Math 24 Spring 2006 Assignment 1 Key

Due Friday, April 7.

(1) Is \(\ln x \) (natural logarithm) a linear transformation on the vector space \(\mathbb{R} \)? Justify your answer.

Answer: No, it is not. A linear transformation must commute with the vector operations of addition and scalar multiplication, and it is not the case that \(\ln(x+y) = \ln x + \ln y \) or that \(\ln(cx) = c \ln x \).

(2) Define the operation \(* \) on \(\mathbb{R}^>0 \) (positive real numbers) by

\[
 a * b = \sqrt{ab}.
\]

Is \((\mathbb{R}^>0, *) \) a group? If not, which of the group axioms fails?

Answer: \((\mathbb{R}^>0, *) \) is not a group. There is no identity element, because for a given \(a \) the element \(b \) which gives \(a * b = a \) is \(a \) itself, which means there is no single element which works for all \(a \). Therefore there also cannot be inverses. In fact, this operation is not even associative: the only time \(a * (b * c) = (a * b) * c \) is when \(a = c \).

[all three axiom failures not required; one is sufficient.]

(3) Define the operation \(* \) on \(2\mathbb{Z} = \{2n : n \in \mathbb{Z}\} \) by

\[
 a * b = a + b.
\]

Is \((2\mathbb{Z}, *) \) a group? If not, which of the group axioms fails?

Answer: \((2\mathbb{Z}, *) \) is a group.

[unneeded but probably commonly-given information: the operation is closed because the sum of two even numbers is even. It is associative because it is just ordinary addition. The identity is \(0 = 2 \cdot 0 \) and the inverse of \(2n \) is \(-2n = 2(-n)\).]

(4) Consider the field \(\{\{0,1,2\} \), + mod 3, \(\cdot \) mod 3\) similar to one discussed in class. Show that for all \(a, b \) in the field,

\[
 (a + b)^3 = a^3 + b^3.
\]

Answer: If we expand the binomial, we get

\[
 (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.
\]

Since we are working mod 3, the middle two terms are equal to zero no matter what \(a \) and \(b \) are, so the right hand side simplifies to \(a^3 + b^3 \).