MAJOR FACTS ABOUT HOMOMORPHISMS

FACT 1. (Properties on Group Elements) Let \(\varphi : G \to \overline{G} \) be a homomorphism. Then
a. \(\varphi \) maps the identity of \(G \) into the identity of \(\overline{G} \), that is, \(\varphi(e) = \overline{e} \);
b. for every \(g \in G \) and every integer \(n \), \(\varphi(g^n) = (\varphi(g))^n \);
c. \(|\varphi(g)| \) divides \(|g| \) for all \(g \in G \) such that \(|g| < \infty \);
d. \(\ker \varphi \) is a (normal) subgroup of \(G \);
e. if \(\varphi(g) = g' \in \overline{G} \), then \(\varphi^{-1}(g') = g \ker \varphi \), where \(\varphi^{-1}(g') = \{ x \in G \mid \varphi(x) = g' \} \).

FACT 2. (Properties of Subgroups) Let \(\varphi : G \to \overline{G} \) be an homomorphism, \(H \leq G \), and \(K \leq \overline{G} \). Then
a. \(\varphi(H) = \{ \varphi(h) \mid h \in H \} \) is a subgroup of \(\overline{G} \);
b. if \(H \) is cyclic, then \(\varphi(H) \) is cyclic;
c. if \(H \) is Abelian, then \(\varphi(H) \) is Abelian;
d. if \(H \) is normal in \(G \), then \(\varphi(H) \) is normal in \(\overline{G} \);
e. if \(|\ker \varphi| = n \), then \(\varphi \) is an \(n \)-to-1 mapping from \(G \) onto \(\varphi(G) \);
f. if \(|H| = n \), then \(|\varphi(H)| \) divides \(n \);
g. \(\varphi^{-1}(K) = \{ k \in G \mid \varphi(k) \in K \} \) is a subgroup of \(G \);
h. if \(K \) is a normal subgroup in \(\overline{G} \), then \(\varphi^{-1}(K) \) is a normal subgroup of \(G \);
i. if \(\varphi \) is onto and \(\ker \varphi = \{ e \} \), then \(\varphi \) is an isomorphism from \(G \) to \(\overline{G} \).

FACT 3. (First Isomorphism Theorem) Let \(\varphi : G \to \overline{G} \) be a homomorphism. Then \(G/\ker \varphi \cong \varphi(G) \) and the isomorphism is given by \(g \ker \varphi \mapsto \varphi(g) \).

FACT 4. (Normal Subgroups are Kernels) Every normal subgroup \(N \) of a group \(G \) is a kernel of the homomorphism from \(G \) to \(G/N \) given by \(g \mapsto gN \).