CALCULUS I WORKSHEET: u-substitution

Find the following indefinite integrals:

A) \(\int (x^{\frac{1}{2}} + 2)^{\frac{1}{2}} x^{\frac{1}{2}} \, dx \)

\(f(u) = \) \(u'(x) = \)

Answer:

B) \(\int \frac{1}{\sin^2 x} \cos x \, dx \)

\(f(u) = \) \(u'(x) = \)

Answer:

C) \(\int \frac{x}{x^{\frac{1}{2}} + 1} \, dx \)

Hint: play around until you find \(f(u) \), \(u(x) \) that works (barring constant factor).

D) \(\int \sec^2 x \tan x \, dx \)

Hint: regroup as \(f(u) \) \(u'(x) \)

Try a definite one: (do indefinite first then use it.)

E) \(\int_{\frac{\pi}{3}}^{\pi/2} \sin x \sec^3 x \, dx \)

Try an \('x-' \) substitution instead of \(u-' \) substitution:

F) \(\int \sqrt{1-x^2} \, dx \)

Substitute \(x = \sin \theta \)

Differentiate \(dx = \cos \theta \, d\theta \)

What is \(\int_{0}^{1} \sqrt{1-x^2} \, dx \)?