We have already seen that the differential equation \(\frac{dy}{dx} = ky \), where \(k \) is a constant, has solution \(y = y_0 e^{kx} \). We have solved this equation in three ways: by guess-and-check in Section 3.1, and by algebraic manipulation and integration in Section 3.2. The differential equation, representing exponential growth or decay, is also an example of a separable differential equation, which we solved as such in Section 3.1.

As introduced in Section 3.1, a first-order differential equation in \(x \) and \(y \) is called separable if it is of the form

\[
\frac{dy}{dx} = g(x)h(y)
\]

where \(y = f(x) \). That is, when the equation is written in terms of differentials, the \(x \)'s and \(dx \)'s can be put on one side of the equation and the \(y \)'s and \(dy \)'s on the other in such a way that we can solve the equation by integrating both sides:

\[
\int \frac{1}{h(y)} \, dy = \int g(x) \, dx
\]

This procedure to solve the differential equation is called the method of separation of variables.

Example 1: As a review, let's again solve the equation \(\frac{dy}{dx} = ky \) by the method of separation of variables. The method begins by rewriting the equation using differentials. First, we separate the \(y \)'s and \(dy \)'s from the \(x \)'s and \(dx \)'s, and then we integrate both sides of the rewritten equation, and solve for \(y \):

\[
\int \frac{1}{y} \, dy = k \, dx
\]

\[
\ln |y| = kx + C
\]

From this point on, we do exactly what we did before: we solve for \(y \) by exponentiating both sides:

\[
|y| = e^{kx+C}
\]

\[
y = \pm e^C e^{kx} = y_0 e^{kx}
\]

Justification for the Method of Separation of Variables: But why is the method of separation of variables valid? After all, on the left side of the separated equation we are integrating with respect to \(y \), and on the right side with respect to \(x \). Using differentials facilitates the method and is a reflection of the genius of Leibniz who believed that the notation should be chosen to motivate the correct answer. However, we have just described a subtlety that we don’t want to slide over. The method does indeed give the correct answer, but we must prove it. *Proof by notation* will not suffice.

In fact, we need to show that given the equation

\[
\frac{dy}{dx} = g(x)h(y)
\]
\[
\frac{dy}{dx} = g(x)h(y)
\]
the antiderivative of \(\frac{1}{h(y)}\) as a function of \(y\) equals the antiderivative of \(g(x)\) as a function of \(x\).

The function \(y = f(x)\) is a solution of the above equation implies that

\[
\begin{align*}
 f'(x) &= g(x)h(f(x)) \\
 \frac{f'(x)}{h(f(x))} &= g(x)
\end{align*}
\]

Let \(H(y)\) be any antiderivative of \(1/h(y)\); so \(H'(y) = 1/h(y)\). Then applying the chain rule yields

\[
\frac{d}{dx} H(f(x)) = H'(f(x)) f'(x)
\]
\[
= f'(x) \frac{1}{h(f(x))}
\]
\[
= g(x)
\]

Thus, the solution \(y = f(x)\) satisfies the equation

\[
H(f(x)) = \int g(x) \, dx
\]

However, this is just the result of the method of separation of variables, which is to rewrite the differential equation as

\[
\frac{1}{h(y)} \, dy = g(x) \, dx
\]

and to integrate both sides (the left side with respect to \(y\) and the right with respect to \(x\)) obtaining an equation of the form

\[
H(y) = \int g(x) \, dx
\]

Then this equation implicitly defines the solution \(y = f(x)\), as desired.

More Examples of the Method of Separation of Variables: In the rest of the section, we will consider additional examples of solving separable differential equations.

Example 2: We can use the method of separation of variables to solve the differential equation \(\frac{dy}{dx} = \frac{x}{y}\).

\[
\begin{align*}
 y \, dy &= x \, dx \\
 \int y \, dy &= \int x \, dx \\
 \frac{y^2}{2} &= \frac{x^2}{2} + C \\
 y^2 - x^2 &= C_1
\end{align*}
\]
The solution curves are hyperbolas. We can’t really go any further unless we knew, say, a point that the solution curve passed through.

Example 3: Solve the IVP \(\frac{dy}{dx} = x^2 y^3; y(3) = 1 \). Separating the variables and integrating, we get:

\[
\frac{1}{y^3} dy = x^2 dx
\]

\[
\int \frac{1}{y^3} dy = \int x^2 dx
\]

\[
\frac{1}{2y^2} = \frac{x^3}{3} + C
\]

Here are some solution curves:

From \(y(3) = 1 \), we find the particular solution:

\[
-\frac{1}{2} = \frac{27}{3} + C
\]

\[
C = -\frac{19}{2}
\]

\[
-\frac{1}{2y^2} = \frac{x^3}{3} - \frac{19}{2}
\]

\[
y^2 = \frac{1}{19 - \frac{2x^3}{3}}
\]

\[
y = \sqrt{19 - \frac{2x^3}{3}}
\]

Note that we know that \(y \) is the positive square root because we have the initial condition \(y(3) = 1 \). Here is the particular solution:
Example 4: Solve $\frac{dy}{dx} = \frac{2y}{x}$.

\[
\frac{1}{y} \, dy = \frac{2}{x} \, dx
\]
\[
\int \frac{1}{y} \, dy = \int \frac{2}{x} \, dx
\]
\[
\ln |y| = 2 \ln |x| + C
\]
\[
|y| = x^2 e^C
\]
\[
y = C_1 x^2
\]

The solution curves are a family of parabolas.

Example 5: Solve $\frac{dy}{dx} = -\frac{x}{2y}$.

\[
2y \, dy = -x \, dx
\]
\[
\int 2y \, dy = - \int x \, dx
\]
\[
y^2 = -\frac{x^2}{2} + C
\]
\[
2y^2 + x^2 = C_1
\]

The solutions are a family of ellipses:
Example 6: We can also solve Torricelli’s equation by the method of separation of variables. We found in Section 2.18 that the equation is of the form \(y' = k\sqrt{y} \), where \(k \) is a constant. Then we have:

\[
\int y^{-\frac{1}{2}} \, dy = k \int dx
\]

\[
\int y^{-\frac{1}{2}} \, dy = \int k \, dx
\]

\[
2 y^{1/2} = kx + C
\]

\[
y^{1/2} = \frac{1}{2} kx + C_1
\]

\[
y = \left(\frac{1}{2} kx + C_1 \right)^2
\]

This is the form of the general solution that we explored in the case study of the previous section.

Exercises: Problems Check what you have learned!

Videos: Tutorial Solutions See problems worked out!