A) Consider the following region:

\[y = x(4-x), \quad y = x, \quad (3,3) \]

- Is this region easier to represent by \(f(x) \) \& \(g(x) \) (slicing vertically, integrating vs. \(x \)), or \(F(y) \) \& \(G(y) \) (slicing horizontally)?

i) What is volume when revolved about \(y \)-axis? Use: washer/shell?

[Set up integral - you don't have to evaluate beyond \([\ldots]\) stage!]

ii) What is vol. when revolved about \(x \)-axis? Use: washer/shell?

[setup don't evaluate]

Setup integrals for following volumes (try to choose simplest method):

B) \(y = (y-1)^2, \quad x=1, \quad \) revolved about \(y \)-axis.

C) Same region revolved about \(x \)-axis.

D) \(y = \tan x, \quad y = \sin x, \quad x = \pi/6, \quad \) revolved about \(y \)-axis.

E) \(x+y=1, \quad x + \frac{1}{2}y = 1, \quad x=0, \quad \) revolved about \(y \)-axis.

F) Region from B revolved about line \(x = -2 \).