High-order quadratures for boundary integral equations: a tutorial

CBMS conference on fast direct solvers 6/23/14

Alex Barnett (Dartmouth College)

Slides accompanying a partly chalk talk.

Certain details, references, codes, exercises: download quadrtut.zip

Representing PDE solns: potential theory

'charge' (source of waves) distributed along curve Γ w/ density func.

Single-, double-layer potentials, $\mathbf{x} \in \mathbb{R}^2$ $v(\mathbf{x}) = \int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (S\sigma)(\mathbf{x})$ $u(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (\mathcal{D}\sigma)(\mathbf{x})$

$$\Phi(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{x} - \mathbf{y}) = \frac{i}{4} H_0^{(1)}(\omega |\mathbf{x} - \mathbf{y}|)$$

kernel is Helmholtz fundamental soln
a.k.a. free space Greens func

Representing PDE solns: potential theory

'charge' (source of waves) distributed along curve Γ w/ density func.

Single-, double-layer potentials, $\mathbf{x} \in \mathbb{R}^2$ $v(\mathbf{x}) = \int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (S\sigma)(\mathbf{x})$ $u(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (\mathcal{D}\sigma)(\mathbf{x})$

$$\Phi(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{x} - \mathbf{y}) = \frac{i}{4}H_0^{(1)}(\omega|\mathbf{x} - \mathbf{y}|)$$

kernel is Helmholtz fundamental soln
a.k.a. free space Greens func

Jump relations: limit as $\mathbf{x} \to \Gamma$ can depend on which side (±):

 $v^{\pm} = S\sigma$ no jump $u^{\pm} = D\sigma \pm \frac{1}{2}\sigma$ jump

S, D: bdry integral ops w/ above kernels, smoothing, bounded $L_2(\Gamma) \to H^1(\Gamma)$

Representing PDE solns: potential theory

'charge' (source of waves) distributed along curve Γ w/ density func.

Single-, double-layer potentials, $\mathbf{x} \in \mathbb{R}^2$ $v(\mathbf{x}) = \int_{\Gamma} \Phi(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (S\sigma)(\mathbf{x})$ $u(\mathbf{x}) = \int_{\Gamma} \frac{\partial \Phi}{\partial n_{\mathbf{y}}}(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) ds_{\mathbf{y}} := (\mathcal{D}\sigma)(\mathbf{x})$

$$\Phi(\mathbf{x}, \mathbf{y}) := \Phi(\mathbf{x} - \mathbf{y}) = \frac{i}{4}H_0^{(1)}(\omega|\mathbf{x} - \mathbf{y}|)$$

kernel is Helmholtz fundamental soln
a.k.a. free space Greens func

Jump relations: limit as $\mathbf{x} \to \Gamma$ can depend on which side (±):

 $v^{\pm} = S\sigma$ no jump $u^{\pm} = D\sigma \pm \frac{1}{2}\sigma$ jump

S, D: bdry integral ops w/ above kernels, smoothing, bounded $L_2(\Gamma) \to H^1(\Gamma)$

From now fix $\Gamma = \partial \Omega$ i.e. densities live on obstacle boundary

Underlying quadrature schemes in 2D

err $O(e^{-\alpha N})$ if analytic $f, \partial \Omega$ vesicles, smooth bodies

err $O(N^{-2p})$ if $f, \partial \Omega \in C^{2p}$ adaptivity, corner refinement

Classification of log singular schemes in 2D		
kernel: $K(s,t) = K_1(s,t) \log(4 \sin^2 \frac{s-t}{2}) + K_2(s,t)$		
	split into K_1 , K_2 explicit	split into K_1 , K_2 unknown
global (PTR)	Kress '91: prod. quadr. but not FMM	Kapur–Rokhlin '97: corr. weights Alpert '99: aux. nodes QBX '12: local exp. for PDE
panel-based (Gauss–L)	Helsing '08: C contour integr.	Gen. Gauss. Kolm–Rokhlin: sets of aux. nodes QBX '12 : local exp. for PDE

- explicit split: more analytic info \Rightarrow gains efficiency
- unknown split: useful for new kernels (eg axisymmetric)

Potential evaluation close to boundary

2D interior Laplace (k = 0) $\partial \Omega$ param by $Z(s), s \in [0, 2\pi)$

say want eval. $u = \mathcal{D}\sigma$ $u = \operatorname{Re} v$, $v(z) = \frac{i}{2\pi} \int_{\partial\Omega} \frac{\sigma(y)}{z - y} dy$

Potential evaluation close to boundary

2D interior Laplace (k = 0) $\partial\Omega$ param by $Z(s), s \in [0, 2\pi)$ say want eval. $u = \mathcal{D}\sigma$ $u = \operatorname{Re} v$, $v(z) = \frac{i}{2\pi} \int_{\partial \Omega} \frac{\sigma(y)}{z - y} dy$ Eg use PTR. "5h-rule": target z must be 5h from $\partial \Omega$ to be accurate convergence at z: \log_{10} evaluation error in *u* due to quadrature with N nodes: 10^{-5} -5 -5 error at a 0⁻¹⁰ -10 -10 οZ • Z -15 -15 10⁻¹⁵ N = 60 N = 120100 200 300 Ν

• exponential convergence, but rate arbitrarily slow as $z \to \partial \Omega$ Thm (B '12): rate = dist. of $Z^{-1}(z)$ from real axis in complex *s* plane

Quadrature By eXpansion (QBX) (B '11) (Klöckner-B-Greengard-O'Neil '12)

 $\sigma, v|_{\partial\Omega}$ analytic $\Rightarrow v$ extends analytically some dist. outside Ω

Quadrature By eXpansion (QBX) (B '11) (Klöckner-B-Greengard-O'Neil '12)

 $\sigma, v|_{\partial\Omega}$ analytic $\Rightarrow v$ extends analytically some dist. outside Ω

Taylor exp. $v(z) = \sum_{n=0}^{\infty} c_n(z-z_0)$ rad. of conv. ρ takes you beyond $\partial \Omega$

Quadrature By eXpansion (QBX) (B '11) (Klöckner-B-Greengard-O'Neil '12) $\sigma, v|_{\partial\Omega}$ analytic $\Rightarrow v$ extends analytically some dist. outside Ω Taylor exp. $v(z) = \sum_{n=0}^{\infty} c_n(z-z_0)$ rad. of conv. ρ takes you beyond $\partial\Omega$

- pick center z_0 about 2.5h from $\partial \Omega$
- eval. $P (\approx 10)$ terms via Cauchy,

$$c_n = \frac{v^{(n)}(z_0)}{n!} = \frac{i}{2\pi} \int_{\partial\Omega} \frac{\sigma(y)}{(z-y)^{n+1}} dy$$

integrand more osc. \Rightarrow need βN nodes, $\beta \approx 4$ interpolate σ from original N

- eval. Taylor exp. in $|z z_0| \le R < \rho$
- repeat for z_0 's all around $\partial \Omega$

Quadrature By eXpansion (QBX) (B '11) (Klöckner-B-Greengard-O'Neil '12) $\sigma, v|_{\partial\Omega}$ analytic $\Rightarrow v$ extends analytically some dist. outside Ω Taylor exp. $v(z) = \sum_{n=0}^{\infty} c_n(z-z_0)$ rad. of conv. ρ takes you beyond $\partial\Omega$

- pick center z_0 about 2.5h from $\partial \Omega$
- eval. $P \approx 10$ terms via Cauchy,

$$c_n = \frac{v^{(n)}(z_0)}{n!} = \frac{i}{2\pi} \int_{\partial\Omega} \frac{\sigma(y)}{(z-y)^{n+1}} dy$$

integrand more osc. \Rightarrow need βN nodes, $\beta \approx 4$ interpolate σ from original N

- eval. Taylor exp. in $|z z_0| \le R < \rho$
- repeat for z_0 's all around $\partial \Omega$

Thm. (B '12) err $\leq C\left(\frac{R}{\rho}\right)^{P} + Cp\left(\frac{C\beta}{P}\right)^{P}e^{-C\beta}$ asymp. exponential conv. in P, β

Quadrature By eXpansion (QBX) (B '11) (Klöckner-B-Greengard-O'Neil '12) $\sigma, v|_{\partial\Omega}$ analytic $\Rightarrow v$ extends analytically some dist. outside Ω Taylor exp. $v(z) = \sum_{n=0}^{\infty} c_n(z-z_0)$ rad. of conv. ρ takes you beyond $\partial\Omega$

Helmholtz (k > 0):

- pick center z_0 about 2.5h from $\partial \Omega$
- eval. $P \ (\approx 10)$ terms via Cauchy,

$$c_n = \frac{v^{(n)}(z_0)}{n!} = \frac{i}{2\pi} \int_{\partial\Omega} \frac{\sigma(y)}{(z-y)^{n+1}} dy$$

integrand more osc. \Rightarrow need βN nodes, $\beta \approx 4$ interpolate σ from original N

- eval. Taylor exp. in $|z z_0| \le R < \rho$
- repeat for z_0 's all around $\partial \Omega$
- Taylor → local expansion Σ_{|n|<P} c_nJ_n(kr)e^{inθ}
 Cauchy → Graf's addition theorem for Bessels

(c)
$$\log_{10} |u^{(N)} - u| / ||u_{\text{tot}}||_{\infty}$$

(d) $\log_{10} |\hat{u} - u| / ||u_{\text{tot}}||_{\infty}$

QBX, 2D, high-k close eval. for Helmholtz

100 λ diameter 700 λ perimeter

underlying Kress, N=9000 unknowns fill + solve 90 sec

QBX eval in 30 sec (2×10^5 pts) rel. error < 10^{-11}

(B '12)

Local vs global QBX; same scheme in 3D

Local: use QBX to fill self and near panel matrix blocks, sparse O(N)– far via plain rule; err $O(h^p + \epsilon)$ where ϵ fixed, controlled by p, P, β . ie not formally convergent; needs P high to push to $\epsilon = O(\epsilon_{mach})$

Global: use QBX with all of $\partial \Omega$ contrib to expansion at each center

- kills the ϵ , allows lower P (for engs. apps.), do all via FMM (FDS?)

Local vs global QBX; same scheme in 3D

Local: use QBX to fill self and near panel matrix blocks, sparse O(N)– far via plain rule; err $O(h^p + \epsilon)$ where ϵ fixed, controlled by p, P, β . ie not formally convergent; needs P high to push to $\epsilon = O(\epsilon_{mach})$

Global: use QBX with *all of* $\partial \Omega$ contrib to expansion at each center – kills the ϵ , allows lower *P* (for engs. apps.), do all via FMM (FDS?)

3D: panels $p \times p$ Gauss nodes

Local expansion $u(r, \theta, \phi) =$ $\sum_{|n| \le P} \sum_{m=-n}^{n} c_{nm} j_n(kr) Y_n^m(\theta, \phi)$

spherical harmonic addn thm

• (P+1) th order proven for $\sigma \in W^{P+3+\epsilon,2}$ (Epstein–Greengard–Klöckner '12)

QBX: 3D high-freq. torus scattering result

QBX in 3D still in primitive state (Barnett–Gimbutas–Greengard, in prep.)
note FEM/FDTD at this high accuracy & freq. essentially prohibitive

QBX: 3D periodic scattering (prelim)

Doubly-periodic grating of sound-soft scatterers

Dirichlet obstacles $d = 2.4\lambda$ N = 25200(one obstacle) p = 6.QBX 4 min, laptop $p=6, P=8, \beta=4$ 30 its 5 min error 10^{-5}

• New periodizing scheme (Barnett–Gimbutas–Greengard, in prep.)

3D, Bremer–Gimbutas '12: triangle auxiliary nodes

Lots of precomputed nodes for various aspect triangles, kernels:

local correction (self & neighbors) product grids in two parameters polar coords removes 1/r singularity

Low-frequency Helmholtz Neumann BVP:

Complications (eg high-aspect ratio panels) in 3D, reducing constants Edges and corners in 3D (Lintner–Bruno, Turc, Helsing, Bremer, ...) - corner compression: turning 10^3 into 50 unknowns/corner (Helsing, Bremer, Gillman–Martinsson, ...) Other kernels: Stokes, elasticity, Maxwell, representations for topology (Greengard+collabs, Veerapaneni, many ppl...) Other BCs, hypersingular & Calderon precond, time-domain (Sayas) Software, 2D and 3D, quadrature and evaluation, documented!

Research II: variable-coeff PDEs

If you can evaluate the fundamental soln, you can do BIEs!

 $(\Delta + E + x_2)u(x_1, x_2) = 0$ "gravity Helmholtz equation" rays refract (bend) upwards 50λ diameter N = 1600PTR w/ 16th-order Alpert err 10^{-12} 20 mins (fill)

w/ Brad Nelson '13

Research III: the local group

Lin Zhao (grad student) Nyström + Fredholm det for eigenvalue problems $-\Delta u = \lambda u$

Larry LiuAxisymmetric bodies, Maxwell, periodic(grad student)scattering

Adrianna GillmanFast direct solvers, Poincaré-Steklov, corners,(Instructor)3D, periodic, scattering

Min Hyung ChoMulti-layered media, Maxwell, volume inte-
gral equations

Say hello (& ask them research and local questions!)