Exercises for Section 2.5

1. (1 pt)
If the graph of f is as shown below, then at what points does f have a removable discontinuity? (Click the image for a larger view.)

Enter removable discontinuities from left to right. Use only those answer boxes that you need; leave the rest blank.

first discontinuity: $x =$

second discontinuity: $x =$

third discontinuity: $x =$

fourth discontinuity: $x =$

Redefine f at each of the removable discontinuities so as to make it continuous there. Again, use only those answer boxes that you need.

At the first discontinuity,
define $f(x) =$

At the second discontinuity,
define $f(x) =$

At the third discontinuity,
define $f(x) =$

At the fourth discontinuity,
define $f(x) =$

2. (1 pt)
Consider the function

$$f(x) = \begin{cases}
4x & \text{if } x < 0 \\
3 & \text{if } x \geq 0
\end{cases}$$

Choose the answer which best describes the continuity of this function.

A. no
B. yes

What theorem tells you that this is the case?

A. Mean-Value Theorem
B. Two-Sided Limit Theorem

3. (1 pt)
Consider the function

$$f(x) = \begin{cases}
x^3 & \text{if } x \leq 1 \\
0.569 & \text{if } x > 1
\end{cases}$$

Choose the answer which best describes the continuity of this function.

A. The function is a composition of two continuous functions, and is therefore continuous on the real line.
B. The function is discontinuous at $x = 1$, but continuous on the rest of the real line.
C. The function is unbounded and therefore cannot be continuous.
D. The function has a removable discontinuity at 1, but is continuous on the rest of the real line.
E. The function has a continuous extension to $x = 1$.

4. (1 pt)
Consider the function

$$f(x) = \frac{x^2 - 2}{x^3 - 6x^2 + 8}.$$ How should $f(x)$ be defined at $x = \sqrt{2}$ to be continuous there? Give a formula for the continuous extension of f that includes $\pm\sqrt{2}$ in its domain.

$$F(x) =$$

5. (1 pt)
Consider the function

$$g(x) = \begin{cases}
x - m & \text{if } x < 2 \\
1 - mx & \text{if } x \geq 2
\end{cases}$$

Find m so that $g(x)$ is continuous on the real line.

$$m =$$

6. (1 pt)
If $f(x) = x^5 + 4x - 1$, does f have a zero between $x = 0$ and $x = 1$?

A. no
B. yes
7. (1 pt)
If \(f(x) = \frac{3x - 30}{x^2 - 7x - 30} \), then at what points does \(f \) have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank.

first discontinuity: \(x = \)
second discontinuity: \(x = \)
third discontinuity: \(x = \)
fourth discontinuity: \(x = \)

8. (1 pt)
If \(f(x) = \frac{10x}{|x^2 - 8x|} \), then at what points does \(f \) have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank.

first discontinuity: \(x = \)
second discontinuity: \(x = \)
third discontinuity: \(x = \)
fourth discontinuity: \(x = \)

9. (1 pt)
Consider the function
\[
 f(x) = \begin{cases}
 2x^2 - 4 & \text{if } x < 0 \\
 4 & \text{if } x \geq 0
\end{cases}
\]
Is \(f \) right continuous? (Y or N)

Is \(f \) left continuous? (Y or N)

Is \(f \) continuous? (Y or N)

10. (1 pt)
On which of the following intervals is \(f(x) = \frac{1}{\sqrt{x-8}} \) continuous?

A. \([8, +\infty)\)
B. \((8, +\infty)\)
C. \([1, 8)\)
D. \((-\infty, 8)\)

11. (1 pt)
Consider the following function:
\[
 f(x) = \begin{cases}
 cx + 2.1 & \text{if } x \leq 6 \\
 cx^2 - 2.1 & \text{if } x > 6
\end{cases}
\]
Which of the following is true?

A. \(f \) is continuous
B. \(f \) is discontinuous everywhere
C. \(f \) has one removable discontinuity
D. \(f \) has infinitely many discontinuities

12. (1 pt)
Let
\[
 f(x) = \begin{cases}
 cx + 2 & \text{if } x \leq 5 \\
 cx^2 - 2 & \text{if } x > 5
\end{cases}
\]
For what value of \(c \) is the function \(f \) continuous on \((-\infty, \infty)\)?

\(c = \)

13. (1 pt)
If \(f(x) = \frac{7x + 11}{x^3 - 23x^2 + 151x - 273} \), then at what points does \(f \) have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank.

first discontinuity: \(x = \)
second discontinuity: \(x = \)
third discontinuity: \(x = \)
fourth discontinuity: \(x = \)