SQUARE VALUES OF EULER’S FUNCTION

PAUL POLLACK AND CARL POMERANCE

Abstract. We show that almost all squares are missing from the range of Euler’s ϕ-function.

1. Introduction

Let ϕ denote Euler’s function, let N denote the set of positive integers, and let \(\mathcal{V} = \varphi(\mathbb{N}) \), the set of values of ϕ. Further, let \(V(x) = \# \{ n \leq x : n \in \mathcal{V} \} \). The distribution of \(\mathcal{V} \) has been of interest since the 1930s when Erdős showed that \(V(x) = x/(\log x)^{1+o(1)} \) as \(x \to \infty \). We still do not have an asymptotic for \(V(x) \), but after work of Ford [7], we do know the order of magnitude.

For a function \(f : \mathbb{N} \to \mathbb{N} \), let

\[
\mathcal{V}_f = \{ n : f(n) \in \mathcal{V} \}, \quad \mathcal{V}^f = \{ n : \varphi(n) \in f(\mathbb{N}) \},
\]

and let \(V_f(x), V^f(x) \) be the respective counting functions for \(\mathcal{V}_f, \mathcal{V}^f \). The situation when \(f \) is a linear polynomial is fairly well-understood. If \(f(n) = kn \), where \(k \) is a fixed natural number, then \(V_f(x) \sim V(kx) \) and \(V^f(x) \sim x \) as \(x \to \infty \); on the other hand, if \(f(n) = kn + j \) with \(0 < j < k \), then \(V_f(x) = o(V(kx)) \) and \(V^f(x) = o(x) \). (The \(V_f \)-results do not appear to be in the literature, but follow from the method of Ford.) More refined results concerning the cases when \(0 < j < k \) can be found in [15, 6, 8]. The case when \(f = \sigma \), the sum-of-divisors function, was considered in [9], where some old questions of Erdős were settled (see also [10, 11]). This paper is concerned with the function \(f(n) = n^2 \), which we denote with the symbol \(\Box \), so that

\[
V_{\Box}(x) = \# \{ n \leq x : n^2 \in \mathcal{V} \}, \quad V^{\Box}(x) = \# \{ n \leq x : \varphi(n) = m^2 \text{ for some integer } m \}.
\]

It was shown in [1], perhaps counter-intuitively, that \(V^{\Box}(x) \geq x^{0.7} \) for all large \(x \), with the conjectured exponent on \(x \) allowed to be any number below 1. In that paper it was also shown that \(V_{\Box}(x) \geq x^{0.234} \) for all sufficiently large \(x \). This lower bound was considerably improved in [2], where it was shown that \(V_{\Box}(x) \gg x/(\log x)^4 \) (compare with the case \(r = 2 \) of [12, Theorem 1.2]).

The paper [1] shows that \(V^{\Box}(x) \leq x/\exp((1 + o(1))(\log x \log \log \log x)^{1/2}) \) as \(x \to \infty \), but does not address an upper bound for \(V_{\Box}(x) \). It is not immediately clear that \(V_{\Box}(x) = o(x) \). In fact, a short computer run shows that \(V_{\Box}(10^8) = 26,094,797 \) so that more than half of the even numbers to \(10^8 \) have their squares in the range of \(\varphi \). In this paper we prove the following results.

Theorem 1. For all sufficiently large numbers \(x \), we have \(V_{\Box}(x) \leq x/(\log x)^{0.0063} \).

Theorem 2. We have \(V_{\Box}(x) \gg x/(\log x \log \log x)^2 \).

In addition, we discuss some heuristics for the estimation of \(V_{\Box}(x) \) and we discuss the analogous problems for the sum-of-divisors function.

It would be interesting to obtain versions of Theorems 1 and 2 with \(\varphi \) replaced by the Carmichael \(\lambda \)-function, but we have not so far succeeded in this.

2010 Mathematics Subject Classification. Primary: 11N37, Secondary: 11N25, 11N36.
Notation. We use the Landau/Bachmann O and o-notation, as well as the associated Vinogradov \ll and \gg notations, with their standard meanings. We write $A \asymp B$ to mean that $A \ll B$ and $B \ll A$. Any dependence of implied constants is noted explicitly, often with a subscript.

The letters p, q, and ℓ, with or without subscripts, always denote primes. We use $P(n)$ for the largest prime factor of the natural number n, with the convention that $P(1) = 1$. The notation $p^e \parallel n$ means that $p^e | n$ but that $p^{e+1} \nmid n$; in this case, we say that p^e exactly divides n. As usual, $\Omega(n)$ denotes the number of prime factors of n counted with multiplicity; thus, $\Omega(n) = \sum p^e \parallel n k$.

We write \log_k for the k-fold iterate of the natural logarithm.

2. Preparation

2.1. Anatomy and sieving. A classical theorem of Hardy and Ramanujan asserts that a typical natural number n has about $\log_2 n$ prime factors, regardless of whether or not the primes are counted with multiplicity. Our first lemma, which may be deduced from the results in Chapter 0 of [14], bounds from above the number of n for which $\Omega(n)$ is atypically large.

Lemma 3. Let $x \geq 3$, and let $\epsilon > 0$. For $1 \leq \alpha \leq 2 - \epsilon$, the number of $n \leq x$ with $\Omega(n) \geq \alpha \log_2 x$ is $O_{\epsilon}(x(\log x)^{-Q(\alpha)})$, where we set $Q(\lambda) = \int_1^\lambda \log t \, dt = \lambda \log(\lambda) - \lambda + 1$.

We now quote two upper bound sieve results, in slightly crude forms that are convenient for our later applications. Both of these follow from the general upper bound O-result appearing as [13, Theorem 2.2].

Lemma 4. Suppose that A_1, \ldots, A_h are positive integers and B_1, \ldots, B_h are integers such that

$$E := \prod_{i=1}^h A_i \prod_{1 \leq i < j \leq h} (A_i B_j - A_j B_i) \neq 0.$$

Then for $x \geq 3$,

$$\# \{ n \leq x : A_i n + B_i \text{ prime for all } 1 \leq i \leq h \} \ll \frac{x}{(\log x)^h} (\log_2 |3E|)^h,$$

where the implied constant may depend on h.

Lemma 5. Let A, B, and C be integers with $A > 0$ and $D = B^2 - 4AC$ not a square. Write $D = df^2$, where d is a fundamental discriminant. Then for $x \geq 3$,

$$\# \{ p \leq x : Ap^2 + Bp + C \text{ prime} \} \ll \frac{x}{(\log x)^2} (\log_2 |3ACD|)^3 \prod_{\ell \leq x} \left(1 - \frac{(d \ell)}{\ell}\right),$$

where $(d \ell)$ is the Kronecker symbol.

2.2. Sieving quadratics and short Euler products. To control the size of the product on ℓ appearing in (1), we appeal to the methods and results of a recent preprint of Chandee, David, Koukoulopoulos, and Smith [4].

Lemma 6. Let $\epsilon > 0$. Let χ be a nonprincipal real character mod q. For all real $y \geq 1$, we have

$$\prod_{\ell \leq y} \left(1 - \frac{\chi(\ell)}{\ell}\right) \ll_\epsilon q^\epsilon.$$
Proof. The proof parallels that of [4, Lemma 3.2]. By Mertens’ theorem, $\prod_{\ell \leq y} (1 - \chi(\ell)/\ell) \ll q^\varepsilon \prod_{\ell \leq y, \ell \nmid q^\varepsilon} (1 - \chi(\ell)/\ell)$. Hence, it suffices to show that the remaining product is $O_\varepsilon(1)$. By the classical Siegel–Walfisz estimates (see [5, eq. (3), p. 132]),

$$\sum_{n \leq x} \Lambda(n)\chi(n) \ll x/\log x \quad \text{for all } x \geq \exp(q^\varepsilon).$$

(2)

Recalling that $\log(1 - t) = -\sum_{k \geq 1} t^k/k$ (for $|t| < 1$), we find that

$$\log \prod_{\exp(q^\varepsilon) < \ell \leq y} \left(1 - \frac{\chi(\ell)}{\ell}\right) = -\sum_{n > 1, \ell \nmid \exp(q^\varepsilon) < \ell \leq y} \frac{\Lambda(n)\chi(n)}{n \log n}$$

$$= -\sum_{\exp(q^\varepsilon) < n \leq y} \frac{\Lambda(n)\chi(n)}{n \log n} + O(1) \ll \varepsilon 1.$$

where the final estimate is obtained from (2) by partial summation. \qed

The next lemma is an equivalent form of [4, Lemma 3.3], which the authors of that paper attribute in essence to Elliott.

Lemma 7. Fix $\delta \in (0, 1]$, and let $Q \geq 3$. We can choose a set $\mathcal{E}_\delta(Q)$ of real, primitive characters, all of conductor bounded by Q, with

$$\#\mathcal{E}_\delta(Q) \ll Q^\delta$$

and so that the following holds: If χ is a primitive real character of conductor $q \leq Q$ and $\chi \notin \mathcal{E}_\delta(Q)$, then

$$\prod_{y < \ell \leq z} \left(1 - \frac{\chi(\ell)}{\ell}\right) \ll 1 \quad \text{uniformly for } z \geq y \geq \log Q.$$

For each nonsquare integer d, let χ_d be the primitive real character of conductor $|D|$ given by the Kronecker symbol $(\frac{D}{\ell})$, where D is the discriminant of $\mathbb{Q}(\sqrt{d})$. It is convenient for us to isolate the following consequence of Lemma 7.

Lemma 8. Let \mathcal{D} be the set of squarefree $d \neq 1$ for which there exists a real number y with

$$\prod_{\ell \leq y} \left(1 - \frac{\chi_d(\ell)}{\ell}\right) \geq (\log_2 |3d|)^2.$$

(3)

For fixed $\delta > 0$ and all $x \geq 1$, we have that

$$\#\{d \in \mathcal{D} : |d| \leq x\} \ll x^\delta.$$

Proof. We can assume that x is large. It suffices to prove the stated estimate for $\\{d \in \mathcal{D} : x^\delta < |d| \leq x\}$. Let $\{y_j\}_{j=0}^\infty$ be the sequence of real numbers defined by $y_j = 4^j x^\delta$, and choose j so that $y_j < |d| \leq y_{j+1}$. Then the conductor of χ_d is bounded by $4y_{j+1}$, and $4y_{j+1} < 16|d|$. We claim that if $\chi_d \notin \mathcal{E}_\delta(4y_{j+1})$, then the inequality (3) never holds. Indeed, Lemma 7 (with $Q := 4y_{j+1}$) shows that for every y,

$$\prod_{\ell \leq y} \left(1 - \frac{\chi_d(\ell)}{\ell}\right) \ll \prod_{\ell \leq \min\{\log(4y_{j+1}), y\}} \left(1 - \frac{\chi_d(\ell)}{\ell}\right) \ll \log_2 |d|,$$

using Mertens’ theorem in the final step. Since $|d| \geq x^\delta$ and x is large, this upper bound is incompatible with (3), proving our claim. Since distinct squarefree d give rise to distinct
primitive real characters χ_d, the upper bound for $\#E_\delta(Q)$ from Lemma 7 yields
$$\#\{d \in \mathcal{D} : x^\delta < |d| \leq x\} \leq \sum_{j \geq 0} \sum_{y_j \leq x} \#E_\delta(4y_{j+1}) \ll x^{\delta} \sum_{0 \leq j \leq \frac{\log(x^{-\delta})}{\log 4}} 4(j+2)^3 x^{\delta} \ll x^\delta.$$
This completes the proof of the lemma. □

3. PROOF OF THE UPPER BOUND (THEOREM 1)

Setup. We assume throughout the argument that x is large. Let $n \leq x$ be such that $n^2 = \varphi(m)$ for some integer m. By de Bruijn [3, eq. (1.6)], we can assume that

(i) $P(n) \geq x^{1/\log_2 x}$

since the number of $n \leq x$ for which (i) fails is $O(x/\log x)$. We can also assume that

(ii) n is not divisible by any $d \in \mathcal{D}$ with $|d| > \log x$, where \mathcal{D} is the set considered in Lemma 8.

Indeed, since $\#\{d \in \mathcal{D} : |d| \leq t\} \ll t^{1/2}$ for all $t \geq 1$, the count of exceptional $n \leq x$ is $O(x/(\log x)^{1/2})$ (by partial summation). At the cost of an additional exceptional set of the same order, we can further assume that

(iii) n is not divisible by any square exceeding $\log x$.

Introducing another exceptional set of size $O(x/(\log x)^{1/2})$, we can assume that

(iv) there is no prime p^2 dividing m with $p > \log x$.

Indeed, suppose that $p^2 \mid m$. Setting $r_p = \prod_{|p| \neq |p|} \ell^{[\log_2 \ell]}$, we see that $p \cdot r_p \mid n$. Note that $r_p \geq \sqrt{p} - 1 \gg \sqrt{p}$. Hence, the number of n with $p^2 \mid m$ for some $p > \log x$ does not exceed
$$\sum_{p > \log x} \frac{x}{p \cdot r_p} \ll x \sum_{p > \log x} \frac{1}{p^{3/2}} \ll x/(\log x)^{1/2}.$$

Let α be a parameter with $1 < \alpha < 2$, which will be chosen later so as to optimize the argument. We assume that

(v) $\Omega(n) \leq \alpha \log_2 x$,

noting that Lemma 3 guarantees that the number of exceptions $n \leq x$ is
$$\ll \alpha x/(\log x)^{1-\alpha + \alpha \log \alpha}. \quad (4)$$

Let $p = P(n)$, so that $p^2 \mid n^2 = \varphi(m)$. By (i) and (iv), we have that $p^2 \mid m$, and so there are only two ways to explain how $p^2 \mid \varphi(m)$:

I. there are two different primes $q_1, q_2 \mid m$ with $q_i \equiv 1 \pmod p$ for $i = 1, 2$,

II. there is a prime $q \mid m$ with $q \equiv 1 \pmod {p^2}$.

Case I. We will assume that the primes q_1, q_2 are not 1 ($\mod p^2$); otherwise we may push this situation into Case II. For such a prime q we may write it as $1 + apb^2$, where ap is squarefree. This shows that n may be written in the form

$$n = u a_1 a_2 a_3 b_1 b_2 p, \quad with \quad a_1 a_2 a_3 p \text{ squarefree}, \ 1 + a_1 a_3 a_1 p^2 \text{ prime}, \ 1 + a_2 a_3 a_3 p^2 \text{ prime}.$$

For each fixed choice of $u, a_1, a_2, a_3, b_1, b_2$ we count primes $p \leq x/ua_1 a_2 a_3 b_1 b_2$ with the two primality conditions above holding. Using the upper bound sieve in the form of Lemma 4, and recalling that $x/ua_1 a_2 a_3 b_1 b_2 \geq p > x^{1/\log_2 x}$, we find that the number of these p is
$$\ll \frac{x}{ua_1 a_2 a_3 b_1 b_2 (\log x)^3 (\log_2 x)^6}. \quad (5)$$

(Explicitly, we apply Lemma 4 with $A_1 = 1$ and $B_1 = 0$, $A_2 = a_1 a_3 b_1^2$ and $B_2 = 1$, and $A_3 = a_2 a_3 b_2^2$ and $B_3 = 1$; note that since $q_1 \neq q_2$, we have $E \neq 0$, and $|E| < x^{O(1)}$.) Now we
sum our upper bound (5) over the possibilities for \(u, a_1, a_2, a_3, b_1, b_2 \), keeping in mind that their product is bounded by \(x \) and \(\Omega(ua_1a_2a_3b_1b_2) \leq \alpha \log_2 x \). Here it is helpful to introduce an auxiliary parameter \(z \) (Rankin’s trick); notice that when \(0 < z < 1 \),

\[
\sum \frac{1}{ua_1a_2a_3b_1b_2} \leq z^{-\alpha \log_2 x} \sum \frac{z^{\Omega(u)}z^{\Omega(a_1)}z^{\Omega(a_2)}z^{\Omega(a_3)}z^{\Omega(b_1)}z^{\Omega(b_2)}}{ua_1a_2a_3b_1b_2}.
\]

Keeping only the restriction that \(P(ua_1a_2a_3b_1b_2) \leq x \), we find that

\[
\sum \frac{z^{\Omega(a_1)}z^{\Omega(a_2)}z^{\Omega(a_3)}z^{\Omega(b_1)}z^{\Omega(b_2)}}{ua_1a_2a_3b_1b_2} \leq \left(\prod_{\ell \leq x} \left(1 - \frac{z}{\ell} \right)^{-1} \right)^6 \ll (\log x)^{6z}.
\]

(The last estimate uses a weak form of Mertens’ theorem.) Comparing the previous two displays, we find that \(\sum \frac{1}{ua_1a_2a_3b_1b_2} \ll (\log x)^{6z-\alpha \log z} \). To optimize, we take \(z = \alpha/6 \) to get an upper bound of \(O((\log x)^{\alpha/6 \log (\alpha/6)}) \) for our reciprocal sum. Referring back to (5), we see that the total count of \(n \) in Case I is

\[
\ll \frac{x}{(\log x)^{3-\alpha + \alpha \log (\alpha/6)}}(\log_2 x)^6.
\]

Case II. Write \(q - 1 = a(bp)^2 \) where \(a \) is squarefree, so that \(n = uabp \) for some integer \(u \). We first consider the sub-case where \(P(ua) \leq \exp((\log x)^\beta) \), where \(0 < \beta < 1 \) is to be chosen later. For given values of \(u, a, b \), the number of choices for \(p \leq x/ab \) satisfying the primality condition is

\[
\ll \frac{x}{uab(\log x)^2}(\log_2 x)^5 \prod_{\ell \leq x/ab} \left(1 - \frac{\chi_{-a}(\ell)}{\ell} \right).
\]

(Here we have applied Lemma 5 with \(A = ab^2 \), \(B = 0 \), and \(C = 1 \), so that \(D = -4ab^2 \) and \(d \) is the discriminant of \(\mathbb{Q}(\sqrt{-a}) \). If \(-a \notin \mathcal{D} \), then the product appearing in (7) is \(O((\log x)^2) \). If \(-a \in \mathcal{D} \), our assumption (ii) implies that \(a \leq \log x \). In that case, Lemma 6 shows that the product in (7) is \(O_{\epsilon}((\log x)^{\epsilon/2}) \), for any \(\epsilon > 0 \). So whether or not \(-a \notin \mathcal{D} \), the number of choices for \(p \) is

\[
\ll \frac{x}{uab(\log x)^{2-\epsilon}}.
\]

(We have absorbed the powers of \(\log_2 x \) into the exponent of \(\log x \).) We now sum over \(u, a, b \) by the method used in Case I, keeping in mind that \(P(ua) \leq \exp((\log x)^\beta) \). For \(0 < z < 1 \),

\[
\sum \frac{1}{uab} \leq z^{-\alpha \log_2 x} \sum \frac{z^{\Omega(u)}z^{\Omega(a)}z^{\Omega(b)}}{uab} \leq z^{-\alpha \log_2 x} \prod_{\ell_1 \leq x} \left(1 - \frac{z}{\ell_1} \right)^{-1} \left(\prod_{\ell_2 \leq \exp((\log x)^\beta)} \left(1 - \frac{z}{\ell_2} \right)^{-1} \right)^2 \ll (\log x)^{-\alpha \log z + (1+2\beta)z}.
\]

The optimal choice is \(z = \alpha/(1+2\beta) \), which gives \(\sum \frac{1}{uab} \ll (\log x)^{\alpha - \alpha \log (\alpha/(1+2\beta))} \). So by (8), the total contribution in this sub-case is

\[
\ll \epsilon \frac{x}{(\log x)^{2-\alpha + \alpha \log (\alpha/(1+2\beta)) - \epsilon}}.
\]

We divide the remaining sub-case when \(P(ua) > \exp((\log x)^\beta) \) into further sub-cases as follows. For each positive integer \(i \), let \(\beta_i = \beta + i/\log_2 x \), and let \(I_i \) be the interval

\[
I_i = [\exp((\log x)^{\beta_i-1}), \exp((\log x)^{\beta_i})] = (\exp((\log x)^{\beta_i-1}), \exp((\log x)^{\beta_i})].
\]

For each \(i \) we consider the sub-case where \(p_i := P(ua) \in I_i \). Clearly, the number of possible sub-cases is at most \(1 + \log_2 x \).
We know that \(p_2 \mid ua \mid n \), while (iii) implies that \(p_2^2 \nmid n \). Hence, \(p_2 \parallel n \). Consequently, \(p_2 \nmid bp \) and so \(p_2^2 \nmid q - 1 \). Since \(p_2 > \log x \), (iv) gives that \(p_2^2 \nmid m \). In conjunction with the relations \(p_2^2 \parallel n^2 = \varphi(m) \) and \(p_2^2 \nmid q - 1 \), this shows that there is a prime \(q_2 \neq q \) dividing \(m \) with \(q_2 \equiv 1 \) (mod \(p_2 \)). If \(p_2 \mid u \), then either \(p_2^2 \parallel q_2 - 1 \) or \(p_2 \parallel q_2 - 1 \) and there is some other prime \(q_3 \mid m \) with \(p_2 \parallel q_3 - 1 \). If \(p_2 \mid a \), then \(p_2 \parallel q_2 - 1 \). We shall sum up these possibilities as \(p_2^k \parallel q_1 - 1, k = 0 \) or \(1 \), and \(p_2^k \parallel q_2 - 1, j = 1 \) or \(2 \) and \(k + j \leq 2 \), ignoring the possible existence of a prime \(q_3 \).

Set \(q_1 = q \), \(p_1 = p \), \(b_1 = b \). We can select natural numbers \(a_1, a_2, a_3, b_2 \) with \(a_1 a_2 a_3 b_1 p_2 \) squarefree and

\[
q_1 - 1 = a_1 a_3 b_1^2 p_2^k, \quad q_2 - 1 = a_2 a_3 b_2^2 p_2^j.
\]

Then \(n \) has a decomposition of the form

\[
n = u_1 a_1 a_2 a_3 b_1 b_2 p_1 p_2.
\]

Here, in our old notation, \(a = a_1 a_3 p_2^k \) and \(u = u_1 a_2 b_2 p_2^{1-k} \). Thus, \(P(u_1 a_1 a_2 a_3 b_2) < p_2 \). Fixing \(u_1, a_1, a_2, a_3, b_1, b_2, p_2 \) and sum on \(p_2 \in \mathcal{I} \). First assume that \(j = 1 \). Since \(p_2 \) and \(a_2 a_3 b_2^2 p_2 + 1 \) are both prime, the sieve in the form of Lemma 4 shows that for each \(t \geq 3 \), the number of possible \(p_2 \leq t \) is \(O(t (\log x)^2/(\log t)^2) \). Now partial summation implies that if we sum (10) over \(p_2 \in \mathcal{I}_i \), the result is

\[
\ll \frac{x}{u_1 a_1 a_2 a_3 b_1 b_2 p_2 (\log x)^2} \left(\frac{\log x}{\log x} \right)^5 \prod_{\ell \leq x/u_1 a_1 a_2 a_3 b_1 b_2 p_2} \left(1 - \frac{\chi_{a a_3 p_2}(\ell)}{\ell} \right)
\]

(10)

(To estimate the product we use an analysis similar to that in (7).) We now fix \(u_1, a_1, a_2, a_3, b_1, b_2, p_2 \) and sum on \(p_2 \in \mathcal{I} \). First assume that \(j = 1 \). Since \(p_2 \) and \(a_2 a_3 b_2^2 p_2 + 1 \) are both prime, the sieve in the form of Lemma 4 shows that for each \(t \geq 3 \), the number of possible \(p_2 \leq t \) is \(O(t (\log x)^2/(\log t)^2) \). Now partial summation implies that if we sum (10) over \(p_2 \in \mathcal{I}_i \), the result is

\[
\ll \frac{x}{u_1 a_1 a_2 a_3 b_1 b_2 (\log x)^2} \left(\frac{\log x}{\log x} \right)^{2+\beta_{i-1} - 2\epsilon}.
\]

(11)

(Indeed, this upper bound holds for the larger sum over all \(p_2 \geq \exp((\log x)^{\beta_{i-1}}) \).) Now assume \(j = 2 \). We proceed in the same way, though now we use Lemma 5 and a similar analysis as in (7), getting an estimate of

\[
\ll \frac{x}{u_1 a_1 a_2 a_3 b_1 b_2 (\log x)^2} \left(\frac{\log x}{\log x} \right)^{2+\beta_{i-1} - 3\epsilon}.
\]

(12)

Finally, we replace the estimate (11) with the larger bound (12) and sum over \(u_1, a_1, a_2, a_3, b_1, b_2 \), keeping in mind that \(P(u_1 a_1 a_2 a_3 b_2) \leq \exp((\log x)^{\beta_i}) \). For \(0 < z < 1 \),

\[
\sum \frac{1}{u_1 a_1 a_2 a_3 b_1 b_2} \leq z^{-\alpha \log z} x \sum \frac{z^{\Omega(u_1)} z^{\Omega(a_1)} z^{\Omega(a_2)} z^{\Omega(a_3)} z^{\Omega(b_1)} z^{\Omega(b_2)}}{u_1 a_1 a_2 a_3 b_1 b_2} \leq z^{-\alpha \log z} x \left(\prod_{\ell_1 \leq \exp((\log x)^{\beta_i})} (1 - z/\ell_1)^{-1} \right) \prod_{\ell_2 \leq x} (1 - z/\ell_2)^{-1} \ll (\log x)^{-\alpha \log z + (1+5\beta_i) z}.
\]

We select \(z = \alpha/(1+5\beta_i) \) and find that \(\sum \frac{1}{u_1 a_1 a_2 a_3 b_1 b_2} \ll (\log x)^{\alpha - \alpha \log(\alpha/(1+5\beta_i))} \). Referring back to (12), we deduce that the contribution of the \(i \)th sub-case is

\[
\ll \frac{x}{(\log x)^{2+\beta_{i-1} - \alpha + \alpha \log(\alpha/(1+5\beta_i)) - 3\epsilon}}.
\]

(13)
To continue our analysis, we make the additional assumption that our parameters α and β satisfy
\[
0 < \beta \leq \alpha - \frac{1}{5} \leq 1.
\]
(14)

As $\beta_i - \beta_{i-1} = 1/ \log x$, it is straightforward to check that the upper bound in (13) remains valid with the occurrence of β_i replaced by β_{i-1}. Having made this replacement, we now view the exponent of $\log x$ in (13) as a function of β_{i-1}, thinking of α and ϵ as fixed. The minimum value of this function on the closed interval $[\beta, 1]$ occurs when $\beta_{i-1} = \alpha - \frac{1}{5}$, resulting in a contribution of
\[
\ll_{\epsilon} \frac{x}{(\log x)^{\frac{9}{2} + \alpha \log(\frac{1}{5}) - 3\epsilon}}.
\]

Since there are $O(\log x)$ sub-cases, the contribution from all values of i is
\[
\ll_{\epsilon} \frac{x}{(\log x)^{\frac{9}{2} + \alpha \log(\frac{1}{5}) - 4\epsilon}}.
\]

(15)

Optimization. We now choose α, β to minimize the size of the total exceptional set obtained by adding the estimates (4), (6), (9), (15). (The other exceptional sets appearing in the argument are of total size $O(x/(\log x)^{1/2})$, which is tiny on the scale we are interested in, so we ignore these.) The optimal choice of α is obtained by setting the exponent $Q(\alpha)$ from (4) equal to the exponent $\frac{9}{2} + \alpha \log(\frac{1}{5})$ from (15), which yields $\alpha = 1.114478 \ldots$. This leads to the exponent $Q(\alpha) = 0.006316 \ldots$. Choosing $\beta = 0.7$, say, the remaining error terms (6) and (9) are negligible. (Note that (14) is satisfied for these choices of α and β, and that the various choices of the parameter z in the proof all satisfy $0 < z < 1$ as required.) Thus, our count is smaller than $x/(\log x)^{0.0063}$ for all sufficiently large values of x, which completes the proof of Theorem 1.

Remark. Our argument can be modified to show that the number of squarefull integers in $[1, x^2]$ which belong to \mathcal{V} is at most $x/(\log x)^{0.0063}$ once x is large. Indeed, all but $O(x/(\log x)^{1/2})$ squarefull numbers in $[1, x^2]$ are of the form m^3n^2 with $m \leq \log x$. For each such m, we find that the number of n with $m^3n^2 \in \mathcal{V} \cap [1, x^2]$ is $O(x \cdot m^{-3/2}/(\log x)^{0.006316})$, uniformly in m. Now we sum on m to get the claim.

4. A LOWER BOUND AND A HEURISTIC

4.1. **Proof of Theorem 2.**

Proof. Let $y = (\log x)^2$. For each prime $p \in [y, 2y]$, let \mathcal{Q}_p denote the set of primes $q \leq x$ with $q \equiv 1 \pmod{p^2}$ and let \mathcal{Q}_p' denote the set of those $q \in \mathcal{Q}_p$ such that $(q-1)/p^2$ has no prime factors in $[y, 2y]$. From the Brun–Titchmarsh inequality, it follows that
\[
\#(\mathcal{Q}_p \setminus \mathcal{Q}_p') \ll \sum_{r \in [y, 2y]} \frac{x}{p^2r (\log x)} \ll \frac{x}{p^2 \log y \log x}.
\]

Thus, from the Siegel–Walfisz theorem, we have uniformly for $p \in [y, 2y]$ that
\[
\#\mathcal{Q}_p' \sim \#\mathcal{Q}_p \sim \frac{x}{p^2 \log x}, \quad x \to \infty
\]

so that
\[
\#\mathcal{Q}_p' \sim \frac{x}{y^2 \log x}.
\]

(16)

For an integer $a < x/y^2$ free of prime factors from $[y, 2y]$, let $\mathcal{N}(a)$ denote the set of primes $q \leq x$ with $q \equiv 1 \pmod{a}$ and $(q-1)/a = p^2$ for some prime $p \in [y, 2y]$. Thus, $q \in \mathcal{Q}_p'$. If we have two different primes q_1, q_2 in $\mathcal{N}(a)$ with $q_i - 1 = ap_i^2$ for $i = 1, 2$, then
\[
\varphi(q_1q_2) = (q_1 - 1)(q_2 - 1) = (ap_1p_2)^2, \quad ap_1p_2 < a \max\{p_1^2, p_2^2\} < x.
\]
Since \(a\) has no prime factors in \([y, 2y]\), an integer \(n = ap_1p_2\) constructed in this way determines the value of \(a\) and so determines the pair of distinct primes \(q_1, q_2 \in \mathcal{N}(a)\). Our strategy then is to count the number of such pairs of distinct primes for all possible values of \(a\).

Let \(N(a) = \#\mathcal{N}(a)\) if \(\mathcal{N}(a)\) has been defined, with \(N(a) = 0\) otherwise. From (16),

\[
\sum_{a<x/y^2} N(a) = \sum_{p \in [y^2, 2y]} \#Q_p \gtrsim \frac{y}{\log y} \cdot \frac{x}{y^2 \log x} = \frac{x}{y \log y \log x}.
\]

It follows from Cauchy’s inequality that

\[
\sum_{a<x/y^2} N(a)^2 \gtrsim \frac{y^2}{x} \left(\sum_{a<x/y^2} N(a) \right)^2 \gtrsim \frac{y^2}{x} \cdot \frac{x^2}{y^2(\log y \log x)^2} \gtrsim \frac{x}{(\log x \log \log x)^2}.
\]

The last two displays and the choice of \(y\) as \((\log x)^2\) imply that

\[
\sum_{a<x/y^2} (N(a)^2 - N(a)) \gtrsim \frac{x}{(\log x \log \log x)^2}.
\]

This sum represents the number of pairs of distinct primes in any of the sets \(\mathcal{N}(a)\), and as we have seen, it gives a lower bound for \(V_{\square}(x)\). This completes the proof of the theorem. \(\square\)

4.2. A heuristic. The above proof gives a lower estimate for the number of squares of the form \(\varphi(q_1q_2)\), where \(q_1, q_2\) are distinct primes. One might ask what the “true” answer is, and more generally for the distribution of squares of the form \(\varphi(m)\) where \(m\) is the product of \(k\) distinct odd primes, say \(m = q_1 \cdots q_k\). Such a square \(n^2\) has a natural factorization as \((q_1 - 1) \cdots (q_k - 1)\). If \(q_i - 1\) is written as \(a_i b_i^2\) with \(a_i\) squarefree, it follows that \(a_1 \cdots a_k\) is a square. For the case \(k = 2\), as we have seen in the proof above, this forces \(a_1 = a_2\). In the case \(k = 3\) we have three numbers \(A_1, A_2, A_3\) with \(a_i = A_1 A_2 A_3 / A_i\), for \(i = 1, 2, 3\). The situation gets more complicated for 4 or more primes.

Suppose that a number \(n \leq x\) is divisible by 4, \(n/4\) is squarefree, and \(\Omega(n/4) \geq \alpha \log_2 x\), where we fix a real number \(\alpha > 1\). The number of ordered factorizations of \(n\) as \(A_1 A_2 A_3 b_1 b_2 b_3\) with at least 2 of \(A_1, A_2, A_3\) even is at least \(6^{\Omega(n/4)} \geq (\log x)^{\alpha \log 6}\). The “chance” that each of \(1 + b_1^2 A_1 A_2 A_3 / A_i\) is prime for \(i = 1, 2, 3\) “should be” about \((\log x)^{-3}\). So, if \(\alpha \log 6 > 3\), i.e., \(\alpha > 3/ \log 6\), there should be at least one such factorization. Thus, most numbers \(n \leq x\) with \(n/4\) squarefree and \(\Omega(n/4) > \alpha \log_2 x\) with \(\alpha\) a fixed real larger than \(3/ \log 6\) should have \(n^2 \in \mathcal{Y}\). It should then follow that \(V_{\square}(x) \gg x/(\log x)^{Q(\alpha)}\). Since \(Q(3/ \log 6) = 0.18864255\ldots\), we thus should have \(V_{\square}(x) \geq x/(\log x)^{0.189}\) for all sufficiently large values of \(x\). Note that repeating this argument with products of 2 or 4 primes gives a worse result.

5. Square values of the sum-of-divisors function

Both Theorems 1 and 2 remain true with \(\sigma\) replacing \(\varphi\). When porting over the proofs, the main idea is to replace every occurrence of \(\varphi(q) = q - 1\) with \(\sigma(q) = q + 1\). This works without much fuss for Theorem 2, and we leave the details to the reader. For Theorem 1, we meet additional difficulties owing to the more complicated behavior of \(\sigma\) on prime powers. In this section, we sketch a way around these roadblocks.

5.1. Outline. Assume that \(n \leq x\) is such that \(n^2 = \sigma(m)\). We can assume all of our previous conditions (i)–(v) on \(n\) and \(m\), with the exception of (iv), which we replace with

(iv') \(m\) has no prime power divisor \(q^e > \exp((\log x)^{1/2})\) with \(e \geq 2\).
We leave the justification of (iv') to the end of this section, where it is shown (Lemma 9) that this assumption introduces an exceptional set of size $O(x/(\log x)^{1/4})$. For the rest of the argument, we fix the values of α and β to the constants we found above. Thus, $\alpha = 1.114478\ldots$ and $\beta = 0.7$.

With $p = P(n)$, we have $p^2 \mid n^2 = \sigma(m)$. It cannot be the case that $p \mid \sigma(q^e)$ for a prime power $q^e \parallel m$ having $e \ge 2$, for then $2q^e > q^e + q^{e-1} + \cdots + 1 = \sigma(q^e) \ge p$, forcing $q^e > \frac{2}{7} > \frac{2}{7} x^{1/2 \log_2 x}$ and contradicting (iv'). This leaves only two possibilities:

- I'. there are two different primes $q_1, q_2 \parallel m$ with $q_i \equiv -1 \pmod{p}$ for $i = 1, 2$,
- II'. there is a prime $q \parallel m$ with $q \equiv -1 \pmod{p^2}$.

Case I'. This is handled exactly as Case I above, replacing $q - 1$ with $q + 1$ throughout the argument. We find that the total count of n in Case I' satisfies our earlier upper bound (6).

Case II'. We start by writing $q + 1 = a(bp)^2$, so that $n = uabp$ for some integer u. Our first sub-case, when $P(ua) \le \exp((\log x)^3)$, is handled exactly as was the first sub-case of Case II. Note that in the analogue of the sieve bound (7), the character χ_a appears in place of χ_{-a}. (We do not have to worry that a is a square, as that would imply $q = a(bp)^2 - 1$ factors.) This sub-case makes a total contribution of size (9).

In the remaining sub-cases, $P(ua) > \exp((\log x)^3)$. We again partition these according to the interval I_2 to which $p_2 := P(ua)$ belongs. Reasoning as in our treatment of Case II, we find that $p_2 \parallel n$; moreover, if we choose k so that $p_2^k \parallel q + 1$, then $k = 0$ or 1 according to whether or not $p_2 \mid a$. Hence,

$$p_2 \mid \frac{n^2}{q + 1} = \sigma(m/q).$$

Thus, there is a prime power $q_2^e \parallel m/q$ for which p_2 divides $\sigma(q_2^e)$. Note that $q_2^e > \frac{1}{2} p_2 > \frac{1}{2} \exp((\log x)^3)$, so that if $e \ge 2$, we obtain a contradiction with (iv'). So $e = 1$ and $p_2 \mid q_2 + 1$.

We choose j so that $p_2^j \parallel q_2 + 1$. Then $j = 1$ or $j = 2$, and $k + j \le 2$. We now set $q_1 = q$, $p_1 = p$, $b_1 = b$, and continue to mimic our earlier arguments. We find that the contribution from all of the possible sub-cases of this sort satisfies (15).

Combining our estimates as before, we obtain the σ-analogue of Theorem 1 with the same exponent 0.0063.

5.2. Proof that we can assume (iv').

Lemma 9. The count of $n \le x$ with $n^2 = \sigma(m)$ for some m failing (iv') is $O(x/(\log x)^{1/4})$.

Proof. We continue to assume that x is large. For the duration of the argument, we let $y = \exp((\log x)^{1/2})$. Suppose that $q^e \parallel m$. Then $\sigma(q^e) \mid \sigma(m) = n^2$, and so $r_{q^e} := \prod_{\ell \mid \sigma(q^e)} \ell^{[\ell/2]}$ is a divisor of n. Thus,

$$\frac{1}{x} \# \{n \le x : n^2 = \sigma(m)\} \le \sum^{(1)} + \sum^{(2)} + \sum^{(3)},$$

where

$$\sum^{(1)} := \sum_{q^e \parallel y} \frac{1}{r_{q^e}}, \quad \sum^{(2)} := \sum_{q^e \parallel q \log q, q > \sqrt{y}} \frac{1}{r_{q^e}}, \quad \text{and} \quad \sum^{(3)} := \sum_{q^e \parallel q \log q, q > \sqrt{y}} \frac{1}{r_{q^e}}.$$

Since $r_{q^e} \ge (\sigma(q^e))^{1/2} > q^{e/2}$, we have $\sum^{(1)} \le \sum_{q^e \parallel y} q^{-e/2} \le \sum_{q > \sqrt{y}} q^{-e/2} \lesssim y^{-1/6}$, using in the final step that the count of cubefull numbers up to height t is $O(t^{1/3})$. By partial summation and the prime number theorem, $\sum^{(2)} \le \sum_{q > \sqrt{y}} (q \log q)^{-1} \ll (\log y)^{-1}$. It remains to estimate $\sum^{(3)}$.

Let us show that $\mathcal{Q} := \{ q : r_{q^2} \leq q \log q \}$ is a sparse set of primes. We begin with a simple observation: If $q^2 + q + 1$ has an exact prime divisor $\ell_0 > (\log q)^2$, then

$$r_{q^2} = \ell_0 \prod_{\ell' \| q^2 + q + 1 \atop \ell' \neq \ell_0} \ell^{[f/2]} \geq \ell_0 \sqrt{q^2 + q + 1} > q\sqrt{\ell_0} > q \log q,$$

and thus $q \not\in \mathcal{Q}$. So if we suppose that $q \in \mathcal{Q} \cap (t/2, t]$ for a large real number t, then $q \in \mathcal{Q}_1 \cup \mathcal{Q}_2$, where

$$\mathcal{Q}_1 := \{ q \in (t/2, t] : q^2 + q + 1 \text{ has no prime divisors in } ((\log t)^2, t^{1/10}] \},$$

$$\mathcal{Q}_2 := \{ q \in (t/2, t] : \ell^2 \mid q^2 + q + 1 \text{ for some } \ell \in ((\log t)^2, t^{1/10}] \}.$$

Let $g(r)$ be the number of roots modulo r of the polynomial $X^2 + X + 1$. For primes $\ell > 3$, we have $g(\ell) = 2$ when $\ell \equiv 1 \pmod{3}$ and $g(\ell) = 0$ otherwise. By the upper bound sieve (for instance, in the form of [13, Theorem 4.2, p. 134]),

$$\# \mathcal{Q}_1 \ll \frac{t}{\log t} \prod_{(\log t)^2 < \ell \leq t^{1/10}} \left(1 - \frac{g(\ell)}{\ell} \right) \ll \frac{t}{(\log t)^2} \log_2 t \ll \frac{t}{(\log t)^{3/2}}.$$

(To estimate the product, we used a version of Mertens’s theorem for primes congruent to 1 modulo 3.) We estimate $\# \mathcal{Q}_2$ crudely. Observing that $g(\ell^2) \leq 2$ for all primes $\ell > 3$ (for instance, by Hensel’s lemma), we obtain immediately that

$$\# \mathcal{Q}_2 \leq \sum_{(\log t)^2 < \ell \leq t^{1/10}} \left(\frac{2t}{\ell^2} + 2 \right) \ll \frac{t}{(\log t)^2}.$$

Hence, $\# \mathcal{Q} \cap (t/2, t] \leq \# \mathcal{Q}_1 + \# \mathcal{Q}_2 \ll t/(\log t)^{3/2}$. Summing dyadically, we find that $\# \mathcal{Q} \cap [1, t] \ll t/(\log t)^{3/2}$ for all $t \geq 3$.

We now return to the problem of estimating $\sum^{(3)}$. Using the lower bound $r_{q^2} > q$, we find that $\sum^{(3)} \leq \sum_{q > \sqrt{y}, q \in \mathcal{Q}} q^{-1} \ll (\log y)^{-1/2}$, by partial summation. Lemma 9 now follows from (17) and our estimates for $\sum^{(1)}, \sum^{(2)}$, and $\sum^{(3)}$. \hfill \square

Acknowledgements

The second author was supported in part by NSF grant DMS-1001180.

References

[11] ———, On common values of \(\varphi(n) \) and \(\sigma(m) \), II, Algebra and Number Theory 6 (2012), 1669–1696.

University of Georgia, Department of Mathematics, Athens, GA 30602, USA
E-mail address: pollack@uga.edu

Dartmouth College, Department of Mathematics, Hanover, NH 03755, USA
E-mail address: carlp@math.dartmouth.edu