LECTURE OUTLINE
Work and Line Integrals

Professor Leibon

Math 8

Oct. 4, 2004
Goals

Introduce: Work
The Line Integral
Derivatives and the Dot Product

Theorem:

\[
\frac{d}{dt} (\vec{w}_1 \cdot \vec{w}_2) = \frac{d\vec{w}_1}{dt} \cdot \vec{w}_2 + \vec{w}_1 \cdot \frac{d\vec{w}_2}{dt}
\]

Recall, some notation from last time

\[\vec{w}_1 = x_1(t)\hat{i} + y_1(t)\hat{j} + z_1(t)\hat{k}\]
\[\vec{w}_2 = x_2(t)\hat{i} + y_2(t)\hat{j} + z_2(t)\hat{k}\].
One Consequence (of many)

Theorem: If the curvature is not 0, then

\[\hat{N} \cdot \hat{T} = 0. \]
Forces

We must distinguish between the total force

\[\vec{F}_T = m\vec{a} \]

acting on an object and a force \(\vec{F}_i \) acting on an object where

\[\vec{F}_T = \sum_{i=1}^{n} \vec{F}_i. \]
Suppose a particle is acted on by a force

$$\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$$

while following the path \((t^2, t^3, t)\) for \(t\) in \([0, 1]\). Can \(\vec{F}\) be the only force acting on the particle?
Work

Let \(\vec{F} \) be a force and let \(\gamma \) denote the path determined by \(\vec{r}(t) \) for \(t \) in the interval \([a, b]\). We say the work done by \(\vec{F} \) as an object traverses \(\gamma \) is given by the following *line integral*

\[
W_{\vec{F}}(\gamma) = \int_{\gamma} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F} \cdot \frac{d\vec{r}}{dt} dt.
\]

(From the first integral \(W_{\vec{F}}(\gamma) \) is independent of the parameterization. Yet, from second integral we see work is most easily computed from a given parameterization.)
Example 1(a)

Let

\[\vec{F} = x\hat{i} + y\hat{j} + z\hat{k} \]

and \(\gamma \) denote the path determined by

\[\vec{r}(t) = t^2\hat{i} + t^3\hat{j} + t\hat{k} \]

for \(t \) in the interval \([0, 1]\). Compute the work done by \(\vec{F} \) as our object traverses \(\gamma \).
Potential Energy

For each component force, we define the potential energy associated to this force at each time t to be

$$U_i(\gamma(t)) = -W_{F_i} (\gamma([a, t])).$$

(This notation is sly. It suggests that potential energy should depend only on γ’s end points. This is not always true, though this is indeed often the case for potential energies of interest to us.)
Example 1(b)

Let

\[\vec{F} = xi + yj + zk \]

and let \(\gamma \) denote the path determined by

\[\vec{r}(t) = t^2i + t^3j + tk \]

for \(t \) in the interval \([0, 1]\). Compute the potential energy at \((1, 1, 1)\).
Example 1(c)

Let

\[\vec{F} = xi + yj + zk \]

and let \(\gamma \) denote your favorite path determined from \((0, 0, 0)\) to \((1, 1, 1)\). Compute the potential energy at \((1, 1, 1)\).