We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?
We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.
We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.

- Too much book-keeping - return to this in math 13.
Volume

We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.
- Too much book-keeping - return to this in math 13.
- We understand how to compute area, so let’s slice the solid into 2-dimensional sheets. Calculate the area for that slice, $A(x)$.
We found the area under a curve (or between curves) by slicing the region into rectangles and summing the areas of the rectangles. Can we do the same to find the volumes of solids?

- First idea: break up into small cubes.

- Too much book-keeping - return to this in math 13.

- We understand how to compute area, so let’s slice the solid into 2-dimensional sheets. Calculate the area for that slice, \(A(x) \).

- Thicken the slice to a slab of width \(\Delta x \), then the volume of the slab is \(\text{approximately} \ A(x)\Delta x \).
Sampling many different points in $[a, b]$, we generate an approximation of the volume of the solid:

$$V \sim \sum_{i=1}^{n} A(x) \Delta x$$
• Sampling many different points in \([a, b]\), we generate an approximation of the volume of the solid:

\[
V \sim \sum_{i=1}^{n} A(x) \Delta x
\]

• To refine the estimate, we let \(n \to \infty\) yielding:

\[
V = \int_{a}^{b} A(x) \, dx
\]
Sampling many different points in \([a, b]\), we generate an approximation of the volume of the solid:

\[
V \sim \sum_{i=1}^{n} A(x) \Delta x
\]

To refine the estimate, we let \(n \to \infty\) yielding:

\[
V = \int_{a}^{b} A(x) \, dx
\]

Difficulty: Compute \(A(x)\).
Examples

- Sphere: $x^2 + y^2 + z^2 = 1$
Examples

- Sphere: \(x^2 + y^2 + z^2 = 1 \)

- Sphere as a solid of rotation. \(y = \sqrt{1 - x^2}, \ x \in [-1, 1] \).
Examples

- Sphere: $x^2 + y^2 + z^2 = 1$

- Sphere as a solid of rotation. $y = \sqrt{1 - x^2}$, $x \in [-1, 1]$.

- Find the volume of the surface of revolution obtained by rotating the region given by $y = x^2$, $y = 0$, $x = 1$ about the x-axis.
Examples

• Sphere: \(x^2 + y^2 + z^2 = 1 \)

• Sphere as a solid of rotation. \(y = \sqrt{1 - x^2}, x \in [-1, 1] \).

• Find the volume of the surface of revolution obtained by rotating the region given by \(y = x^2, y = 0, x = 1 \) about the x-axis.

• Find the volume of the surface of revolution obtained by rotating the region given by \(y = x^2, y = x \) about the x-axis.
Examples

- Sphere: \(x^2 + y^2 + z^2 = 1 \)

- Sphere as a solid of rotation. \(y = \sqrt{1 - x^2}, x \in [-1, 1] \).

- Find the volume of the surface of revolution obtained by rotating the region given by \(y = x^2, y = 0, x = 1 \) about the x-axis.

- Find the volume of the surface of revolution obtained by rotating the region given by \(y = x^2, y = x \) about the x-axis.

- Same problem but rotate about the y-axis.
• Find the volume of a right circular cone with height h and radius r.
• Find the volume of a right circular cone with height h and radius r.

• Find the volume of a solid whose base S is the parabolic region $\{(x, y) | x^2 \leq y \leq 1\}$ and whose cross-sections perpendicular to the y-axis are equilateral triangles.
Integration techniques
• All of integration comes down to one thing: *find an anti-derivative.*
Integration techniques

• All of integration comes down to one thing: *find an anti-derivative.*

• Substitution provides a way to simplify integrands so as to recognize anti-derivatives.
Integration techniques

- All of integration comes down to one thing: *find an anti-derivative.*

- Substitution provides a way to simplify integrands so as to recognize anti-derivatives.

- Where does substitution come from: the chain rule!

\[
\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)
\]
Integration techniques

• All of integration comes down to one thing: find an anti-derivative.

• Substitution provides a way to simplify integrands so as to recognize anti-derivatives.

• Where does substitution come from: the chain rule!

\[
\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)
\]

• Integrate both sides to get:

\[
f(g(x)) = \int_a^b \frac{d}{dx} f(g(x)) \, dx = \int_a^b f'(g(x))g'(x) \, dx
\]
Integration techniques

- Every differentiation rule gives an integration rule.
Integration techniques

- Every differentiation rule gives an integration rule.

- Product rule:

\[
\frac{d}{dx} f(x)g(x) = f'(x)g(x) + f(x)g'(x)
\]
Integration techniques

- Every differentiation rule gives an integration rule.

- Product rule:
 \[
 \frac{d}{dx} f(x)g(x) = f'(x)g(x) + f(x)g'(x)
 \]

- Integrate both sides:
 \[
 f(x)g(x) \bigg|_{a}^{b} = \int_{a}^{b} \frac{d}{dx} f(x)g(x) \, dx
 = \int_{a}^{b} f'(x)g(x) \, dx + \int_{a}^{b} f(x)g'(x) \, dx
 \]
Integration by parts

- Rearrange terms to get the *integration by parts* formula:

\[\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx \]

or, letting \(u = f(x) \), \(v = g(x) \),

\[\int u \, dv = uv - \int v \, du \]
• Rearrange terms to get the *integration by parts* formula:

\[
\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x)\bigg|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx
\]

or, letting \(u = f(x) \), \(v = g(x) \),

\[
\int u \, dv = uv - \int v \, du
\]

• Key: pick correct \(u \) and \(dv \)
Integration by parts

- Rearrange terms to get the integration by parts formula:

\[\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x)|_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx \]

or, letting \(u = f(x) \), \(v = g(x) \),

\[\int u \, dv = uv - \int v \, du \]

- Key: pick correct \(u \) and \(dv \)

- Generalization: Differentiation makes things simpler, integration makes things more complicated.
Integration by parts

- Rearrange terms to get the integration by parts formula:

$$\int_a^b f(x)g'(x) \, dx = f(x)g(x)|_a^b - \int_a^b f'(x)g(x) \, dx$$

or, letting $u = f(x)$, $v = g(x)$,

$$\int u \, dv = uv - \int v \, du$$

- Key: pick correct u and dv

- Generalization: Differentiation makes things simpler, integration makes things more complicated.

- Key is simplicity of resulting integral: pick u so that du is simpler, pick dv so that v is at least not much worse than dv.
Integration by parts

• \(\int xe^x \, dx \)

• \(\int x^2 \sin(x) \, dx \)

• \(\int \arctan(x) \, dx \)

• \(\int \ln(x) \, dx \)

• \(\int e^x \sin(x) \, dx \)
Rules of thumb

- Choices for u: polynomials, arc-trig functions, logarithms, $\sin(x)$, $\cos(x)$
- Choices for dv: e^x, $\sin(x)$, $\cos(x)$, polynomials