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Introduction

I There is increasing interest in inverse problems in the areas of
medical imaging1, non-destructive testing, sensing, probing, oil
and gas prospecting, radar2 and sonar, among many others.

I In those problems, a set of measured data is given from
experimentation and, using this data, the goal is to
reconstruct the object or its properties.

1Picture from Wikipedia.de
2Picture from Wikipedia



Introduction

Problem: We consider the problem of reconstructing the shape of a

sound-soft obstacle from the measured far field pattern from time

harmonic plane waves with varying incidence direction and frequencies.
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Introduction

Important points:

I Reconstruction methods (most of the time) depend on the
solution of the direct scattering problem.

I To compute the solution of the direct scattering problem, the
number of operations increases with the frequency of the
incident waves.

I The problem is nonlinear and ill-posed. To deal with the
nonlinearity of the problem, we apply damped Newton’s
method. To deal with the ill-posedness of this problem, we
need to apply a regularization method based on the recursive
linearization algorithm (RLA) (Chen) and bandlimited
approximation for sets of points (Beylkin, Rokhlin).



Direct scattering problem
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Figure: The direct scattering problem of finding the field scattered by an
impenetrable obstacle.



Direct scattering problem

Consider the incident plane wave uinc(x) = exp(ikx · d). We seek

u(x) = uinc(x) + uscat(x),

the solution of the Helmholtz equation with Dirichlet condition

∆u(x) + k2u(x) = 0 in R2\D
u(x) = 0 on ∂D,

where uscat(x) satisfies the Sommerfeld condition

lim
r→∞

r

(
∂uscat

∂r
− ikuscat

)
= 0, r = ‖x‖.



Direct scattering problem

Theorem
Every radiating solution u to the Helmholtz equation has the
asymptotic behavior of an outgoing spherical wave

u(x) =
e ik|x |

|x |
1
2

{
u∞(x̂) +O

(
1

|x |

)}
, |x | → 0,

uniformly in all directions x̂ = x/|x |, where the function u∞ defined
on the unit disk Ω is known as the far field pattern of u. We have:

u∞(x̂) =
e iπ/4

√
8πk

∫
∂D

{
u(y)

∂e−ikx̂·y

∂ν(y)
− ∂u

∂ν
(y)e−ikx̂·y

}
ds(y), ∀x̂ ∈ Ω.



Direct scattering problem – Layer potentials

We define the single layer potential

Sϕ(x) :=

∫
∂D

G (x , y)ϕ(y) ds(y),

and the double layer potential

Kϕ(x) :=

∫
∂D
∂νG (x , y)ϕ(y) ds(y),

where

G (x , y) =
i

4
H

(1)
0 (‖x − y‖).



Direct scattering problem – Asymptotic of the potentials

We also have the asymptotic operator for the single layer potential

(S∞ϕ)(x̂) := e iπ/4/
√

8πk

∫
∂D

e−ikx̂ ·yϕ(y) ds(y),

and for the double layer potential

(K∞ϕ)(x̂) := e−iπ/4

√
k

8π

∫
∂D

e−ikx̂ ·y x̂ · ν ϕ(y) ds(y).



Direct scattering problem – First formulation

One way to obtain the far field pattern u∞ created by waves
deflecting off an object D is to first solve

(I + K − iηS)ϕ = −uinc

for ϕ, and then use the result to solve

u∞ = (K∞ + iηS∞)ϕ.



Direct scattering problem – Another formulation

Another way to obtain the far field pattern is to first solve

(I + ∂νS − iγS)
∂u

∂ν
=
∂uinc

∂ν
− iγuinc

for ∂u
∂ν , and then we use the result to solve

u∞ = −S∞
∂u

∂ν
.



Numerical Implementation

I We solve the system using the Nystrom method [CK98].

I The potential layer operators are implemented using the
Alpert quadrature [Alp99].

I We use the trapezoidal rule to implement the far field
operators K∞ and S∞.

I The inverse method that we are going to use rely on the
solution of direct problems. (must be fast)

I It is possible to apply the FMM or fast solvers like the HSS,
HODLR, and others. We used the HODLR by Ambikasaran
and Darve [CA13].



Inverse problem for a single frequency
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Problem 1 Given Nff measurements u∞ obtained from the
scattering of uinc by D, reconstruct the shape of D.



Types of methods

There are several different known methods of solving this inverse
problem. In [Kre07], Kress classified them into three different
types:

(1) Iterative methods: The inverse problem is interpreted as a
nonlinear ill-posed operator equation (Newton’s methods (Roger,
Kress, Kirsch, many others), Landweber iterations or CG methods);

(2) Decomposition methods: Separate the problem in different
problems (Potential Method (Potthast) or Point-Source method);

(3) Sampling methods: Uses an indicator function (Linear
Sampling method (Colton, Kirsch), Probe method (Ikehata),
Singular Source method (Potthast) or Factorization method
(Kirsch)).



Inverse problem for a single frequency

The solution of the direct scattering problem with a fixed incident
plane wave uinc defines the operator F : ∂D → u∞. Considering
the function x represents the shape ∂D, we have the equation:

F (x) = u∞.

I This problem is nonlinear and ill-posed.



Linearization

To deal with the nonlinearity of the problem, we use Newton’s
method [CK98] with a damping parameter. In this method, given a
far field pattern u∞, the nonlinear equation

F (x) = u∞

is replaced by the linearized equation

F (x) + J(x)h = u∞,

where J(x) is the Fréchet derivative of the operator F .



Linearization

Theorem (Kirsch)

The far field mapping F : x → u∞ is Fréchet differentiable from
C 2(R2) into L2(Ω), where Ω is the unit circle. The derivative J(x)
is given by

J(x)h = v∞

where v∞ denotes the far field pattern of the solution v to the
Helmholtz equation in R2 \ D̄ satisfying the Sommerfeld radiation
condition and the boundary condition

v = −ν · h ∂u

∂ν
on ∂D.



Linearization

The iteration process for the linearization is the following:

I Given an approximation x (i) of the domain, we solve the
equation

J(x (i))h = u∞ − F (x (i)). (1)

I Obtain the update x (i+1) = x (i) + ρh, where ρ is a damping
factor.

I We have for the Fréchet derivative

J(x)h = (K∞ − iγS∞)(I + K − iγS)−1h.



Regularization

Equation (2) is ill-posed, it is necessary to apply a regularization
method. There are several methods available: Tikhonov
regularization, truncated SVD, and several others.

We apply a frequency filter FN (k) as a right preconditioner. The
frequency filter will be a low-pass filter that will filter all the
frequencies below the number N (k). This approach is very similar
to the truncated SVD approach.

Solve the equation

J (x (i))p = u∞ − F (x (i)), (2)

where J (x (i)) = J(x (i))FN (k) and FN (k)p = h. Using h, we
update the domain.
After updating the domain, we apply a the algorithm of D. Beylkin
and Rokhlin [BR13] to approximate the domain with a
bandllimited curve and also reparameterize the curve.



Damped Newton’s method
Damped’s Newton Method

Given the initial guess x (0), and the far-field pattern u∞

1. Repeat while the stopping criteria are not reached:

1.1 Use the domain x (i) and solve for ∂u
∂ν

the equation

(I + ∂νS − iγS)
∂u

∂ν
=
∂uinc

∂ν
− iγuinc.

1.2 Using ∂u
∂ν

, find the operator J(x (i)).

1.3 Choose the parameter N (k), obtain the operator J (x (i)) and solve
the system

J (x (i))p = u∞ − F (x (i))

1.4 Obtain h = FN (k)p.

1.5 Update x (i+1) = x (i) + ρh, re-parameterize and filter the domain
x (i+1) for the next step and make i = i + 1.



Remarks

We have to consider the following every time that we update the
domain:

I We need to check every time that we update the domain if
the domain is still valid (not self-intersecting). For this, we
can use a naive approach testing if the polygon formed by the
points in the curve is not self-intersecting. For a fast
algorithm the Bentley and Ottmann sweep algorithm [BO79]
can be used.

I If the updated domain is self-intersecting, we adjust the size
of ρ.

I For the re-parameterization of the domain we use the
algorithm in [BR13] for re-parameterization of limited band
curves.

I We also filter the curve during re-parameterization.



Numerical Results – star-shaped domains

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Example 1

 

 

Solution
Initial guess
Object D

d=(1,0)

(a) k = 0.5, Nff = 32
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Solution
Initial guess
Object D

d=(1,0)

(b) k = 0.5, Nff = 32

Figure: (a) Pear. (b) 9-gear.



Numerical Results – star-shaped domains

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Example 3

 

 

Solution
Initial guess
Object D

d=(1,0)

(a) k = 5, Nff = 32
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Solution
Object D
Initial guess

d=(1,0)

(b) k = 5, Nff = 32

Figure: Solution of the inverse scattering problem.



Conclusions – single frequency

Frequency Initial Guess Reconstruction

Low Simple Fuzzy
High Closer to object Sharp

I At low frequencies, the reconstruction problem is uniquely
solvable [CS83] , but its stability is poor [SM08]. That means,
at low frequencies, it is difficult to reconstruct small details of
the obstacle.

I At high frequencies, this inverse problem may not be uniquely
solvable but it is more stable [NS12].



Inverse problem for multiple frequencies
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Inverse problem for multiple frequencies

I Use the recursive linearization algorithm (RLA) presented in
[Che97], and analyzed by [BT10, NS12].

I Choose an initial guess not very close to the object for low
frequency measurements and obtain an approximation for the
domain.

I The approximation becomes the initial guess at a higher
frequency.

I For each frequency, we solve the inverse problem using an
iterative method.



Recursive Linearization Algorithm

Recursive Linearization Algorithm with Damped Newton’s
method

Given x (0), and u
kj
∞ for j = 1, . . . ,Ninc.

1. For j = 1, . . . ,Ninc:

1.1 Use damped Newton’s method with initial guess x
(0)
kj

and far

field pattern u
kj
∞. We obtain the result x

(i)
kj

after i iterations.

1.2 Make x
(0)
kj+1

= x
(i)
kj

.



Numerical results – star-shaped domain
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d=(1,0)

(a) k10 = 5

Fig3

(b) Video

Figure: RLA for the 7-gear, kj = 1 + 0.5j , j = 0, . . . , 13.


Movie_7gear_new.avi
Media File (video/avi)



Numerical results – non star-shaped domain
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Object D
Solution
Initial guess

d=(1,0)

(a) k10 = 5

Fig3

(b) Video

Figure: RLA for non star shaped figure, kj = 0.5j , j = 1, . . . , 10.


Movie_nn_new1dir.avi
Media File (video/avi)



Conclusion – multi-frequency

Improvement

I The technique gives a sharp reconstruction of the object in
the illuminated part;

Issues to be solved

I However, our reconstruction is not good in the shadowed part.



Inverse scattering for multiple frequencies and directions

What to do?

I We can solve the problem using data from multiple directions.

We solve the single frequency inverse problem using data from
several directions simultaneously. We would have for each direction
dj an equation

Jdj
(x)p = u∞,dj

− Fdj
(x (i)).

Solve the equations together for all the directions to obtain the
step h.
Remark: This system is better conditioned than the system with
one direction.



Numerical results – multiple frequency + multiple
directions
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d=(0,-1)

(a) k10 = 5

Fig3

(b) Video

Figure: RLA for the 9-gear, kj = 1 + 0.5j , j = 0, . . . , 19.


Movie_9gear_new4dir.avi
Media File (video/avi)



Numerical results – multiple frequency + multiple
directions
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Object D
Solution
Initial guess

d=(-1,0)

d=(1,0)

d=(0,1)

d=(0,-1)

(a) k10 = 5

Fig3

(b) Video

Figure: RLA for non star shaped figure, kj = 0.5j , j = 1, . . . , 10.


Movie_nn_4dir.avi
Media File (video/avi)



Examples using more frequencies

Since we are using a fast solver to accelerate our reconstructions,
we can go further and reconstruct objects with more detail.

We have some examples reconstructing shapes of objects similar to
an aircraft and a submarine.



Numerical results – multiple frequency + multiple
directions
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(a) k10 = 5

FigAircraft

(b) Video

Figure: RLA for aircraft, kj = 0.5j , j = 1, . . . , 65.


movieplane.avi
Media File (video/avi)



Numerical results – multiple frequency + multiple
directions
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Object D
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(a) Reconstruction of the aircraft
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k=5
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(b) Top corner of the right wing

Figure: RLA for the aircraft.



Numerical results – multiple frequency + multiple
directions
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Initial guess
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(a) Reconstruction of the aircraft
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Object D

k=5

k=10

k=30

(b) Bottom corner of the right wing

Figure: RLA for the aircraft.



Numerical results – multiple frequency + multiple
directions
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Object D
Initial guess
k=5
k=10
k=30

(a) Reconstruction of the aircraft
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Object D
k=5
k=10
k=30

(b) Top right corner of the tail

Figure: RLA for the aircraft.



Numerical results – multiple frequency + multiple
directions
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k=4.5
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(a) k10 = 5

Video

(b) Video

Figure: RLA for submarine, kj = 0.5j , j = 1, . . . , 65.


moviesub.avi
Media File (video/avi)



Numerical results – multiple frequency + multiple
directions
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Object D
Initial guess
k=4.5
k=10.5
k=22.5

(a) Reconstruction of the submarine
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Object D
k=4.5
k=10.5
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(b) Back part of the submarine

Figure: RLA for submarine.



Numerical results – multiple frequency + multiple
directions
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Object D
Initial guess
k=4.5
k=10.5
k=22.5

(a) Reconstruction of the submarine
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Object D
k=4.5
k=10.5
k=22.5

(b) Front part of the tower

Figure: RLA for submarine.



Numerical results – multiple frequency + multiple
directions
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(a) Reconstruction of the submarine
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Object D
k=4.5
k=10.5
k=22.5

(b) Back part of the tower

Figure: RLA for submarine.



Conclusion

I We are able to obtain accurate reconstructions of the shape of
the objects starting from an initial guess that is not very close
to the object.

I We presented an alternative to the regularization of the system
encoding the frequency information in our preconditioner.

I The inclusion of data generated by incident waves of different
directions provides us with data to obtain complete
reconstructions of the objects and also improves the
conditioning of the problem.



Future Work

I Obtain estimates for better choosing the values of ρ and of
the frequencies to be filtered at each step.

I Implement the algorithm for multiple objects.

I Modify for the case of Neumann and Impedance boundary
conditions.

I Extend the algorithm for the 3D case.



Thank you!
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