Variance of Discrete Random Variables

May 05, 2006
Definition

Let X be a numerically valued random variable with expected value $\mu = E(X)$. Then the variance of X, denoted by $V(X)$, is

$$V(X) = E((X - \mu)^2).$$
Standard Deviation

The standard deviation of X, denoted by $D(X)$, is $D(X) = \sqrt{V(X)}$. We often write σ for $D(X)$ and σ^2 for $V(X)$.
Calculation of Variance

Theorem. If X is any random variable with $E(X) = \mu$, then

$$V(X) = E(X^2) - \mu^2.$$
Poisson Distribution

- Let X be a Poisson random variable with parameter λ.
- What is $V(X)$?
Properties of Variance

Theorem. If X is any random variable and c is any constant, then

$$V(cX) = c^2 V(X)$$

and

$$V(X + c) = V(X).$$
Theorem. Let X and Y be two independent random variables. Then

$$V(X + Y) = V(X) + V(Y).$$
Example

• Let X be an n Bernoulli trials process.

• What is $V(X)$?
Theorem. Let X_1, X_2, \ldots, X_n be an independent trials process with $E(X_j) = \mu$ and $V(X_j) = \sigma^2$. Let

$$S_n = X_1 + X_2 + \cdots + X_n$$

be the sum, and

$$A_n = \frac{S_n}{n}$$

be the average. Then

$$E(S_n) = n\mu,$$
$$V(S_n) = n\sigma^2,$$
$$E(A_n) = \mu,$$
$$V(A_n) = \frac{\sigma^2}{n}.$$
Example

• Let T denote the number of trials until the first success in a Bernoulli trials process.

• What is the variance of T?
Continuous Random Variables
Expected Value

Definition. Let X be a real-valued random variable with density function $f(x)$. The expected value $\mu = E(X)$ is defined by

$$\mu = E(X) = \int_{-\infty}^{+\infty} x f(x) \, dx,$$

provided the integral

$$\int_{-\infty}^{+\infty} |x| f(x) \, dx$$

is finite.
Properties

• If X and Y are real-valued random variables and c is any constant, then

$$E(X + Y) = E(X) + E(Y),$$
$$E(cX) = cE(X).$$

• More generally, if X_1, X_2, \ldots, X_n are n real-valued random variables, and c_1, c_2, \ldots, c_n are n constants, then

$$E(c_1X_1 + c_2X_2 + \cdots + c_nX_n) = c_1E(X_1) + c_2E(X_2) + \cdots + c_nE(X_n).$$
Example

• Suppose Mr. and Mrs. Lockhorn agree to meet at the Hanover Inn between 5:00 and 6:00 p.m. on Tuesday.

• Suppose each arrives at a time between 5:00 and 6:00 chosen at random with uniform probability.

• Let Z be the random variable which describes the length of time that the first to arrive has to wait for the other.

• What is $E(Z)$?
Expectation of a Function of a Random Variable

Theorem. If X is a real-valued random variable and if $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous real-valued function with domain $[a, b]$, then

$$E(\phi(X)) = \int_{-\infty}^{+\infty} \phi(x)f_X(x) \, dx,$$

provided the integral exists.
Expectation of the Product of Two Random Variables

Theorem. Let X and Y be independent real-valued continuous random variables with finite expected values. Then we have

$$E(XY) = E(X)E(Y).$$
Example

- Let \(Z = (X, Y) \) be a point chosen at random in the unit square.

- What is \(E(X^2Y^2) \)?
Variance

Definition. Let X be a real-valued random variable with density function $f(x)$. The variance $\sigma^2 = V(X)$ is defined by

$$\sigma^2 = V(X) = E((X - \mu)^2).$$
Computation

Theorem. If X is a real-valued random variable with $E(X) = \mu$, then

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx .$$
Properties of the variance

• If X is a real-valued random variable defined on Ω and c is any constant, then

$$V(cX) = c^2 V(X),$$

$$V(X + c) = V(X).$$
• If X is a real-valued random variable with $E(X) = \mu$, then

$$V(X) = E(X^2) - \mu^2.$$
\begin{itemize}
 \item If X and Y are independent real-valued random variables on Ω, then
 \[V(X + Y) = V(X) + V(Y). \]
\end{itemize}