Each group should write their solutions up together and turn in a single paper on Wednesday the 23rd. (There is no class on Monday the 21st.)

1. State the replacement theorem.

2. State the dimension theorem.

3. Suppose that \(T : V \to V \) is linear and that \(S = \{ v_1, \ldots, v_n \} \) is a subset of \(V \) such that \(\{ T(v_1), \ldots, T(v_n) \} \) is linearly independent. Show that \(S \) is linearly independent.

4. Find an example of a linear map \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) such that \(N(T) = R(T) \).

5. Suppose that \(\beta = \{ v_1, \ldots, v_n \} \) is a basis for \(V \) and that \(T : V \to V \) is linear. Prove that if \(T \) is one-to-one, then \(\{ T(v_1), \ldots, T(v_n) \} \) is a basis for \(V \).