CALCULUS I — Absolute min/max worksheet

Recipe for finding absolute extreme values:
1) Find all critical points (numbers) \(c_1, c_2, \ldots, c_n \) \(\subset f'(c) = 0 \) or DNE, \(c \) in domain.
2) if
 - Closed interval: \([a, b]\)
 i) compute values \(f(a), f(c_1), f(c_2), \ldots, f(c_n), f(b)\)
 ii) then largest is abs. max., smallest is abs. min.
 - Open or half-open: \((a, b]\) or \([-\infty, b]\)
 i) perform 1st or 2nd deriv. test at each point \(c_1, c_2, \ldots, c_n \)
 ii) this classifies each as local min, max or neither
 iii) unbounded interval: if \(f \) grows (shrinks) without limit, \(\to \) abs max(min).
 iv) if needed, compare values at closed end with \(f(a), f(c), f(b) \)...

Find abs. min. & max:

A) \(f(x) = x^2 + 2x \) on \([-2, 1]\)

 type of interval? closed
 Endpoints values: \(f(-2) = 0 \)
 \(f(1) = 3 \)

 \(f'(x) = 2x + 2 \)
 List critical point(s): \(c = -1 \)
 Evaluate value(s): \(f(c) = f(-1) = -1 \)
 & Abs min: -1
 & Abs max: 3

B) \(f(x) = (3 - |x|)^2 \) on \([-1, 1]\)

 Deriv. is \(f'(x) = \begin{cases}
 -2(3 - x), & x > 0 \\
 +2(3 + x), & x < 0
 \end{cases} \)
 Closed
 Critical points: \(c = 0 \)
 \(f(0) = 9 \)
 Endpoint values: \(f(-1) - f(0) = 4 \)

 Write as split function...
 \(f(x) = \begin{cases}
 (3 - x)^2, & x \geq 0 \\
 (3 + x)^2, & x < 0
 \end{cases} \)
 Does \(f'(0) \) exist? No: \(f'_-(0) = -6 \) \(\neq \) \(f'_+(-0) = +6 \)
 \(f(0) \) not in domain = discard
 Abs min: 4
 Abs max: 9

C) \(f(x) = 6x^2 - x^3 \) on \((-1, \infty)\)

 Type of interval? open, unbounded
 Crit. pts: \(c = 0, 4 \)

 1st/2nd deriv. test easier? Classify crit. pts: \(f''(x) = 12 - 6x \) \(\Rightarrow \) \(12 > 0 \) \(\Rightarrow \) min, for \(c = 0 \)
 2nd, since smooth polynomial.
 \(f(0) = 0 \) loc. min, \(f(4) = 32 \) (loc. max).

 Does \(\lim_{x \to -1^+} f(x) \) exceed the local max? No, it's 0.

 What happens to \(f \) as \(x \to \infty \)? \(f(x) \to -\infty \)
 Abs min: \(\text{there is none} \) \(\to -\infty \)
 Abs max: 32.