A Multi-frequency Method for the Solution of the Acoustic Inverse Scattering Problem

Carlos Borges & Leslie Greengard

June 29, 2013

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contents

Introduction

Direct scattering problem

Inverse scattering problem

Inverse scattering for single frequency Inverse scattering for multiple frequencies Inverse scattering for multiple frequencies and directions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion and Future Work

Conclusion Future Work

Introduction

- There is increasing interest in inverse problems in the areas of medical imaging¹, non-destructive testing, sensing, probing, oil and gas prospecting, radar² and sonar, among many others.
- In those problems, a set of measured data is given from experimentation and, using this data, the goal is to reconstruct the object or its properties.

¹Picture from Wikipedia.de ²Picture from Wikipedia

Introduction

Problem: We consider the problem of reconstructing the shape of a sound-soft obstacle from the measured far field pattern from time harmonic plane waves with varying incidence direction and frequencies.

Introduction

Important points:

- Reconstruction methods (most of the time) depend on the solution of the direct scattering problem.
- To compute the solution of the direct scattering problem, the number of operations increases with the frequency of the incident waves.
- The problem is nonlinear and ill-posed. To deal with the nonlinearity of the problem, we apply damped Newton's method. To deal with the ill-posedness of this problem, we need to apply a regularization method based on the recursive linearization algorithm (RLA) (Chen) and bandlimited approximation for sets of points (Beylkin, Rokhlin).

Direct scattering problem

Figure: The direct scattering problem of finding the field scattered by an impenetrable obstacle.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Direct scattering problem

Consider the incident plane wave $u^{inc}(x) = \exp(ikx \cdot d)$. We seek

$$u(x) = u^{\rm inc}(x) + u^{\rm scat}(x),$$

the solution of the Helmholtz equation with Dirichlet condition

$$\Delta u(x) + k^2 u(x) = 0$$
 in $\mathbb{R}^2 \setminus \overline{D}$
 $u(x) = 0$ on ∂D ,

where $u^{\text{scat}}(x)$ satisfies the Sommerfeld condition

$$\lim_{r \to \infty} r \left(\frac{\partial u^{\text{scat}}}{\partial r} - iku^{\text{scat}} \right) = 0, \quad r = \|x\|.$$

Direct scattering problem

Theorem

Every radiating solution u to the Helmholtz equation has the asymptotic behavior of an outgoing spherical wave

$$u(x) = rac{e^{ik|x|}}{|x|^{rac{1}{2}}} \left\{ u_{\infty}(\hat{x}) + \mathcal{O}\left(rac{1}{|x|}
ight)
ight\}, \quad |x| o 0,$$

uniformly in all directions $\hat{x} = x/|x|$, where the function u_{∞} defined on the unit disk Ω is known as the far field pattern of u. We have:

$$u_{\infty}(\hat{x}) = \frac{e^{i\pi/4}}{\sqrt{8\pi k}} \int_{\partial D} \left\{ u(y) \frac{\partial e^{-ik\hat{x}\cdot y}}{\partial \nu(y)} - \frac{\partial u}{\partial \nu}(y) e^{-ik\hat{x}\cdot y} \right\} \, \mathrm{d}s(y), \quad \forall \hat{x} \in \Omega.$$

Direct scattering problem - Layer potentials

We define the single layer potential

$$S\varphi(x) := \int_{\partial D} G(x,y)\varphi(y) \ ds(y),$$

and the double layer potential

$$K\varphi(x) := \int_{\partial D} \partial_{\nu} G(x, y) \varphi(y) \, ds(y),$$

where

$$G(x,y) = \frac{i}{4}H_0^{(1)}(||x-y||).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Direct scattering problem – Asymptotic of the potentials

We also have the asymptotic operator for the single layer potential

$$(S_{\infty}\varphi)(\hat{x}) := e^{i\pi/4}/\sqrt{8\pi k} \int_{\partial D} e^{-ik\hat{x}\cdot y}\varphi(y) \ ds(y),$$

and for the double layer potential

$$(\mathcal{K}_{\infty}\varphi)(\hat{x}):=e^{-i\pi/4}\sqrt{rac{k}{8\pi}}\int_{\partial D}e^{-ik\hat{x}\cdot y}\hat{x}\cdot
u \; arphi(y)\; ds(y).$$

Direct scattering problem - First formulation

One way to obtain the far field pattern u_{∞} created by waves deflecting off an object D is to first solve

$$(I+K-i\eta S)arphi=-u^{ ext{inc}}$$

for φ , and then use the result to solve

$$u_{\infty} = (K_{\infty} + i\eta S_{\infty})\varphi.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Direct scattering problem – Another formulation

Another way to obtain the far field pattern is to first solve

$$(I + \partial_{\nu}S - i\gamma S)\frac{\partial u}{\partial \nu} = \frac{\partial u^{\text{inc}}}{\partial \nu} - i\gamma u^{\text{inc}}$$

for $\frac{\partial u}{\partial v}$, and then we use the result to solve

$$u_{\infty}=-S_{\infty}\frac{\partial u}{\partial \nu}.$$

Numerical Implementation

- ▶ We solve the system using the Nystrom method [CK98].
- The potential layer operators are implemented using the Alpert quadrature [Alp99].
- We use the trapezoidal rule to implement the far field operators K_∞ and S_∞.
- The inverse method that we are going to use rely on the solution of direct problems. (must be fast)
- It is possible to apply the FMM or fast solvers like the HSS, HODLR, and others. We used the HODLR by Ambikasaran and Darve [CA13].

Inverse problem for a single frequency

Problem 1 Given N_{ff} measurements \mathbf{u}_{∞} obtained from the scattering of u^{inc} by D, reconstruct the shape of D.

Types of methods

There are several different known methods of solving this inverse problem. In [Kre07], Kress classified them into three different types:

(1) Iterative methods: The inverse problem is interpreted as a nonlinear ill-posed operator equation (Newton's methods (Roger, Kress, Kirsch, many others), Landweber iterations or CG methods);

(2) Decomposition methods: Separate the problem in different problems (Potential Method (Potthast) or Point-Source method);

(3) Sampling methods: Uses an indicator function (Linear Sampling method (Colton, Kirsch), Probe method (Ikehata), Singular Source method (Potthast) or Factorization method (Kirsch)).

The solution of the direct scattering problem with a fixed incident plane wave u^{inc} defines the operator $F : \partial D \to u_{\infty}$. Considering the function x represents the shape ∂D , we have the equation:

$$F(x) = u_{\infty}.$$

• This problem is nonlinear and ill-posed.

Linearization

To deal with the nonlinearity of the problem, we use Newton's method [CK98] with a damping parameter. In this method, given a far field pattern u_{∞} , the nonlinear equation

 $F(x) = u_{\infty}$

is replaced by the linearized equation

$$F(x)+J(x)h=u_{\infty},$$

where J(x) is the Fréchet derivative of the operator F.

Linearization

Theorem (Kirsch)

The far field mapping $F : x \to u_{\infty}$ is Fréchet differentiable from $C^{2}(\mathbb{R}^{2})$ into $L^{2}(\Omega)$, where Ω is the unit circle. The derivative J(x) is given by

$$J(x)h = v_{\infty}$$

where v_{∞} denotes the far field pattern of the solution v to the Helmholtz equation in $\mathbb{R}^2 \setminus \overline{D}$ satisfying the Sommerfeld radiation condition and the boundary condition

$$v = -\nu \cdot h \quad \frac{\partial u}{\partial \nu} \quad on \quad \partial D.$$

Linearization

The iteration process for the linearization is the following:

Given an approximation x⁽ⁱ⁾ of the domain, we solve the equation

$$J(x^{(i)})h = u_{\infty} - F(x^{(i)}).$$
 (1)

- ► Obtain the update x⁽ⁱ⁺¹⁾ = x⁽ⁱ⁾ + ρh, where ρ is a damping factor.
- We have for the Fréchet derivative

$$J(x)h = (K_{\infty} - i\gamma S_{\infty})(I + K - i\gamma S)^{-1}h.$$

Regularization

Equation (2) is ill-posed, it is necessary to apply a regularization method. There are several methods available: Tikhonov regularization, truncated SVD, and several others.

We apply a frequency filter $\mathcal{F}_{\mathcal{N}(k)}$ as a right preconditioner. The frequency filter will be a low-pass filter that will filter all the frequencies below the number $\mathcal{N}(k)$. This approach is very similar to the truncated SVD approach.

Solve the equation

$$\mathcal{J}(x^{(i)})p = u_{\infty} - F(x^{(i)}), \qquad (2)$$

where $\mathcal{J}(x^{(i)}) = J(x^{(i)})\mathcal{F}_{\mathcal{N}(k)}$ and $\mathcal{F}_{\mathcal{N}(k)}p = h$. Using *h*, we update the domain.

After updating the domain, we apply a the algorithm of D. Beylkin and Rokhlin [BR13] to approximate the domain with a bandllimited curve and also reparameterize the curve.

Damped Newton's method

Damped's Newton Method

Given the initial guess $x^{(0)}$, and the far-field pattern u_∞

1. Repeat while the stopping criteria are not reached:

1.1 Use the domain $x^{(i)}$ and solve for $\frac{\partial \mathbf{u}}{\partial \nu}$ the equation

$$(I + \partial_{\nu} S - i\gamma S) \frac{\partial u}{\partial \nu} = \frac{\partial u^{\text{inc}}}{\partial \nu} - i\gamma \mathbf{u}^{\text{inc}}.$$

- 1.2 Using $\frac{\partial u}{\partial \nu}$, find the operator $J(x^{(i)})$.
- 1.3 Choose the parameter $\mathcal{N}(k)$, obtain the operator $\mathcal{J}(x^{(i)})$ and solve the system

$$\mathcal{J}(x^{(i)})p = u_{\infty} - F(x^{(i)})$$

1.4 Obtain $h = \mathcal{F}_{\mathcal{N}(k)}p$. 1.5 Update $x^{(i+1)} = x^{(i)} + \rho h$, re-parameterize and filter the domain $x^{(i+1)}$ for the next step and make i = i + 1.

Remarks

We have to consider the following every time that we update the domain:

- We need to check every time that we update the domain if the domain is still valid (not self-intersecting). For this, we can use a naive approach testing if the polygon formed by the points in the curve is not self-intersecting. For a fast algorithm the Bentley and Ottmann sweep algorithm [BO79] can be used.
- If the updated domain is self-intersecting, we adjust the size of ρ.
- For the re-parameterization of the domain we use the algorithm in [BR13] for re-parameterization of limited band curves.
- We also filter the curve during re-parameterization.

Numerical Results – star-shaped domains

Figure: (a) Pear. (b) 9-gear.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Numerical Results – star-shaped domains

Figure: Solution of the inverse scattering problem.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Conclusions – single frequency

Frequency	Initial Guess	Reconstruction
Low	Simple	Fuzzy
High	Closer to object	Sharp

- At low frequencies, the reconstruction problem is uniquely solvable [CS83], but its stability is poor [SM08]. That means, at low frequencies, it is difficult to reconstruct small details of the obstacle.
- At high frequencies, this inverse problem may not be uniquely solvable but it is more stable [NS12].

Inverse problem for multiple frequencies

Problem 2 Given $N_{\text{total}} = N_{ff} \times N_{\text{inc}}$ far field pattern $u_{\infty}^{k_1}$, $u_{\infty}^{k_2}$,..., $u_{\infty}^{k_{N_{\text{inc}}}}$, generated by scattering of $u_{k_1}^{\text{inc}}$, $u_{k_2}^{\text{inc}}$,..., $u_{k_{N_{\text{inc}}}}^{\text{inc}}$, reconstruct the shape of the object D.

Inverse problem for multiple frequencies

- Use the recursive linearization algorithm (RLA) presented in [Che97], and analyzed by [BT10, NS12].
- Choose an initial guess not very close to the object for low frequency measurements and obtain an approximation for the domain.
- The approximation becomes the initial guess at a higher frequency.
- For each frequency, we solve the inverse problem using an iterative method.

・ロト・日本・モート モー うへぐ

Recursive Linearization Algorithm

Recursive Linearization Algorithm with Damped Newton's method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Numerical results - star-shaped domain

Figure: RLA for the 7-gear, $k_j = 1 + 0.5j$, j = 0, ..., 13.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Numerical results - non star-shaped domain

Figure: RLA for non star shaped figure, $k_j = 0.5j$, j = 1, ..., 10.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Conclusion – multi-frequency

Improvement

 The technique gives a sharp reconstruction of the object in the illuminated part;

Issues to be solved

► However, our reconstruction is not good in the shadowed part.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse scattering for multiple frequencies and directions

What to do?

► We can solve the problem using data from multiple directions. We solve the single frequency inverse problem using data from several directions simultaneously. We would have for each direction *d_j* an equation

$$\mathcal{J}_{d_j}(x)p = u_{\infty,d_j} - F_{d_j}(x^{(i)}).$$

Solve the equations together for all the directions to obtain the step h.

Remark: This system is better conditioned than the system with one direction.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: RLA for the 9-gear, $k_j = 1 + 0.5j$, j = 0, ..., 19.

Figure: RLA for non star shaped figure, $k_j = 0.5j$, j = 1, ..., 10.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Examples using more frequencies

Since we are using a fast solver to accelerate our reconstructions, we can go further and reconstruct objects with more detail.

We have some examples reconstructing shapes of objects similar to an aircraft and a submarine.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: RLA for aircraft, $k_j = 0.5j$, $j = 1, \dots, 65$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(a) Reconstruction of the aircraft

(b) Top corner of the right wing

Figure: RLA for the aircraft.

(a) Reconstruction of the aircraft (b) Bottom corner of the right wing

Figure: RLA for the aircraft.

(a) Reconstruction of the aircraft

(b) Top right corner of the tail

Figure: RLA for the aircraft.

Figure: RLA for submarine, $k_j = 0.5j$, $j = 1, \dots, 65$.

(a) Reconstruction of the submarine

(b) Back part of the submarine

Figure: RLA for submarine.

(a) Reconstruction of the submarine

Figure: RLA for submarine.

(a) Reconstruction of the submarine

Figure: RLA for submarine.

Conclusion

- We are able to obtain accurate reconstructions of the shape of the objects starting from an initial guess that is not very close to the object.
- We presented an alternative to the regularization of the system encoding the frequency information in our preconditioner.
- The inclusion of data generated by incident waves of different directions provides us with data to obtain complete reconstructions of the objects and also improves the conditioning of the problem.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Future Work

- Obtain estimates for better choosing the values of ρ and of the frequencies to be filtered at each step.
- Implement the algorithm for multiple objects.
- Modify for the case of Neumann and Impedance boundary conditions.

• Extend the algorithm for the 3D case.

Thank you!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Works Cited I

- B. Alpert, *Hybrid gauss-trapezoidal quadrature rules*, SIAM J. Sci. Comput. **20** (1999), 1551–1584.
- J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput. 28 (1979), no. 9, 643–647.
- Daniel Beylkin and Vladimir Rokhlin, *Fitting a bandlimited curve to points in a plane*, Yale Computer Science Department

 Technical Report (2013).
- G. Bao and F. Triki, *Error Estimates for the Recursive Linearization of Inverse Medium Problems*, Journal of Computational Mathematics (2010).
- E. Darve C. Ambikasaran, An o(n logn) fast direct solver for partial hierarchically semi-separable matrices, 2013.

Works Cited II

- Yu Chen, *Inverse scattering via Heisenberg's uncertainty principle*, Inverse Problems **13** (1997), no. 2, 253.
- D. Colton and R. Kress, *Inverse acoustic and electromagnetic scattering theory*, second ed., Springer, 1998.
- D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA Journal of Applied Mathematics **31** (1983), no. 3, 253–259.
- Andreas Kloeckner, Alexander Barnett, Leslie Greengard, and Michael O'Neil, *Quadrature by expansion: A new method for the evaluation of layer potentials.*
- Rainer Kress, Uniqueness and numerical methods in inverse obstacle scattering, Journal of Physics: Conference Series 73 (2007), no. 1, 012003.

Works Cited III

- T. Nguyen and M. Sini, *Inverse acoustic obstacle scattering problems using multifrequency measurements*, Inverse Problems and Imaging 6 (December 2012), no. 4, 749–773.
- E. Sincich and M.Sini, Local stability for soft obstacles by a single measurement, Inverse Problems and Imaging 2 (2008), no. 2, 301–315.