MAJOR FACTS ABOUT LIMITS AND CONTINUITY

FACT 1. (Uniqueness of limits) If a limit exists, it is unique:

If \(F: X \subset \mathbb{R}^n \to \mathbb{R}^m, \lim_{x \to a} F(x) = L, \) and \(\lim_{x \to a} F(x) = M, \) then \(L = M. \)

FACT 2. (Algebraic properties of limits)

Let \(F, G: X \subset \mathbb{R}^n \to \mathbb{R}^m \) and \(f, g: X \subset \mathbb{R}^n \to \mathbb{R}. \) Let also \(k \in \mathbb{R}. \)

1. If \(\lim_{x \to a} F(x) = L \) and \(\lim_{x \to a} G(x) = M, \) then \(\lim_{x \to a} (F + G)(x) = L + M. \)
2. If \(\lim_{x \to a} F(x) = L, \) then \(\lim_{x \to a} kF(x) = kL. \)
3. If \(\lim_{x \to a} f(x) = L \) and \(\lim_{x \to a} g(x) = M, \) then \(\lim_{x \to a} (fg)(x) = LM. \)
4. If \(\lim_{x \to a} f(x) = L, g(x) \neq 0 \) for \(x \in X \) and \(\lim_{x \to a} g(x) = M \neq 0, \) then \(\lim_{x \to a} (f/g)(x) = L/M. \)

FACT 3. Let \(F: X \subset \mathbb{R}^n \to \mathbb{R}^m. \) Then \(\lim_{x \to a} F(x) = L \) if and only if \(\lim_{x \to a} F_i(x) = L_i \) for all \(i = 1, 2, \ldots, m, \) where \(F = (F_1, F_2, \ldots, F_m) \) and \(L = (L_1, L_2, \ldots, L_m). \)

FACT 4. Let \(F, G: X \subset \mathbb{R}^n \to \mathbb{R}^m \) and \(f, g: X \subset \mathbb{R}^n \to \mathbb{R}. \) Let also \(k \in \mathbb{R}. \)

1. If \(F \) and \(G \) are continuous at \(a \in X, \) then \(F + G \) is continuous at \(a. \)
2. If \(F \) is continuous at \(a \in X, \) then \(kF \) is continuous at \(a. \)
3. If \(f \) and \(g \) are continuous at \(a \in X, \) then \(fg \) is continuous at \(a. \)
4. If \(f \) and \(g \) are continuous at \(a \in X \) and \(g \neq 0, \) then \(f/g \) is continuous at \(a. \)
5. \(F: X \subset \mathbb{R}^n \to \mathbb{R}^m \) is continuous at \(a \in X \) if and only if all \(F_i: X \subset \mathbb{R}^n \to \mathbb{R} \) are continuous at \(a, \) where \(F = (F_1, F_2, \ldots, F_m). \)

FACT 5. (Composition of continuous functions) If \(F: X \subset \mathbb{R}^n \to \mathbb{R}^m \) and \(G: Y \subset \mathbb{R}^m \to \mathbb{R}^p \) are continuous and \(\text{Range}(F) \subset Y, \) then \(G \circ F: X \subset \mathbb{R}^n \to \mathbb{R}^p \) is also continuous.
MAJOR FACTS ABOUT DERIVATIVES

Fact 1. If $F : X \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in X$, then it is continuous at a.

Fact 2. Let $F : X \subset \mathbb{R}^n \to \mathbb{R}^m$ such that all $\frac{\partial F_i}{\partial x_j}$ exist and are continuous in a neighborhood of $a \in X$. Then F is differentiable at a.

Fact 3. $F : X \subset \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $a \in X$ if and only if all $F_i : X \subset \mathbb{R}^n \to \mathbb{R}$ are differentiable at a, where $F = (F_1, F_2, \ldots, F_m)$.

Fact 4. *(Linearity of the derivative)*
Let $F, G : X \subset \mathbb{R}^n \to \mathbb{R}^m$ be differentiable at $a \in X$ and $k \in \mathbb{R}$. Then

1. $F + G$ is differentiable at a and $D(F + G)(a) = DF(a) + DG(a)$.
2. kF is differentiable at a and $D(kF)(a) = kDF(a)$.

Fact 5. Let $f, g : X \subset \mathbb{R}^n \to \mathbb{R}$ be differentiable at $a \in X$. Then

1. fg is differentiable at a and $D(fg)(a) = g(a)Df(a) + f(a)Dg(a)$.
2. If $g \neq 0$, f/g is differentiable at a and $D(f/g)(a) = \frac{g(a)Df(a) - f(a)Dg(a)}{g(a)^2}$.

Fact 6. *(The chain rule)* If $F : X \subset \mathbb{R}^n \to \mathbb{R}^m$ and $G : Y \subset \mathbb{R}^m \to \mathbb{R}^p$ are differentiable at a and $b = F(a)$, respectively, and Range(F) $\subset Y$, then $G \circ F : X \subset \mathbb{R}^n \to \mathbb{R}^p$ is also differentiable at a and $D(G \circ F)(a) = DG(b)DF(a)$.