Math 8, Winter 2005

Scott Pauls
Dartmouth College, Department of Mathematics
2/25/05
A function of two variables, f, is a rule that assigns to each vector $<x, y> \in D \subset \mathbb{R}^2$ a real number denoted by $f(x, y)$. The set D is called the domain of f and its range is the set of values that f takes on, i.e. $\{t\}$ where $f(x, y) = t$ for some $<x, y> \in D$.

Examples:

- $f(x, y) = x^2 + y^2$
- $f(x, y) = \sin(xy)$
- $f(x, y) = \sqrt{1 - x^2 - y^2}$
Plotting

For $f(x, y)$ graph $f(x, y) = k$ for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

- For $k > 0$

 $$x^2 + y^2 = k$$

 is a circle of radius \sqrt{k}.

- For $k < 0$

 $$x^2 + y^2 = k$$

 has no solutions.

- For $k = 0$

 $$x^2 + y^2 = 0$$

 consists of the single point $(0, 0)$.
Plotting

contour plots
For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.

Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)
 \[x^2 + y^2 = k \]
 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)
 \[x^2 + y^2 = k \]
 has no solutions.

- For \(k = 0 \)
 \[x^2 + y^2 = 0 \]
 consists of the single point \((0, 0)\).
contour plots

For $f(x, y)$ graph $f(x, y) = k$ for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

- For $k > 0$
 \[x^2 + y^2 = k \]

 is a circle of radius \sqrt{k}.

- For $k < 0$
 \[x^2 + y^2 = k \]

 has no solutions.

- For $k = 0$
 \[x^2 + y^2 = 0 \]

 consists of the single point $(0, 0)$.
Plotting

contour plots
For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.

Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)

 \[x^2 + y^2 = k \]

 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)

 \[x^2 + y^2 = k \]

 has no solutions.

- For \(k = 0 \)

 \[x^2 + y^2 = 0 \]

 consists of the single point \((0, 0) \).
contour plots

For $f(x, y)$, graph $f(x, y) = k$ for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

- For $k > 0$

 $$ x^2 + y^2 = k $$

 is a circle of radius \sqrt{k}.

- For $k < 0$

 $$ x^2 + y^2 = k $$

 has no solutions.

- For $k = 0$

 $$ x^2 + y^2 = 0 $$

 consists of the single point $(0, 0)$.
Plotting

contour plots
For $f(x, y)$ graph $f(x, y) = k$ for different values of k and put together in a graph.
Example: $f(x, y) = x^2 + y^2$

- For $k > 0$
 \[x^2 + y^2 = k \]
 is a circle of radius \sqrt{k}.

- For $k < 0$
 \[x^2 + y^2 = k \]
 has no solutions.

- For $k = 0$
 \[x^2 + y^2 = 0 \]
 consists of the single point $(0, 0)$.
For $f(x, y) = k$ for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

- For $k > 0$
 \[x^2 + y^2 = k \]
 is a circle of radius \sqrt{k}.

- For $k < 0$
 \[x^2 + y^2 = k \]
 has no solutions.

- For $k = 0$
 \[x^2 + y^2 = 0 \]
 consists of the single point $(0, 0)$.
Plotting

contour plots

For $f(x, y)$ graph $f(x, y) = k$ for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

- For $k > 0$

 \[x^2 + y^2 = k \]

 is a circle of radius \sqrt{k}.

- For $k < 0$

 \[x^2 + y^2 = k \]

 has no solutions.

- For $k = 0$

 \[x^2 + y^2 = 0 \]

 consists of the single point $(0, 0)$.
Plotting

Contour plots

For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.

Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)
 \[
x^2 + y^2 = k
 \]
 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)
 \[
x^2 + y^2 = k
 \]
 has no solutions.

- For \(k = 0 \)
 \[
x^2 + y^2 = 0
 \]
 consists of the single point \((0, 0)\).
contour plots

For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.

Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)
 \[
x^2 + y^2 = k
 \]
 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)
 \[
x^2 + y^2 = k
 \]
 has no solutions.

- For \(k = 0 \)
 \[
x^2 + y^2 = 0
 \]
 consists of the single point \((0, 0)\).
contour plots

For $f(x, y)$ graph $f(x, y) = k$ for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

- For $k > 0$

 $$x^2 + y^2 = k$$

 is a circle of radius \sqrt{k}.

- For $k < 0$

 $$x^2 + y^2 = k$$

 has no solutions.

- For $k = 0$

 $$x^2 + y^2 = 0$$

 consists of the single point $(0, 0)$.
Plotting

contour plots

For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.

Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)
 \[
x^2 + y^2 = k
 \]
 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)
 \[
x^2 + y^2 = k
 \]
 has no solutions.

- For \(k = 0 \)
 \[
x^2 + y^2 = 0
 \]
 consists of the single point \((0, 0)\).
contour plots
For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.

Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)
 \[
x^2 + y^2 = k
 \]
 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)
 \[
x^2 + y^2 = k
 \]
 has no solutions.

- For \(k = 0 \)
 \[
x^2 + y^2 = 0
 \]
 consists of the single point \((0, 0)\).
Plotting

contour plots

For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.

Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)
 \[
x^2 + y^2 = k
 \]
 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)
 \[
x^2 + y^2 = k
 \]
 has no solutions.

- For \(k = 0 \)
 \[
x^2 + y^2 = 0
 \]
 consists of the single point \((0, 0)\).
Plotting

contour plots

For $f(x, y)$ graph $f(x, y) = k$ for different values of k and put together in a graph.

Example: $f(x, y) = x^2 + y^2$

- For $k > 0$

 $$x^2 + y^2 = k$$

 is a circle of radius \sqrt{k}.

- For $k < 0$

 $$x^2 + y^2 = k$$

 has no solutions.

- For $k = 0$

 $$x^2 + y^2 = 0$$

 consists of the single point $(0, 0)$.
Plotting

contour plots
For \(f(x, y) \) graph \(f(x, y) = k \) for different values of \(k \) and put together in a graph.
Example: \(f(x, y) = x^2 + y^2 \)

- For \(k > 0 \)
 \[
x^2 + y^2 = k
 \]
 is a circle of radius \(\sqrt{k} \).

- For \(k < 0 \)
 \[
x^2 + y^2 = k
 \]
 has no solutions.

- For \(k = 0 \)
 \[
x^2 + y^2 = 0
 \]
 consists of the single point \((0, 0)\).
Limits in more than one variable are much harder than in a single variable.

Let f be a function of two variables. Then,

$$\lim_{(x,y) \to (x_0,y_0)} f(x,y) = L$$

if, given an $\varepsilon > 0$ there is a $\delta > 0$ so that if the distance between (x,y) and (x_0,y_0) is less than δ then

$$|f(x,y) - L| < \varepsilon$$
Proving a limit exists is difficult, but sometimes showing one does not exists is easier.

- Look at the function restricted to different lines through \((x_0, y_0)\).
- If the limit along one line is different from the limit along a different line, then the limit does not exist.
- Example:

\[
f(x, y) = \frac{xy^2}{x^2 + y^2}
\]
A function of two variables f is *continuous* at (x_0, y_0) if

$$\lim_{(x,y) \to (x_0,y_0)} f(x, y) = f(x_0, y_0)$$

Examples:

- Polynomials
- Rational functions: discontinuities when the denominator is zero