MAJOR FACTS ABOUT RINGS

AXIOMS OF RINGS

A nonempty set \(R \) equipped with two binary operations, addition and multiplication, is called a ring \(\textbf{if} \) for all \(a, b, c \in R \):

1. \(a + b = b + a \);
2. \((a + b) + c = a + (b + c) \);
3. there is \(0 \in R \) such that \(a + 0 = a \) for all \(a \in R \) (additive identity);
4. there is \(-a \in R \) such that \(a + (-a) = 0 \);
5. \(a(bc) = (ab)c \);
6. \(a(b + c) = ab + bc \) and \((b + c)a = ba + ca \).

FACT 1. (Rules of multiplication) Let \(R \) be a ring and \(a, b, c \in R \). Then

1. \(a0 = 0a = 0 \);
2. \(a(-b) = (-a)b = -(ab) \);
3. \((-a)(-b) = ab \);
4. \(a(b - c) = ab - ac \) and \((b - c)a = ba - ca \).

Furthermore, if \(R \) and a \textbf{unity} element \(\textbf{1} \), then

5. \((-1)a = -a \);
6. \((-1)(-1) = 1 \).

FACT 2. (Uniqueness of the Unity and Inverses)

If a ring has a unity, it is \textbf{unique}. If a ring element has a multiplicative inverse, it is \textbf{unique}.

FACT 3. (Subring Test)

Let \(S \in R \) by a subset of a ring \(R \). Then \(S \) is a subring \(\textbf{if and only if} \) \(S \) is closed under subtraction and multiplication, that is, \(a - b \in S \) and \(ab \in S \) for all \(a, b \in S \).