Math 71
Homework Assignment 25 - 29, October 1999

1. p. 124: 8, 10, 14

2. Let G be a group of order 105. Show that G has both a normal Sylow 5- subgroup and a normal Sylow 7-subgroup.

3. Let G be a group of order 48. Show that G has a normal subgroup of order 8 or 16.

4. Let G be a group of order 231, and suppose that G has only one Sylow 3-subgroup. Show that G is cyclic.

A few hints...

For problem 2:

(a) First show that if H is a group of order 35, all its Sylow p-subgroup s are normal in H (i.e. $n_5 = n_7 = 1$).

(b) Next show that if G is a group of order 105, for at least one of $p = 5$ or $p = 7$, we have $n_p = 1$.

(c) For each $p = 5, 7$, let H_p denote a fixed Sylow p-subgroup of G. Show that $H = H_5H_7$ is a normal subgroup of G.

(d) Let P be any Sylow p-subgroup of $G, p = 5$ or 7. Show that $P = H_p$.

For problem 3:

(a) If there is more than one Sylow 2-subgroup, let H and K be any two of them. Show that $|H \cap K| = 8$.

(b) Show that $H, K \subset N_G(H \cap K)$.

(c) Show that $G = N_G(H \cap K)$.