Errata to
Morita Equivalence and Continuous-Trace
C^*-algebras
Iain Raeburn and Dana P. Williams
Updated: August 5, 2014

Page 9, line −12: “faithful representation” should be faithful nondegenerate representation”.

Page 9, line −2: “sequilinear” should be “sesquilinear”.

Page 15, line 8: “cstar@group” should be omitted.

Page 15, line −4: “$\langle x, x \rangle_A \geq 0$” should be “$\langle x, x \rangle_0 \geq 0$”.

Page 16, line −3: “for all $x, y \in X$” should be “for all $x \in X$ and $y \in Y$”.

Page 17, line 12: Delete “$x \in X$ and”.

Page 18, line −5: “X_A” should be “X_A”.

Page 24, line 10: “nonzero ideal A” should be “nonzero ideal in A”.

Page 25, line 13: “$\lambda \in C$” should be “$\lambda \in \mathbb{C}$”.

Page 28, line 6: Change “monomorphism” to “a monomorphism”.

Page 36 lines 7 and 12: The reference “(2.23)” should be “(2.25)”.

Page 42, line 12: Replace “some mild smoothness conditions” with “some smoothness and growth conditions”.

Page 42, line −13: “$\langle x, y \rangle_A(t)$” should be “$C_0(T,K(H)) \langle x, y \rangle(t)$”.

Page 44, line −3: replace “for all $x \in X$” with “for all $x \in X_0$”.

Page 45, line 1: Replace “X” by “X_0”.

Page 52, line 13: “(x, c)” should be “(x, a)”.

Page 76, line 8: “for the the” should be “for the”.

1
Page 77, line -5: “\(\tilde{\phi}(B^n(U,S)) \)” should be “\(\tilde{\phi}(B^n(U,R)) \)”.

Page 83, line 8: “\(N_x \cap W_{i_1,...,i_n} \)” should be replaced by “\(N_x \setminus W_{i_1,...,i_n} \)”.

Page 87, lines 6 and 7: A number of changes should be made to the last paragraph of Example 4.39. On line 6, “\((-\frac{1}{2}, \frac{3}{2})/\sim \)” should be replaced by “\((-\frac{1}{3}, 1)/\sim \)”. On line 7, “sets \(U_1 := \ldots \) are” should be replaced by “sets \(U_1 := (-\frac{1}{2}, \frac{1}{3}), U_2 := (0, \frac{2}{3}) \) and \(U_3 := (\frac{1}{2}, 1) \)”.

Page 87, line 20: In Lemma 4.40, “\(f^* \)” should be replaced by “\(f^* \)”, etc.

Page 89, line 8: “cohomology group” should be “cohomology groups”.

Page 92, line -2: “\(h(x) \in p^{-1}(U) \) has” should be “\(x \in p^{-1}(X), h(x) \) has”.

Page 93, line -10: “Mobius@Möbius” should be “Möbius”.

Page 97, line 5 “\(H^n \)” should be “\(H^1 \)”.

Page 100, line 8: Remark 4.64 is (slightly) inaccurate. The principal bundles in [77] are exactly the free \(G \)-spaces satisfying (c). These spaces are called *Cartan \(G \)-spaces* in [121]. If the orbit space (or base space of the bundle in [77]) is Hausdorff, then these spaces coincide with the free and proper \(G \)-spaces [121, Theorem 1.2.9]. In general, a free Cartan \(G \)-space need not be a proper \(G \)-space — see the example following Proposition 1.1.4 in [121]. In view of this, the second sentence of the remark should read “If \(G \) acts freely and satisfies (b) and (c), then \(G \) automatically acts properly; thus the locally compact principal bundles over Hausdorff spaces in [77] correspond to the free and proper \(G \)-spaces”.

Page 103, lines 1 and 5: Replace “\((1-t, 1] \)” by “\((t, 1] \)”.

Page 111, line 5 “\(= \)” should be “\(\cong \)”.

Page 118, line -8: “in Dauns-Hofmann” should be “in the Dauns-Hofmann”.

Page 124, lines 18 & 21: Replace “\(C_0(X) \)” with “\(C(X) \)”.

Page 127, line 9: “\(B^{F_{ij}} \)” should be “\(C(F_{ij}) \)”.

Page 127, line 18: “\(\delta^2(A) \)” should be “\(\delta(A) \)”.

Page 130, line 13: Replace “\(a = a(F_{ij} p_i^{F_{ij}}) \)” by “\(a = a(F_{ij} (v_{ij})^{F_{ij}}) \)”.

Page 130, lines -11---1: The proof of Lemma 5.28(b) (i.e., the last paragraph on page 130) should be replaced by “Note B” on page 6 of these errata.

Page 138, line 10: “\(\{U_{ij}\} \)” should be “\(\{U_i\} \)”.

Page 140, line 11: “\([\pi_{i,t}] \)” should be “\([\pi_{i,t}] \)”.
Page 157, line 10: “induces an isomorphism”.

Page 161, line 12: The induced homomorphism f^* is also defined in Lemma 4.40.

Page 163, §6.3: The definition of $\text{Ind}^X_G(A, \alpha)$ really doesn’t make much sense unless X/G is Hausdorff. Fortunately, X/G is Hausdorff in all our applications.

Page 164, line 17: “$\text{Ind}^X_G(A, \alpha)$” should be “$\text{Ind}^G_X(A, \beta)$”.

Page 175, line 11: The formula

$$f^* \left(s \right) := \Delta \left(s^{-1} \right) f(\Delta(s^{-1}))$$

should be

$$f^* \left(s \right) := \Delta \left(s^{-1} \alpha_s \left(f(s^{-1}) \right) \right).$$

Page 177, line 1: Replace “$\text{Aut} A$” with “$\text{UM}(A)$”.

Page 178, line 14: “$\left(B, B, \beta \right)$” should be “$\left(B, G, \beta \right)$”.

Page 188, line 6: “$f : G \to A$” should be “$f : G^n \to A$”.

Page 189, line 8–9: If the G-action on A is not trivial, then it may not be the case that the product of Haar measure on A with the left Haar measure on G is a left-invariant measure on E_ω. However, the product of the Haar measure on A with a right Haar measure on G is right-invariant on E_ω. The Mackey and Weil result from [99, Theorem 7.1] still applies, and E_ω has a locally compact topology compatible with its Borel structure.\(^1\)

Page 197, line 3: Replace “$H^2(X; \mathbb{Z})^*$” with “$H^0(T; \mathbb{Z})^*$”.

Page 204, line 11: “only if $\sigma(a) \subset [0, \infty)$” should be replaced by “only if $a = a^*$ and $\sigma(a) \subset [0, \infty)$”.

Page 204, line 8: “and $\rho \in S(A)$” should be “and ρ is a state on A”.

Page 207, line 5: Replace “$\not\in \mathcal{B}(\lambda; R)$” with “$\not\in \mathcal{B}(\lambda; R)$, where $\mathcal{B}(\lambda; R) = \{ \tau \in \mathbb{C} : |\tau - \lambda| \leq R \}$.

Page 210, line 14: Replace “$\psi(a)$” by “$\psi(a^* a)$”.

Page 214, line 4: “thus $S \in \hat{A}$ is open in \hat{A} if and only if ... in $\text{Prim} A$.” should be replaced by “$S \subseteq \text{Prim} A$ is open if and only if $\{ \pi \in \hat{A} : \ker \pi \in S \}$ is open in \hat{A}.”

Page 214, line 14: “$t \in \mathbb{T}$” should be “$t \in \mathbb{T}$”.

\(^1\)Although not strictly necessary, it might be interesting to note that we can exhibit a left invariant measure on E_ω directly. Let $\sigma : G \to (0, \infty)$ be the continuous homomorphism determined by

$$\sigma(t) \int_A g(t \cdot a) \, d\mu_A(a) = \int_A g(a) \, d\mu_A(a).$$

Then we get a left-invariant integral on $E_\omega = A \times G$ by

$$I(f) := \int_A \int_A f(a, t) \sigma(t)^{-1} \, d\mu_A(a) \, d\mu_G(t).$$
Page 214, line −12: “an isomorphism”.

Hooptedoodle A.51 on page 232: Comment: in a recent announcement (July 2001), Nik Weaver has issued a preprint giving an example of a prime ideal which is not primitive.

Page 236, line −8: “bilinear from $A \otimes B$” should be “bilinear from $A \times B$”.

Page 239, Lemma B.6: I can’t follow the last paragraph of the proof. However, it suffices to prove the lemma with the additional hypothesis that A has an identity. Then the last paragraph of the proof can be replaced with the following observation:

Lemma Suppose that A is a C^*-algebra with identity and that C is a subset of the state space of A such that for all self-adjoint a, $\|a\| = \sup\{ |\rho(a)| : \rho \in C \}$. Then the convex hull of C is weak*-dense in the state space of A.

Proof. Let D be the closed convex hull of C. The functional calculus implies that a self-adjoint element a is positive if and only if $\|a\|_A - a$ has norm bounded by $\|a\|$. Thus

$$a = a^* \text{ and } \rho(a) \geq 0 \text{ for all } \rho \in C \text{ implies that } a \geq 0.$$ \hfill (1)

If the convex hull of C is not dense, then there is a state τ which is not in D. Thus τ has a convex neighborhood disjoint from D and Lemma A.40 implies that there is an $a \in A$ and an $\alpha \in \mathbb{R}$ such that

$$\text{Re } \tau(a) < \alpha \leq \text{Re } \rho(a) \text{ for all } \rho \in C.$$

Since $\rho(a^*) = \overline{\rho(a)}$ for any state ρ, we can replace a by $a_0 := \frac{1}{2}(a + a^*)$ so that

$$\tau(a_0) < \alpha \leq \rho(a_0) \text{ for all } \rho \in C.$$

It follows from (1) that $a_0 - \alpha 1_A \geq 0$. But then, since τ is positive, $\tau(a_0) \geq \alpha$. This is a contradiction and completes the proof.

Page 239, line −6: Since we added the hypothesis that A have a unit to Lemma B.6, it no longer applies directly. However, if \mathfrak{A} is the C^*-subalgebra generated by \mathfrak{A} and the identity, then we can apply Lemma B.6 to \mathfrak{A} with the observation that every state of \mathfrak{A} extends to a state on \mathfrak{A} by Lemma A.6.

Page 245, line 2: Replace “isomorphism ψ” with “isomorphism ϕ”.

Page 252, line 16: Replace “$B \to M(B \otimes_{\text{max}} D)$” with “$C \to M(B \otimes_{\text{max}} D)$”.

Page 262, line 1: Replace “Every C^*-algebra” with “Every CCR C^*-algebra”.

4
Note A: The first paragraph of the proof of Proposition C.1 should be replaced with the following.

We claim it suffices to prove the result when G is σ-compact. Let G_0 be a σ-compact open subgroup of G (such as that generated by any compact neighbourhood of e in G). Let I be a set of double coset representatives for $G_0 \backslash G/H$, so that G is the disjoint union

$$\bigcup_{a \in I} G_0 a H.$$

Since G_0 is open, each double coset $G_0 a H$ is open, and since $G_0 a H \subset G_0 a H = G_0 a H$, each double coset is also closed.\(^2\) For each $a \in I$, let $H^a := a H a^{-1}$ and let ν^a be the Haar measure\(^3\) on H^a given by

$$\int_{H^a} f(\omega) \, d\nu^a(\omega) := \int_H f(ata^{-1}) \, d\nu(t) \quad \text{for } f \in C_c(H^a).$$

Let $H_0^a := H^a \cap G_0$. Since H_0^a is an open subgroup of H^a, the restriction of ν^a to H_0^a is a Haar measure ν_0^a on H_0^a. Since G_0 is σ-compact and H_0^a is a closed

\(^2\)If V is a symmetric neighbourhood of e in G and $A \subset G$, then $V^2 A \subset V^2 A$. To see this, let $x \in V A$. Then $V x$ is a neighbourhood of x and must meet $V A$. Thus $x \in V^2 A$.

\(^3\)Note that we can have $H^a = H^b$ without having $\nu^a = \nu^b$.
subgroup, we may assume that there is a Bruhat approximate cross section \(b_a \) for \(G_0 \) over \(H_0^a \) with respect to \(\nu_0^a \). Since \(G_0 \) is closed and open, we can extend \(b_a \) to a bounded continuous function on \(G \) by letting it be identically zero off \(G_0 \). Suppose that \(s \in G_0 \) and \(t \in H^a \). Then \(st \in G_0 \) implies \(t \in H^a \cap G_0 = H_0^a \).

Since \(b_a \) vanishes off \(G_0 \) and is approximate section for \(G_0 \) over \(H_a^0 \),

\[
\int_{H^a} b_a(st) \, d\nu^a(t) = \int_{H_0^a} b_a(st) \, d\nu_0^a(t) = 1 \quad \text{for all } s \in G_0. \tag{2}
\]

Since the double cosets are both closed and open, we can define a bounded continuous function on \(G \) by

\[
b(s) := b_a(sa^{-1}) \quad \text{if } s \in G_0aH \text{ for } a \in I.
\]

We claim that \(b \) is a Bruhat approximate cross section for \(G \) over \(H \). We first check the integral condition. Let \(x \in G \). Then there is a \(a \in I \) such that \(x = sah \) with \(s \in G_0 \) and \(h \in H \). Then, in view of (2), we have

\[
\int_H b(xt) \, d\nu(t) = \int_H b_a(salta^{-1}) \, d\nu(t) = \int_{H^a} b_a(s\omega) \, d\nu^a(\omega) = 1.
\]

Now let \(C \) be a compact set in \(G \). Since \(CH \) meets at most finitely many double cosets, it suffices to assume that \(C \subset G_0aH \) for some \(a \in I \) and prove that \(\text{supp } b \cap CH \) is compact. But \(\{ G_0ah \}_{h \in H} \) is an open cover of \(C \). Thus

\[
C = \bigcup_{i=1}^n C_i a h_i
\]

for compact sets \(C_i \subset G_0 \) and \(h_i \in H \). Therefore

\[
\text{supp } b \cap CH = \bigcup_{i=1}^n \text{supp } b \cap C_i a H.
\]

If \(s \in C_i, h \in H \) and \(b(sah) \neq 0 \), then \(b_a(saha^{-1}) \neq 0 \). This implies \(saha^{-1} \in G_0 \) and \(ah^{-1} \in H_0^a \). That is, \(sah \in C_i H_0^a \cdot a \). It follows that

\[
\text{supp } b \cap CH \subset \bigcup_{i=1}^n \left(\text{supp } b_a \cap C_i H_0^a \right) \cdot a.
\]

Our assumptions on \(b_a \) imply that the right-hand side is compact. It follows that \(b \) is the desired section, and it suffices to treat the \(\sigma \)-compact case as claimed.

Note B: This material replaces the last paragraph of the proof of Lemma 5.28 on page 130. (There is a problem with the partition of unity argument.)

Let \(\{ F_i \}, \{ U_i \}, \{ X_i \} \) and \(g_{ij} \) be as in Proposition 5.24. As in the proof of Proposition 5.15, given \(t \in U_i \), we can find a \(x_i \in X_i \) such that \(\langle x_i, x_i \rangle_{C(F_i)} \equiv 1 \) near \(t \). Thus be refining the cover \(\{ U_i \} \) if necessary, we can assume that
\(\langle x_i, x_i \rangle_{C(F_i)} \equiv 1 \) on all of \(F_i \). Now let \(p_i \in A \) be such that \(p_i^{F_i} = \mathbb{1}_{F_i} \langle x_i, x_i \rangle \). Then for each \(t \in F_i \), Lemma 5.16 implies that \(p_i(t) \) is a rank-one projection. A similar argument shows that any \(v_{ij} \in A \) satisfying

\[
v_{ij}^{F_{ij}} = \mathbb{1}_{F_{ij}} \langle x_i^{F_{ij}}, g_{ij}(x_j^{F_{ij}}) \rangle
\]

has the properties required in (5.5).