mean log | D|*/? — log 2log log | D|. This suggests that the third term, log log log |D|%,

represents the variance of the distribution for 2R (note that experimentally we have already

13



seen that h*R looks like a normal distribution). In Chapter 5, we will relate this term
to the variance term in the distribution of log | det | of random matrices, which we know
is normally distributed. This will give us the expression for n(D) that we used in our

conjecture in Chapter 1.
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Chapter 4

Class Group Over a Factor Base

From a theorem due to Minkowski, we can deduce a bound on the norm of the ideals we
need to check in order to recover the class group. The theorem in the quadratic case states
that every class in the class group contains a representative ideal of norm explicitly bounded
in terms of | D|, on the order of V/D. The class group, then, is generated by prime ideals
under the Minkowski bound. From here, we also get a quick proof of the finiteness of the
class group— since there are only finitely many ideals below the Minkowski bound, there
can only be finitely many classes in the class group.

Under the Generalized Riemann Hypothesis, the bound on ideals to be checked can be
brought down to 6(log | D|)2. The lowering from a /| D| dependence to a log | D| depen-
dence considerably simplifies the computation of the class group for number fields of large

discriminant.

4.1 Generators and Relations

Using this bound we can represent the class group of a number field X in matrix form. For
an extension K /Q take primes py, po, P3, - . ., P, below the Minkowski bound. We know
with certainty that these primes generate the class group (of course in reality a smaller

subset may be sufficient). Now, take elements a, o, as, . . ., oy, from the ring of integers

15



Z, that factor amongst these primes. Since any ideal («y;) is principal, it corresponds
to the identity in the class group, and so each factorization represents a relation amongst
group elements in the class group. We simply wish to find enough relations to capture
all necessary information about the class group. It may not be initially clear how many
relations we need to consider, but since they are drawn from some finite set (there are
finitely many ideals and finitely many powers of them that still lie below the Minkowski

bound) there is an upper limit to how many independent relations we need to consider.

For0 < i < m,say (a;) = p'p52p5™ ... pSn. Then we construct the following matrix:
€11 €12 ... €1n
€921 €o0 ... €9,
€ml €m2 .- Emn

If m < n, we need to add more relations to the matrix, m > n so far poses no concerns.
Taking the Smith Normal form of this generators and relations matrix now gives us the
cokernel of the matrix as a direct product of abelian groups. If we recall how the matrix was
constructed, i.e. by taking powers and products of prime ideals that multiply to the identity,
we immediately see that this cokernel in fact returns our class group. The determinant of
the n X n matrix that is formed by removing extra rows from the matrix (in case m > n) is
the order of the cokernel, or alternatively the class number.

By expressing the matrix in Smith normal form, we can simply read off the structure of
the class group. Specifically, the group is isomorphic to Z/a,Z & Z/asZ & ... D Z/a,Z
where the a;’s are the diagonal entries in the Smith normal form of the generators and
relations matrix.

Thus we have a representation of the class group, in terms of generators and relations,
as the cokernel of a matrix, and of the class number as the determinant. The aim of this
thesis is to consider whether these matrices can be considered ‘random’ in some sense, and

what the distribution of class numbers converges to (if anything) as the discriminants tend
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to infinity.

4.2 Example

Let us consider an easy example of constructing a generators and relations matrix. For the
field Q[/—5], the associated ring of integers is Z[v/—5]. The Minkowski bound is around
3 in this case, so let us factor some ideals into primes with norm < 3. In reality, the bound
is below 3, so we only need to consider ideals of norm 2. However, for the sake of not
making this a near-trivial case, let’s stick with 3 as our bound.

Some initial ideals that factor into primes below this bound are:

(2) = (2,14 /=5)?
(3)=(,1+v-5)(3,1— =)
(1++v=5)=(2,1++/=5)(3,1++/—5)

So with py = (2,14 v/=5),p2 = (3,1 +v/=5),p3 = (3,1 —v/—=5) and a; = 2, 0 =

3,3 = 1+ +/—b, we create our matrix:

O N
—_ = O
o = O

[eo R e B V]
o = O
- o O

From this we see that the class group is Z/2Z, and the class number is 2, as expected.

17



Chapter 5

Random Matrices

This chapter introduces some results on the distribution of the determinants of random
matrices. We subsequently compare the results on these determinants with our expression
for naturalized class numbers and regulators in (3.1.1). The results of this comparison lead

to the formulation of the model presented in Chapter 1.

5.1 The Distribution of Random Determinants

There are a number of theorems proved in recent years concerning the distribution of deter-
minants of random matrices. One of the important outcomes of modelling class groups by
random matrices is that these theorems can now be applied to make conjectures about the
distribution of class numbers and class groups. We now discuss some results on random
matrices that allow us to compare data on matrices and class groups directly. A close cor-
relation of the data would make it a plausible claim that the generators and relations matrix
for an arbitrary class group looks random.

What do determinants of random matrices look like? Nguyen and Vu [8] showed that

for n x n matrices A,, whose entries are independent real random variables with mean zero

18



and variance one,
log(] det A2|) — log(n — 1)!
v2logn

where N (0, 1) is the normal distribution with mean zero and variance one. This gives,

— N(0,1)

equivalently,
log(| det A,]) — 3 log(n — 1)!

,/%logn

This built upon earlier results of Goodman [9] and a paper on the distribution of Bernoulli

— N(0,1)

random matrices by Tao and Vu [10]

Nguyen and Vu also provide a more intuitive argument for why one should expect
matrices with gaussian iid entries to have normally distributed values for the log of their
determinants. This is based on an observation they credit to Goodman in [9], that in this
case det A2 can be written as a product of x? random variables. This implies that log det A2
is a sum of x? random variables, and so they argue we can expect some form of central limit

theorem to hold.

5.2 Relating Class Groups to Random Matrices

From Nguyen and Vu’s results, we expect A,, € M,,,, with iid N(0,1) entries to have mean
of log | det A,| = $log(n — 1)! and variance % logn. We proposed that the variance term
in (3.1.1) would be logloglog | D|2, so comparing these two suggests logloglog [D|z ~
O(log n(D)). This gives us a guess for n(D) as (log log | D|2)°®"). Experimental data in Ta-
ble 2.1 indicates that the variance for naturalized class numbers looks close to log log log | D| 2,
so a neat guess is n(D) — loglog|D|z as |D| — co.

For | D| ranging from 107 to 10?5, this gives n(D) around 2 or 3 and variance between
0.7 and 1.2. This agrees with our experimental data showing a good match for log h” in the

imaginary case with log | det A,,| of matrices of this size, as well as the appropriate ranges
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for variance.

Since we expect our n(D) x n(D) matrix to have log det ~ 1 log(n(D) — 1)!, we must
scale our entries to have variance greater than 1. Scaling the variance for the entries by a
factor of o2 is comparable to scaling the values by a factor of o, thus the overall determinant
changes by a multiplicative factor of ¢”. This means that the log of the determinant changes

by an additive factor of n log X. Therefore, we want X such that:
1 1
nlog X + 5 log(n — 1)! = |D|z — log 2loglog | D|).

This essentially is saying that we want our mean for log | det | to align with the mean for
hi(D)R(D).

Let H = log |D|% —log 2loglog|D|. Then we have:
nlog X = H — 1log(n —1)!

We use Stirling’s approximation for logn! and get

_ H (n—1) log(n—1)+(n—1)—O(logn)
IOgX — . 2n .

Since we are interested in the limit n — oo, we can eliminate terms on the right hand side

that grow slower than n. Our expression simplifies to
log X = £ — L(logn — 1), so substituting the expression for H we get
Dz \~
log(X+y/n) = log StogToz D] and so we want

Dz \~
n(D)X(D) — <m>

as |D| — oo, where n(D) — oo itself, although very slowly.
The choice of X (D) does not seem to affect the variance of log det |A,| for n x n

matrices A,, so our initial guess for n(D) ~ logloglog |D|z remains valid.
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Chapter 6

The Real Quadratic Case

This chapter discuss the case of real quadratic number fields in more detail. We discuss a
modification to the generators and relations matrix that helps us keep track of additional
information that can be related to the regulator of the field. We propose a version of our
earlier model that now applies to real quadratic fields. The real quadratic case is of particu-
lar interest because the model in this case allows us to separate the behaviours of 4%(D) and
R(D), something which is not possible with the theorems like Brauer-Siegel or the Ana-
lytic Class Number formula. We also include some preliminary data to show the promise
in this approach.

Computations for real quadratics appear to be much more difficult than the imaginary
case. We were not able to test at a comparably high range, however the data show quali-
tative results that are promising for the model. Future experiments will hopefully help to

smooth out any kinks and give good convergence between data and the heuristic.

6.1 Generators and Relations Matrix for Real Quadratics

We construct our generators and relations matrix along similar lines as before, but in this
case we add an additional column of entries that keeps track, roughly speaking, of the

archimedean "size" of each « that we factor into primes. Recall that for imaginary quadrat-
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ics, we took the set of primes p; . . . p,, below the Minkowski bound, and then factored some
ideals (), @ € Zx among these primes. The i, 7 entry of this matrix was then given by

€', where each «; factored as

(o) = (p1")(p5") - . (P")

We now make sure to have at least n + 1 relations, and add an extra column on the right

whose entry in the 7™ row is log |a;|. This gives us an (n + 1) X (n + 1) matrix that looks

like:
€11 €12 s €1n log |041|
€21 €22 v €2n log |a2|
€(nt1)l €(nt1)2 "*° Cmtln | log |y

Note that a unit in the field would not factor into any of the primes, and so if «; is a
unit, it would correspond to a row (0 0 --- 0 | log |a¢|>

We can split this matrix into two parts. If we separate out the last column we get an
(n+ 1) x n integer matrix— let us call this Ay. We will call the last column vector with real
entries A, so that our entire matrix A is (4p | A). Since Ay is an integer matrix, we can
compute its Smith normal form. This gives us, as usual, the invariant factor decomposition
of the class group. Note, however, that since this is a (n + 1) X n matrix, the last row of the
Smith normal form must be all zeros. This corresponds to the factorization of a unit in the
field, and if we really captured all the information about our quadratic field with our chosen
generators and relations it should correspond to the factorization of the fundamental unit e.
Soif S = FAyE' is the Smith normal form of Ay, where F and £’ are elementary matrices
then the last entry of the column vector F A, is log |¢|, or the regulator of the field. The
determinant of the n x n matrix formed by deleting the row of zeroes from A, still gives

us the class number h, and now the determinant of A gives us hlog|e| = hR.
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6.2 Heuristic Model for Real Quadratics

Note that log(h R) is the quantity that appears in the Brauer-Siegel theorem for real quadrat-
ics. From this observation, and by comparison to the imaginary case, we might expect h R
to look like the determinant of a random (n+1) x (n+ 1) matrix A = (Ap | A ). However,
by considering Ay and A, separately we can also disconnect our predictions about h and
R. This is perhaps the most interesting feature of our heuristic model for the real quadratic

case.

Model 6.2.1 For a real quadratic field K = Q(v/D), D — oo, we model naturalized class
group CV(K) and regulator log |¢| as follows:

Let n(D) be an integer of size log log log |D|%

D3 \~
X(D) such that \/WX(D) — <m>

Let A be an (n+1) x (n+1) matrix with structure (Ag| As), where Agis an (n+1) xn
integer matrix with entries iid N (0, (X(D))?). Then: CI*(K) is modelled by the torsion
subgroup of coker Ay, and thus h*(D) is the determinant of the matrix formed by deleting
the bottom row from the Smith normal form of Ay.

R(D) is modelled by U - A, where ker Ay = ZU

6.3 Experimental Data

Our data is taken for 10000 randomly sampled fundamental discriminants in the range
0, Dy] for Dy = 108. While the data does not match up precisely at this order of magnitude,
we see strong qualitative correlation between the heuristic prediction and actual computed
values for h*(D) and R(D). For example, we see in Figure 6.1 the heuristic model predicts
appropriately sized class numbers— much smaller than in the imaginary case. In particular

the predicted proportion of fields with h%(K) = 1 is experimentally accurate. Similarly,
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Figure 6.1: Class Number: Heuristic Prediction (left) and Sampled log(h*(D)) (right) for
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the prediction for the regulators shows appropriate trends (see Figure 6.2)

We see from Figure 6.3 that log | det A| is still somewhat skewed compared to a gaus-
sian. From Nguyen and Vu’s theorem we expect convergence as n grows larger. Since
the model is already showing behaviour that correlates qualitatively with experiments, it is
expected that with computation of class groups and regulators for larger fundamental dis-
criminant we would see a better fit numerically. With this in mind, the next step for future
work is to rigorously test the heuristic for the real quadratic case with more heavy-duty

experiments.
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Appendix A

We include below some additional figures showing the distribution on naturalized class
numbers h*(D) for imaginary quadratic fields, D € [Dy, 0] with Dy = —10 for integers &
between 5 and 24.

The first set of figures plots P(x < t) for naturalized class numbers (blue) vs. a Gaus-
sian of equivalent variance (red). The second set of figures is a direct plot of the distribu-
tion of the naturalized class numbers. For this we construct histograms with 100 bins each

(10000 data points)
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