1. Given the matrix \(A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} \),

(a) \(\det(A - \lambda I) = (4 - \lambda)(1 - \lambda) + 2 = (\lambda - 3)(\lambda - 2) \). Eigenvalues are \(\lambda = 2, 3 \).

(b) \(\lambda = 2 \): find null-space vectors in \((A - 2I) \).
\(\lambda = 3 \): find null-space vectors in \((A - 3I) \).

Each time, you should find one free variable. (If you don’t find any, you know \(\lambda \) is not a correct eigenvalue).

\[
\mathbf{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \begin{bmatrix} 2 \\ -1 \end{bmatrix}
\]

(c) \(P = \) eigenvectors stacked as columns. \(D = \) eigenvalues. Note you must match up the order of eigenvectors with eigenvalues. You must also find the inverse of \(P \) - be careful with signs since \(\det P \) is either +1 or -1 depending on your choice of eigenvectors. For example,

\[
A = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}.
\]

2. (a) It can be diagonalizable, but only if the dimension of the eigenspace corresponding to the (multiplicity 2) eigenvalue \(\lambda = -2 \) is also 2. Then 3 lin. indep. eigenvectors exist.

(b) The original vector’s length is \(\sqrt{1^2 + 3} = 2 \). So divide both entries by this length: \(\begin{bmatrix} 1/2 \\ \sqrt{3}/2 \end{bmatrix} \). This vector now is a unit vector.

(c) Always true, since each distinct eigenvalue must have an eigenvector, and we showed this set is lin. indep., so can be used for diagonalization. I think some of you thought that for \(B \) an \(n \times n \)
matrix, if there were less than \(n \) real eigenvalues, then \(B \) is not diagonalizable. This is not true. Counting complex eigenvalues, there are always \(n \) eigenvalues (roots of characteristic equation). If they are distinct, then the above follows.

(d) Eigenvectors found via \((A - \lambda I)v = 0\):

\[
\begin{bmatrix}
-1 - 3i & 5 \\
-2 & 1 - 3i
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
0
\end{bmatrix}.
\]

Since there will be one free variable (because a \(2 \times 2 \) matrix has two eigenvalues, and the other one must therefore be the conjugate, \(2 - 3i \)), you can use either row to give the vector (as in book). This trick only works for the \(2 \times 2 \) case.

\[e.g. \text{second row: } -2v_1 + (1 - 3i)v_2 = 0 \text{ gives } v = \begin{bmatrix} 1 - 3i \2 \end{bmatrix}.\]

Careful with signs!

\[v = \begin{bmatrix} 5 \\
1 + 3i
\end{bmatrix}\]
is also correct (they are parallel, even though they don’t look it! The complex arithmetic to show this is not hard).

(e) It is a repellor because both eigenvalues are larger than 1. (Strictly, have magnitudes larger than 1). How to remember? Taking higher powers of numbers which are larger than 1 results in heading off to infinity, \(i.e. \) repelling away from the origin.

3. (a) Inner product \(u \cdot y = 10 \), which is not 0, so they are not orthogonal.

(b) orthogonal projection

\[
\hat{y} = \frac{y \cdot u}{u \cdot u} u = \frac{10}{5} \begin{bmatrix} 1 \\
2
\end{bmatrix} = \begin{bmatrix} 2 \\
4
\end{bmatrix}.
\]

This is the vector you get by dropping a perpendicular from the location \(y \) to the direction given by \(u \). Note that the answer is a scalar multiple of \(u \) (not \(y \)), even though it is called \(mbfy \). It’s easy to remember this when you draw the projection diagram.