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Abstract

We study the distribution of the statistics ‘number of fixed points’ and ‘number
of excedances’ in permutations avoiding subsets of patterns of length 3. We solve
all the cases of simultaneous avoidance of more than one pattern, giving generating
functions enumerating these two statistics. Some cases are generalized to patterns
of arbitrary length. For avoidance of one single pattern we give partial results. We
also describe the distribution of these statistics in involutions avoiding any subset
of patterns of length 3.

The main technique is to use bijections between pattern-avoiding permutations
and certain kinds of Dyck paths, in such a way that the statistics in permutations
that we study correspond to statistics on Dyck paths that are easy to enumerate.

1 Introduction

The problem of enumerating pattern-avoiding permutations, also known as restricted
permutations, has generated a lot of research over the last few decades. One of the
most referenced papers on this topic is [18], which contains a systematic enumeration of
permutations avoiding any subset of patterns of length 3.

However, the study of statistics in pattern-avoiding permutations started developing
very recently, and the interest in this topic is currently growing. Two of the most studied
permutation statistics have been the number of fixed points and the number of excedances
of a restricted permutation. For example, in [16, 6, 8] it is shown the surprising fact that
the joint distribution of these two statistics is the same in 132- and in 321-avoiding permu-
tations. In [5], involutions avoiding any single pattern of length 3 are studied with respect
to the number of fixed points. Another paper [14] deals with the enumeration of permu-
tations with a given number of fixed points avoiding simultaneously two or more patterns
of length 3. Finally, [12] considers additional restrictions on 132-avoiding involutions.
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Given two permutations π = π1π2 · · ·πn ∈ Sn and σ = σ1σ2 · · ·σm ∈ Sm, with m ≤ n,
we say that π contains σ if there exist indices i1 < i2 < . . . < im such that πi1πi2 · · ·πim

is in the same relative order as σ1σ2 · · ·σm. If π does not contain σ, we say that π avoids
σ, or that it is σ-avoiding. Denote by Sn(σ) the set of σ-avoiding permutations in Sn.
More generally, if Σ ⊆ ⋃

k≥1 Sk is any set of permutations, denote by Sn(Σ) the set of
permutations in Sn that avoid simultaneously all the patterns in Σ (also called Σ-avoiding
permutations).

We say that i is a fixed point of a permutation π if πi = i, and that i is an excedance
of π if πi > i. Denote by fp(π) and exc(π) the number of fixed points and the number of
excedances of π respectively. We are interested in enumerating pattern-avoiding permu-
tations with respect to these two statistics. Most of the results will be expressed in terms
of multivariate generating functions.

In Section 2 we introduce the definitions, the preliminaries, and the basic tools that
we use in the paper. Section 3 is devoted to the study of permutations with a single
restriction with respect to the statistics fp and exc (except in the case of the pattern 123,
for which we can only give partial results regarding fp). In Section 4 we solve completely
the case of permutations avoiding simultaneously any two patterns of length 3, giving
generating functions counting the number of fixed points and the number of excedances.
For some particular cases we can generalize the results, allowing one pattern of the pair
to have arbitrary length. In Section 5 we give the analogous generating functions for
permutations avoiding simultaneously any three patterns of length 3 or more. Finally,
Section 6 is concerned with the study of the distribution of these statistics in involutions
avoiding any subset of patterns of length 3. We end with a few final remarks about the
results of the paper and possible extensions.

2 Bijections and statistics

We will represent a permutation π ∈ Sn by an n× n array with a cross in each one of the
squares (i, πi). Fixed points of π correspond to crosses on the main diagonal (from top-left
to bottom-right corner) of the array, and excedances of π are represented by crosses to
the right of this diagonal.

2.1 Trivial bijections in Sn

Given a permutation π = π1π2 · · ·πn, define its complementation π̄ = (n + 1 − π1)(n +
1 − π2) · · · (n + 1 − πn). The array of π̄ is obtained from the array of π by a flip along
a vertical axis, so fixed points (resp. excedances) of π correspond to crosses on (resp.
to the left of) the antidiagonal (from top-right to bottom-left corner) of the array of π̄.
Similarly, define π̂ to be the permutation whose array is the one obtained from that of π
by reflection along the antidiagonal. Note that reflecting the array of π along the main
diagonal, we get the array of its inverse π−1. For any set of permutations Σ, let Σ̄ be the
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set obtained by reversing each of the elements of Σ. Define Σ̂ and Σ−1 analogously. The
following trivial lemma will be used later on.

Lemma 2.1 Let Σ ⊂ ⋃
k≥1 Sk be any set of permutations, and let π ∈ Sn. We have that

(1) π ∈ Sn(Σ) ⇐⇒ π̄ ∈ Sn(Σ̄) ⇐⇒ π̂ ∈ Sn(Σ̂) ⇐⇒ π−1 ∈ Sn(Σ−1),

(2) fp(π̂) = fp(π), exc(π̂) = exc(π),

(3) fp(π−1) = fp(π), exc(π−1) = n− fp(π)− exc(π).

We are interested in the distribution of the statistics fp and exc among the permuta-
tions avoiding a certain set Σ of patterns. Given any such set Σ, we define the generating
function FΣ as

FΣ(x, q, z) :=
∑
n≥0

∑
π∈Sn(Σ)

xfp(π)qexc(π)zn.

If Σ = {σ}, we will write Fσ instead of F{σ}. The following lemma restates the previous
one in terms of generating functions.

Lemma 2.2 Let Σ be any set of permutations. We have

(1) FbΣ(x, q, z) = FΣ(x, q, z),

(2) FΣ−1(x, q, z) = FΣ(
x

q
,
1

q
, qz).

Proof. To prove (1), consider the bijection between Sn(Σ) and Sn(Σ̂) that maps π to π̂.
The equation follows from parts (1) and (2) of Lemma 2.1.

Equation (2) follows similarly from parts (1) and (3) of the previous lemma, noticing
that ∑

n≥0

∑
π∈Sn(Σ−1)

xfp(π)qexc(π)zn =
∑
n≥0

∑
π∈Sn(Σ)

xfp(π−1)qexc(π−1)zn

=
∑
n≥0

∑
π∈Sn(Σ)

xfp(π)qn−fp(π)−exc(π)zn =
∑
n≥0

∑
π∈Sn(Σ)

(
x

q

)fp(π) (
1

q

)exc(π)

(qz)n.

�

If for two sets of patterns Σ1 and Σ2 we have that FΣ1(x, q, z) = FΣ2(x, q, z) (i.e.,
the joint distribution of fixed points and excedances is the same in Σ1-avoiding as in Σ2-
avoiding permutations), as in part (1) of Lemma 2.2, we will write Σ1 ≈ Σ2. If we are in
the situation of part (2), that is, FΣ1(x, q, z) = FΣ2(

x
q
, 1

q
, qz), we will write Σ1 ∼ Σ2.

the electronic journal of combinatorics 11 (2004), #R51 3



2.2 Bijection to Dyck paths

Recall that a Dyck path of length 2n is a lattice path in Z
2 between (0, 0) and (2n, 0)

consisting of up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis.
We shall denote by Dn the set of Dyck paths of length 2n, and by D =

⋃
n≥0Dn the class

of all Dyck paths. One of the main ingredients we will need throughout the paper is a
bijection between Sn(132) and Dn, which we define in the next paragraph.

Any permutation π ∈ Sn can be represented as an n×n array with crosses in positions
(i, πi). From this array of crosses, we obtain the diagram of π as follows. For each cross,
shade the cell containing it and the squares that are due south and due east of it. The
diagram is defined as the region that is left unshaded. It is shown in [15] that this gives a
bijection between Sn(132) and Young diagrams that fit in the shape (n− 1, n− 2, . . . , 1).
Consider now the path determined by the border of the diagram of π, that is, the path
with up and right steps that goes from the lower-left corner to the upper-right corner of
the array, leaving all the crosses to the right, and staying always as close to the diagonal
connecting these two corners as possible. Define ϕ(π) to be the Dyck path obtained from
this path by reading an up-step every time it goes up and a down-step every time it goes
right. Since the path in the array does not go below the diagonal, ϕ(π) does not go below
the x-axis. Figure 1 shows an example when π = 67435281.
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Figure 1: The bijection ϕ.

The bijection ϕ is essentially the same bijection between Sn(132) and Dn given by
Krattenthaler [13] (see also [11]), up to reflection of the path from a vertical line.

Next we define the inverse map ϕ−1 : Dn −→ Sn(132). Given a Dyck path D ∈ Dn,
the first step needed to reverse the above procedure is to transform D into a path U from
the lower-left corner to the upper-right corner of an n × n array, not going below the
diagonal connecting these two corners. Then, the squares to the left of this path form a
diagram, and we can shade all the remaining squares. From this diagram, the permutation
π ∈ Sn(132) can be recovered as follows: row by row, put a cross in the leftmost shaded
square such that there is exactly one cross in each column.

2.3 Statistics on Dyck paths

It is well-known that |Dn| = Cn = 1
n+1

(
2n
n

)
, the n-th Catalan number. If D ∈ Dn, we will

write |D| = n to indicate the semilength of D. The generating function that enumerates
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Dyck paths according to their semilength is
∑

D∈D z
|D| =

∑
n≥0 Cnz

n = 1−√
1−4z

2z
, which

we denote by C(z). Sometimes it will be convenient to encode each up-step by a letter u
and each down-step by d, obtaining an encoding of the Dyck path as a Dyck word.

A peak of a Dyck pathD ∈ D is an up-step followed by a down-step (i.e., an occurrence
of ud in the associated Dyck word). A hill is a peak at height 1, where the height is the y-
coordinate of the top of the peak. A valley of a Dyck path D ∈ D is a down-step followed
by an up-step (i.e., an occurrence of du in the associated Dyck word). The height of D is
the y-coordinate of the highest point of the path. Denote by D≤k the set of Dyck paths
of height at most k. Define a pyramid to be a Dyck path that has only one peak, that is,
a path of the form ukdk with k ≥ 1 (here the exponent indicates the number of times the
letter is repeated).

As defined in [6], a tunnel of a Dyck path D is a horizontal segment between two
lattice points of D that intersects D only in these two points, and stays always below
D. Tunnels are in obvious one-to-one correspondence with decompositions of the Dyck
word D = AuBdC, where B ∈ D (no restrictions on A and C). In the decomposition,
the tunnel is the segment that goes from the beginning of the u to the end of the d.
If D ∈ Dn, then D has exactly n tunnels, since such a decomposition can be given
for each up-step u of D. The length of a tunnel is just its length as a segment, and
the height is its y-coordinate. It will be useful to define the depth of a tunnel T as
depth(T ) := 1

2
length(T )− height(T )− 1.

A tunnel of D ∈ Dn is called a centered tunnel if the x-coordinate of its midpoint is
n, that is, the tunnel is centered with respect to the vertical line through the middle of
D. In terms of the decomposition D = AuBdC, this is equivalent to saying that A and
C have the same length. Denote by ct(D) the number of centered tunnels of D.

A tunnel of D ∈ Dn is called a right tunnel if the x-coordinate of its midpoint is
strictly greater than n, that is, the midpoint of the tunnel is to the right of the vertical
line through the middle of D. Clearly, in terms of the decomposition D = AuBdC, this
is equivalent to saying that the length of A is strictly bigger than the length of C. Denote
by rt(D) the number of right tunnels of D. In Figure 2, there is one centered tunnel
drawn with a solid line, and four right tunnels drawn with dotted lines.

Figure 2: One centered and four right tunnels.

For a Dyck path D ∈ Dn, denote by D∗ the path obtained by reflection of D from
a vertical line x = n. We say that D is symmetric if D = D∗. Denote by Ds ⊂ D the
subclass of symmetric Dyck paths.
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2.4 Properties of ϕ

In order to enumerate fixed points and excedances in permutations, we analyze what these
statistics are mapped to by ϕ. Table 1 summarizes the correspondences of ϕ that we will
use.

In the permutation π In the array of π In the Dyck path ϕ(π)
fixed points of π crosses on the main diagonal centered tunnels

excedances of π
crosses to the right

of the main diagonal
right tunnels

fixed points of π̄ crosses on the secondary diagonal tunnels of depth 0

excedances of π̄
crosses to the left of

the secondary diagonal
tunnels of negative depth

Table 1: Behavior of ϕ on fixed points and excedances.

The correspondences between the first two columns have been discussed above. Now
we show how ϕ maps the statistics on the second column to those on the third one. We
repeat the reasoning in [6, 8].

For this purpose, instead of using D = ϕ(π), it will be convenient to consider the path
U from the lower-left corner to the upper-right corner of the array of π. We will talk about
tunnels of U to refer to the corresponding tunnels of D under this trivial transformation.

Consider the arrangement of crosses of π as defined earlier. We now show how to
associate a unique tunnel T of D to each cross X of this array. Observe that given a
cross X = (i, j), U has a vertical step in row i and a horizontal step in column j. In
D, these two steps in U correspond to steps u and d respectively, so they determine a
decomposition D = AuBdC (see Figure 3), and therefore a tunnel T of D.

u d
B

A

C

D

U

j

i

T

Figure 3: Each cross produces a tunnel.

The distance between these two steps determines the length of T , and the distance
from these steps to the antidiagonal of the array determines the height of T . In order
for the corresponding cross to lie on the antidiagonal, the relation between these two
quantities must be 1

2
length(T ) = height(T ) + 1, which is equivalent to depth(T ) = 0, by

the definition of depth. The depth of T indicates how far from the antidiagonal X is.
The cross lies to the left of the antidiagonal exactly when depth(T ) < 0. This justifies
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the last two rows of the table. The first two correspondences are easier to see. Indeed,
T is centered precisely when X is on the main diagonal, and T is a right tunnel when X
lies to the right of the main diagonal.

Figure 4: Three tunnels of depth 0 and seven tunnels of negative depth.

We define two new statistics on Dyck paths. For D ∈ D, let td0(D) be the number
of tunnels of depth 0 of D, and let td<0(D) be the number of tunnels of negative depth
of D. In Figure 4, there are three tunnels of depth 0 drawn with a solid line, and seven
tunnels of negative depth drawn with dotted lines. We have proved the following lemma.

Lemma 2.3 Let π ∈ Sn(132), ρ ∈ Sn(312). We have

(1) fp(π) = ct(ϕ(π)),

(2) exc(π) = rt(ϕ(π)),

(3) fp(ρ) = td0(ϕ(ρ̄)),

(4) exc(ρ) = td<0(ϕ(ρ̄)).

2.5 Combinatorial classes and generating functions.

Here we direct the reader to [10] for a detailed account on combinatorial classes and the
symbolic method. Let A be a class of unlabelled combinatorial objects and let |α| be the
size of an object α ∈ A. If An denotes the objects in A of size n and an = |An|, then the
ordinary generating function of the class A is

A(z) =
∑
α∈A

z|α| =
∑
n≥0

anz
n.

Enumerations according to size and auxiliary parameters χ1, χ2, . . . , χr are described by
multivariate generating functions,

A(u1, u2, . . . , ur, z) =
∑
α∈A

u
χ1(α)
1 u

χ2(α)
2 · · ·uχr(α)

r z|α|.

Throughout the paper the variable z is reserved for marking the length of a permuta-
tion and the semilength of a Dyck path, x is used for marking the number of fixed points
of a permutation and the number of centered tunnels or tunnels of depth 0 of a Dyck
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path, and q is the variable that marks the number of excedances of a permutation and
the number of right tunnels or tunnels of negative depth of a Dyck path.

There is a direct correspondence between set theoretic operations (or “constructions”)
on combinatorial classes and algebraic operations on generating functions. Table 2 sum-
marizes this correspondence for the operations that are used in the paper. There “union”
means union of disjoint copies, “product” is the usual cartesian product, and “sequence”
forms an ordered sequence in the usual sense. We assume that the parameters χi marked
by the variables ui are additive, that is, if (α, β) ∈ A×B then χi((α, β)) = χi(α)+χi(β).

Construction Operation on generating functions
Union A = B + C A(u1, . . . , ur, z) = B(u1, . . . , ur, z) + C(u1, . . . , ur, z)
Product A = B × C A(u1, . . . , ur, z) = B(u1, . . . , ur, z)C(u1, . . . , ur, z)
Sequence A = Seq(B) A(u1, . . . , ur, z) = 1

1−B(u1,...,ur,z)

Table 2: The basic combinatorial constructions and their translation into generating
functions.

3 Single restrictions

The most difficult case appears to be that of permutations avoiding one single pattern. It
is well known that for any σ ∈ S3, |Sn(σ)| = Cn. By Lemma 2.2, we have that 132 ≈ 213,
and that 231 ∼ 312. These are the only equivalences that follow from the trivial bijections.
Recently it was shown that, surprisingly, 321 ≈ 132. The first proof of this result appears
in [6] (see [8] for a bijective proof). The weaker version 321 ∼ 132 was proved earlier in
[16].

So, we have the following equivalence classes of patterns of length 3 with respect to
fixed points and excedances:

a) 123
b) 132 ≈ 213 ≈ 321

c) 231 ∼ c’) 312

3.1 a) 123

For this case we have not been able to find a satisfactory expression for F123(x, q, z). We
can nevertheless give summation formulas for the number of permutations in Sn(123) with
a given number of fixed points. The first trivial observation is that if π avoids 123, then
it can have at most two fixed points. If πi = i, we say that i is a big fixed point of π if
i ≥ n+1

2
, and that it is a small fixed point if i < n+1

2
.

It is known that a permutation is 321-avoiding if and only if both the subsequence
determined by its excedances and the one determined by the remaining elements are

the electronic journal of combinatorics 11 (2004), #R51 8



increasing. Using the fact that π avoids 123 if and only if π̄ avoids 321, we obtain
a characterization of 123-avoiding permutations as those with the following property:
the elements πi such that πi < n + 1 − i form a decreasing subsequence, and so do the
remaining elements. In particular, since no two fixed points can be in the same decreasing
subsequence, this implies that π can have at most one big fixed point and one small fixed
point.

In this subsection we use a bijection between Sn(123) and Dn, which we denote by
ψ. This bijection appears in an equivalent form in [13, 16], and it is closely related to
the bijections between Sn(321) and Dn given in [6, 11]. We can define ψ as follows. Let
π ∈ Sn(123) be represented as an n×n array with a cross on each square (i, πi). Consider
the path with down and left steps that goes from the upper-right corner to the lower-left
corner, leaving all the crosses to the left, and staying always as close to the diagonal
connecting these two corners as possible. Then ψ(π) is the Dyck path obtained from this
path by reading an up-step every time the path goes down and a down-step every time it
goes left. Figure 5 shows an example when π = (9, 6, 10, 4, 8, 7, 3, 5, 2, 1).

Figure 5: The bijection ψ.

Note that the peaks of the path are determined by the crosses of elements πi such that
πi ≥ n + 1 − i, which form a decreasing subsequence. Now it is easy to determine how
many permutations have a big (resp. small) fixed point.

Proposition 3.1 Let n ≥ 1. We have

(1) |{π ∈ Sn(123) : π has a big fixed point}| = Cn−1,

(2) |{π ∈ Sn(123) : π has a small fixed point}| =
{

Cn−1 if n is even,
Cn−1 −C2

n−1
2

if n is odd.

Proof. (1) It is clear from the definition of ψ that π has a big fixed point if and only if
ψ(π) has a peak in the middle. Now, we can easily define a bijection from the subset of
elements of Dn with a peak in the middle and Dn−1, by removing the two middle steps
ud.

(2) Clearly, π ∈ Sn(123) if and only if π̂ ∈ Sn(123). This involution switches big and
small fixed points, except for the possible big fixed point in position n+1

2
, which remains

unchanged. Applying now ψ, a small fixed point of π is transformed into a peak in the
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middle of ψ(π̂) of height at least two (indeed, a hill would correspond to the big fixed
point n+1

2
). Knowing that the number of paths in Dn with a peak in the middle is Cn−1,

we just have to subtract those where this middle peak has height 1. If n is even, paths in
Dn cannot have a hill in the middle. If n is odd, such paths have the form AudB, where
A,B ∈ Dn−1

2
, so the formula follows. �

For k ≥ 0, let sk
n(123) := |{π ∈ Sn(123) : fp(π) = k}|. We have mentioned that

sk
n(123) = 0 for k ≥ 3. The following corollary reduces the problem of studying the

distribution of fixed points in Sn(123) to that of determining s2
n(123).

Corollary 3.2 Let n ≥ 1. We have

(1) s1
n(123) =

{
2(Cn−1 − s2

n(123)) if n even,
2(Cn−1 − s2

n(123))−C2
n−1

2

if n odd.

(2) s0
n(123) =

{
Cn − 2Cn−1 + s2

n(123) if n even,
Cn − 2Cn−1 + s2

n(123) + C2
n−1

2

if n odd.

Proof. (1) By inclusion-exclusion, s1
n(123) = |{π ∈ Sn(123) : π has a big fixed point}| +

|{π ∈ Sn(123) : π has a small fixed point}| − 2s2
n(123). Now we apply Proposition 3.1.

(2) Clearly, s0
n(123) = Cn − s1

n(123)− s2
n(123). �

The next theorem, together with the previous corollary, gives a formula for the distri-
bution of fixed points in 123-avoiding permutations.

Theorem 3.3

s2
n(123) =

n−1∑
i=1

i∑
r,s=1

[((
2i− r − 1

i− 1

)
−

(
2i− r − 1

i

))
·
((

2i− s− 1

i− 1

)
−

(
2i− s− 1

i

))

·
n∑

h=1
n−h even

n−2i∑
k=0

f(k, r, h, n− 2i+ r)f(n− 2i− k, s, h, n− 2i+ s)

 ,
where

f(k, r, h, `) =



(
`+h−r

2
− 1

k

)(
`−h+r

2
− 1

k − 1

)
−

(
`−h−r

2
− 1

k

)(
`+h+r

2
− 1

k − 1

)
if k ≥ 1,

1 if k = 0 and
` = h− r,

0 otherwise,

with the convention
(

a
b

)
:= 0 if a < 0.
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Proof. Recall that s2
n(123) counts permutations with both a big and a small fixed point.

We have seen already that ψ maps a big fixed point of the permutation into a peak in
the middle of the Dyck path. Now we look at how a small fixed point of the permutation
is transformed by ψ. We claim that π ∈ Sn(123) has a small fixed point if and only if
D = ψ(π) satisfies the following condition (which we call condition C1): there exists i
such that the i-th and (i + 1)-st up-steps of D are consecutive, the i-th and (i + 1)-st
down-steps from the end are consecutive, and there are exactly n + 1 − 2i peaks of D
between them. To see this, assume that i is a small fixed point of π (see Figure 6). Then,
the path from the upper-right to the lower-left corner of the array of π, used to define
ψ(π), has two consecutive vertical steps in rows i and i+1, and two consecutive horizontal
steps in columns i and i+ 1. Besides, there are n+ 1− 2i crosses below and to the right
of cross (i, i), each one of which produces a peak in the Dyck path ψ(π). Reciprocally, it
can be checked that if ψ(π) satisfies condition C1 then π has a small fixed point.

i

i

Figure 6: A small fixed point i has n+ 1− 2i crosses below and to the right.

All we have to do is count how many paths D ∈ Dn with a peak in the middle satisfy
condition C1. For such a Dyck path D, define the following parameters: let i be the value
such that condition C1 holds, let h be the height of D in the middle, r the height at
which the i-th up-step ends, and s the height of the point between the i-th and (i+ 1)-st
down-steps from the end. In the example of Figure 7, n = 12, i = 4, h = 4, r = 3, and
s = 1.

i
i+1

i
i+1r
s

h

Figure 7: The parameters i, h, r and s in a Dyck path.

Fix n, i, h, r and s. We will count the number of Dyck paths D with these given
parameters. We can write D = AuuB1B2ddC, where the distinguished u’s are the i-th
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and (i+1)-st up-steps, similarly with the d’s, and the middle of D is between B1 and B2.
Then A is a path from (0, 0) to (2i− r− 1, r− 1) not going below x = 0. It is easy to see
that there are

(
2i−r−1

i−1

)−(
2i−r−1

i

)
such paths A. By symmetry, there are

(
2i−s−1

i−1

)−(
2i−s−1

i

)
possibilities for C.

Now we count the possibilities for B1 and B2. It can be checked that f(k, r, h, `)
counts the number of paths from (0, r) to (`, h) having exactly k peaks, starting and
ending with an up-step, and never going below x = 0. The fragment uB1 is a path from
(2i − r, r) to (n, h) not going below x = 0, and ending with an up-step (since D has a
peak in the middle). If we fix k as the number of peaks of this fragment, then there are
f(k, r, h, n − 2i + r) such paths uB1. Similarly, there are f(n − 2i − k, s, h, n − 2i − s)
possibilities for B2d with n− 2i− k peaks.

Summing over all possible values of k, h, r, s and i we obtain the expression in the
theorem. �

Using Corollary 3.2, we can prove that among the derangements (i.e., permutations
without fixed points) of length n, the number of 123-avoiding ones is at least the number of
132-avoiding ones. This inequality was conjectured by Miklós Bóna and Olivier Guibert.

Theorem 3.4 ([2]) For all n ≥ 4, s0
n(132) < s0

n(123).

Proof. For n ≤ 12 the result can be checked by exhaustive enumeration of all derange-
ments. Let us assume that n ≥ 13.

From part (2) of Corollary 3.2, we have that

s0
n(123) ≥ Cn − 2Cn−1.

It is known [16] that s0
n(132) = Fn, the n-th Fine number. Therefore, the theorem

will be proved if we show that
Fn < Cn − 2Cn−1 (1)

for n ≥ 13. Using the identity Fn = 1
2

∑n−2
i=0 (−1

2
)iCn−i, we get the inequality Fn <

1
2
Cn − 1

4
Cn−1 + 1

8
Cn−2, which reduces (1) to showing that Cn >

7
2
Cn−1 + 1

4
Cn−2. This

inequality certainly holds asymptotically, because Cn grows like 1√
π
n− 3

2 4n as n tends to
infinity, and it is not hard to see that in fact it holds for all n ≥ 13. �

3.2 b) 132 ≈ 213 ≈ 321

This case has already been studied in [6]. The corresponding generating function, which
appeared independently in [20] for the case of the pattern 321, is the following.

Theorem 3.5 ([6, 20])

F132(x, q, z) = F213(x, q, z) = F321(x, q, z) =

=
2

1 + (1 + q − 2x)z +
√

1− 2(1 + q)z + (1− q)2z2
.
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In fact, permutations avoiding these patterns have been enumerated with respect to
an additional statistic, the number of descents. Recall that i ≤ n − 1 is a descent of
π ∈ Sn if πi > πi+1. Denote by des(π) the number of descents of π. Theorem 3.5 can be
generalized as follows.

Theorem 3.6 ([6, 7]) The generating function for 321-avoiding permutations with re-
spect to fixed points, excedances, and descents is∑

n≥0

∑
π∈Sn(321)

xfp(π)qexc(π)pdes(π)zn

=
2

1 + (1 + q − 2x)z +
√

1− 2(1 + q)z + ((1 + q)2 − 4qp)z2
.

Similarly,

1 +
∑
n≥1

∑
π∈Sn(132)

xfp(π)qexc(π)pdes(π)+1zn = 1 +
∑
n≥1

∑
π∈Sn(213)

xfp(π)qexc(π)pdes(π)+1zn

=
2(1 + xz(p− 1))

1 + (1 + q − 2x)z − qz2(p− 1)2 +
√
f1(q, z)

,

where f1(q, z) = 1−2(1+q)z+[(1−q)2−2q(p−1)(p+3)]z2−2q(1+q)(p−1)2z3+q2(p−1)4z4.

3.3 c, c’) 231 ∼ 312

Using the bijection

Sn(312) ←→ Dn

π 7→ ϕ(π̄),

Lemma 2.3 implies that

F312(x, q, z) =
∑
D∈D

xtd0(D)qtd<0(D)z|D|.

To enumerate tunnels of depth 0, we will separate them according to their height. For
every h ≥ 0, a tunnel at height h must have length 2(h+ 1) in order to have depth 0. It
is important to notice that if a tunnel of depth 0 of D corresponds to a decomposition
D = AuBdC, then D has no tunnels of depth 0 in the part given by B. In other words,
the projections on the x-axis of all the tunnels of depth 0 of a given Dyck path are disjoint.
This observation allows us to give a continued fraction expression for F312(x, 1, z).

Theorem 3.7 F312(x, 1, z) is given by the following continued fraction:

F312(x, 1, z) =
1

1− (x− 1)z − z

1− (x− 1)z2 − z

1− 2(x− 1)z3 − z

1− 5(x− 1)z4 − z

. . .

,
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where at the n-th level, the coefficient of (x− 1)zn+1 is the Catalan number Cn.

Proof. For every h ≥ 0, let tdh
0(D) be the number of tunnels of D of height h and length

2(h + 1). Note that td0(D) =
∑

h≥0 tdh
0(D). We will show now that for every h ≥ 1, the

generating function for Dyck paths where x marks the statistic td0
0(·) + · · · + tdh−1

0 (·) is
given by the continued fraction of the theorem truncated at level h, with the (h + 1)-st
level replaced with C(z).

A Dyck path D can be written uniquely as a sequence of elevated Dyck paths, that
is, as D = uA1d · · ·uArd, where each Ai ∈ D. In terms of the generating function
C(z) =

∑
D∈D z

|D|, this translates into the equation C(z) = 1
1−zC(z)

. A tunnel of height 0

and length 2 (i.e., a hill) appears in D for each empty Ai. Therefore, the generating
function enumerating hills is∑

D∈D
xtd0

0(D)z|D| =
1

1− z[x − 1 + C(z)]
, (2)

since an empty Ai has to be accounted as x, not as 1.
Let us enumerate simultaneously hills (as above), and tunnels of height 1 and length 4.

The generating function (2) can be written as

1

1− z
[
x− 1 +

1

1− zC(z)

] .
Combinatorially, this corresponds to expressing each Ai as a sequence uB1d · · ·uBsd,
where each Bj ∈ D. Notice that since each uBjd starts at height 1, a tunnel of height 1
and length 4 is created by each Bj = ud in the decomposition. Thus, if we want x to
mark also these tunnels, such a Bj has to be accounted as xz, not z. The corresponding
generating function is∑

D∈D
xtd0

0(D)+td1
0(D)z|D| =

1

1− z
[
x− 1 +

1

1− z[(x − 1)z + C(z)]

] .
Now it is clear how iterating this process indefinitely we obtain the continued fraction

of the theorem. From the generating function where x marks td0
0(·) + · · ·+ tdh−1

0 (·), we
can obtain the one where x marks td0

0(·)+ · · ·+tdh
0(·) by replacing the C(z) at the lowest

level with
1

1− z[(x − 1)Chzh + C(z)]
,

to account for tunnels of height h and length 2(h+ 1), which in the decomposition corre-
spond to elevated Dyck paths at height h. �

The same technique can be used to enumerate excedances in 312-avoiding permuta-
tions, which correspond to tunnels of negative depth in the Dyck path.
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Theorem 3.8 Let

C<i(z) =
i−1∑
j=0

Cjz
j

be the series for the Catalan numbers truncated at degree i. F312(x, q, z) is given by the
following continued fraction:

F312(x, q, z) =
1

1− zK0 +
z

1− zK1 +
z

1− zK2 +
z

1− zK3 +
z

. . .

,

where Kn = (x− 1)Cnq
nzn + (q − 1)C<n(qz) for n ≥ 0.

Note that the first values of Kn are

K0 = x− 1, K1 = (x− 1)qz + q − 1,
K2 = 2(x− 1)q2z2 + (q − 1)(1 + qz), K3 = 5(x− 1)q3z3 + (q − 1)(1 + qz + 2q2z2).

Proof. We use the same decomposition as above, now keeping track of tunnels of negative
depth as well. For every h ≥ 0, let tdh

<0(D) be the number of tunnels of D of height h
and length less than 2(h + 1). Note that td<0(D) =

∑
h≥0 tdh

<0(D). To follow the same
structure as in the previous proof, counting tunnels height by height, it will be convenient
that at the h-th step of the iteration, q marks not only tunnels of negative depth up to
height h but also all the tunnels at higher levels. Denote by alltun>h(D) the number of
tunnels of D of height strictly greater than h.

We will show now that for every h ≥ 1, the generating function for Dyck paths where x
marks the statistic td0

0(·)+· · ·+tdh−1
0 (·) and q marks td0

<0(·)+· · ·+tdh−1
<0 (·)+alltun>h−1(·)

is given by the continued fraction of the theorem truncated at level h, with the (h+ 1)-st
level replaced with C(qz).

The analogue of equation (2) is now∑
D∈D

xtd0
0(D)qtd0

<0(D)+alltun>0(D)z|D| =
1

1− z[x− 1 + C(qz)]
. (3)

Indeed, decomposing D as uA1d · · ·uArd, q counts all the tunnels that appear in any Ai,
and whenever an Ai is empty we must mark it as x.

Let us enumerate now tunnels of depth 0 and negative depth at both height 0 and
height 1. Modifying (3) so that q no longer counts tunnels at height 1, we get∑

D∈D
xtd0

0(D)qtd0
<0(D)+alltun>1(D)z|D| =

1

1− z
[
x− 1 +

1

1− zC(qz)

] , (4)
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which corresponds to writing each Ai as Ai = uB1d · · ·uBsd, and having q count all
tunnels in each Bj . Now, in order for x to mark tunnels of depth 0 at height 1, each
Bj = ud, that in (4) is counted as qz, has to be now counted as xqz instead. Similarly,
to have q mark tunnels of negative depth at height 1, we must count each empty Bj as q,
not as 1. This gives us the following generating function:∑

D∈D
xtd0

0(D)+td1
0(D)qtd0

<0(D)+td1
<0(D)+alltun>1(D)z|D|

=
1

1− z
[
x− 1 +

1

1− z[(x− 1)qz + q − 1 + C(qz)

] .
Iterating this process level by level indefinitely we obtain the continued fraction of the

theorem. At each step, from the generating function where x marks td0
0(·)+ · · ·+tdh−1

0 (·),
and q marks td0

<0(·)+ · · ·+tdh−1
<0 (·)+alltun>h−1(·), we can obtain the one where x marks

td0
0(·)+ · · ·+tdh

0(·) and q marks td0
<0(·)+ · · ·+tdh

<0(·)+alltun>h(·) by replacing the C(qz)
at the lowest level with

1

1− z[(x− 1)Chqhzh + (q − 1)C<h(qz) + C(qz)]
. (5)

This change makes x account for tunnels of depth 0 at height h, which in the decomposition
correspond to the Ch possible elevated Dyck paths of length 2(h + 1) when they occur
at height h. It also makes q count tunnels of negative depth at height h, which in the
decomposition correspond to elevated Dyck paths at height h of length less than 2(h+1).
The generating function for these ones becomes qC<h(qz) instead of C<h(qz), since for
every j < h, an elevated path uCd with C ∈ Dj contributes to one extra tunnel of negative
depth at height h, aside from the j tunnels of height more than h that it contains. �

For 231-avoiding permutations we get the following generating function.

Corollary 3.9 Let C<i(z) be as in Theorem 3.8. F231(x, q, z) is given by the following
continued fraction:

F231(x, q, z) =
1

1− zK ′
0 +

qz

1− zK ′
1 +

qz

1− zK ′
2 +

qz

1− zK ′
3 +

qz

. . .

,

where K ′
n = (x− q)Cnz

n + (1− q)C<n(z).

The first values of K ′
n are

K ′
0 = x− q, K ′

1 = (x− q)z + 1− q,
K ′

2 = 2(x− q)z2 + (1− q)(1 + z), K ′
3 = 5(x− q)z3 + (1− q)(1 + z + 2z2).

Proof. By Lemma 2.2, we have that F231(x, q, z) = F312(
x
q
, 1

q
, qz), so the expression follows

from Theorem 3.8. �
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4 Double restrictions

In this section we consider simultaneous avoidance of any two patterns of length 3. Using
Lemma 2.2, the pairs of patterns fall into the following equivalence classes.

a) {123, 132} ≈ {123, 213}
b) {231, 321} ∼ b’) {312, 321}

c) {132, 213}
d) {231, 312}

e) {132, 231} ≈ {213, 231} ∼ e’) {132, 312} ≈ {213, 312}
f) {132, 321} ≈ {213, 321}

g) {123, 231} ∼ g’) {123, 312}
h) {123, 321}

In [18] it is shown that the number of permutations in Sn avoiding any of the pairs in
the classes a), b), b’), c), d), e), and e’) is 2n−1, and that for the pairs in f), g) and
g’), the number of permutations avoiding any of them is

(
n
2

)
+ 1. The case h) is trivial

because this pair is avoided only by permutations of length at most 4.
In terms of generating functions, this means that when we substitute x = q = 1 in

FΣ(x, q, z), where Σ is any of the pairs in the classes from a) to e’), we get

FΣ(1, 1, z) =
∑
n≥0

2n−1zn =
1− z
1− 2z

.

If Σ is a pair from the classes f), g), g’), we get

FΣ(1, 1, z) =
∑
n≥0

(

(
n

2

)
+ 1)zn =

1− 2z + 2z2

(1− z)3
.

4.1 a) {123, 132} ≈ {123, 213}
Proposition 4.1

F{123,132}(x, q, z) = F{123,213}(x, q, z)

=
1 + xz + (x2 − 4q)z2 + (−3xq + q + q2)z3 + (xq + xq2 − 3x2q + 3q2)z4

(1− qz2)(1− 4qz2)
.

Proof. Consider the bijection ϕ : Sn(132) −→ Dn described in Subsection 2.2. It is
shown in [13] that the height of the Dyck path ϕ(π) is the length of the longest increasing
subsequence of π. In particular, π ∈ Sn(12 · · · (k + 1), 132) if and only if ϕ(π) has height
at most k. Thus, by Lemma 2.3, F{123,132}(x, q, z) can be written in terms of Dyck paths
as ∑

D∈D≤2

xct(D)qrt(D)z|D|. (6)
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Let us first find the univariate generating function for paths of height at most 2 (with
no statistics). Clearly, the generating function for Dyck paths of height at most 1 is 1

1−z
,

since such paths are just sequences of hills. A path D of height at most 2 can be written
uniquely as D = uA1duA2d · · ·uArd, where each Ai is a path of height at most 1. The
generating function for each uAid is z

1−z
. Thus,∑

D∈D≤2

z|D| =
1

1− z
1−z

=
1− z
1− 2z

=
∑
n≥0

2n−1zn.

In the rest of this proof, we assume that all Dyck paths that appear have height at
most 2 unless otherwise stated. To compute (6), we will separate paths according to their
height at the middle. Consider first paths whose height at the middle is 0. Splitting
such a path at its midpoint we obtain a pair of paths of the same length. Thus, the
corresponding generating function is∑

m≥0

2m−1zm · 2m−1qmzm =
1− 3qz2

1− 4qz2
, (7)

since the number of right tunnels of such a path is the semilength of its right half.

Figure 8: A path of height 2 with a centered tunnel.

Now we consider paths whose height at the middle is 1. It is easy to check that without
the variables x and q, the generating function for such paths is

z

1− 4z2
. (8)

Let us first look at paths of this kind that have a centered tunnel. They must be of the
form D = AuBdC where A,C ∈ D≤2 have the same length, and B is a sequence of an
even number of hills. Thus, their generating function is

xz · 1

1− qz2
· 1− 3qz2

1− 4qz2
, (9)

where x marks the centered tunnel, 1
1−qz2 corresponds to the sequence of hills B, half of

which give right tunnels, and the last fraction comes from the pair AC, which is counted
as in (7). From (8) and (9) it follows that the univariate generating function (with just
variable z) for paths with height at the middle 1, not having a centered tunnel, is

z

1− 4z2
− z(1− 3z2)

(1− z2)(1− 4z2)
=

2z3

(1− z2)(1− 4z2)
.
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By symmetry, in half of these paths, the tunnel of height 0 that goes across the middle is
a right tunnel. Thus, the multivariate generating function for all paths with height 1 at
the middle is

xz(1− 3qz2)

(1− qz2)(1− 4qz2)
+

(q + 1)qz3

(1− qz2)(1− 4qz2)
. (10)

Here the right summand corresponds to paths with no centered tunnel: the term (q + 1)
distinguishes whether the tunnel that goes across the middle is a right tunnel or not, and
the other q’s mark tunnels completely contained in the right half.

Paths with height 2 at the middle are easy to enumerate now. Indeed, they must have
a peak ud in the middle, whose removal induces a bijection between these paths and paths
with height 1 at the middle. This bijection preserves the number of right tunnels, and
decreases the length and the number of centered tunnels by one. Thus, the generating
function for paths with height 2 at the middle is xz times expression (10). Adding up
this generating function, for paths with height 2 at the middle, to the expressions (7)
and (10), for paths with height at the middle 0 and 1 respectively, we obtain the desired
expression for F{123,132}(x, q, z). �

Let us see how the same technique used in this proof can be generalized to enumerate
fixed points in Sn(132, 12 · · · (k + 1)) for an arbitrary k ≥ 0.

Theorem 4.2 For k ≥ 0, let

Mk(x, z) := F{132,12···(k+1)}(x, 1, z) =
∑
n≥0

∑
π∈Sn(132,12···(k+1))

xfp(π)zn.

Then the Mk’s satisfy the recurrence:

Mk(x, z) =

k∑
`=0

Rk,`(z)(1 + (x− 1)zM`−1(x, z)), (11)

where M−1(x, z) := 0, and Rk,`(z) is defined as

Rk,`(z) :=
∑
n≥0

g2
k,`(n)zn, where

∑
n≥0

gk,`(n)zn =
U`(

1
2z

)

zUk+1(
1
2z

)
,

where Um are the Chebyshev polynomials of the second kind, defined by the recurrence

U0(t) = 1, U1(t) = 2t, and Ur(t) = 2tUr−1(t)− Ur−2(t).

Before proving this theorem, let us show how to apply it to obtain the generating
functions Mk for the first few values of k. For k = 1, we have R1,0(z) = z

1−z2 , R1,1(z) =
1

1−z2 , so

M1(x, z) =
1 + xz

1− z2
.
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For k = 2, we get R2,0(z) = z2

1−4z2 , R2,1(z) = z
1−4z2 , R2,2(z) = 1 + z2

1−4z2 , so

M2(x, z) =
1 + xz + (x2 − 4)z2 + (2− 3x)z3 + (3 + 2x− 3x2)z4

(1− z2)(1− 4z2)
,

which is the expression of Proposition 4.1 for q = 1.
For k = 3, we obtain R3,0(z) = z3+z5

(1−z2)(1−7z2+z4)
, R3,1(z) = z2+z4

(1−z2)(1−7z2+z4)
, R3,2(z) =

z(1−4z2+z4)
(1−z2)(1−7z2+z4)

, R3,2(z) = 1 + z2(1−4z2+z4)
(1−z2)(1−7z2+z4)

, so

M3(x, z) = [1+xz+(x2−12)z2+(x3−11x+2)z3+(−10x2+4x+45)z4+(−10x3+4x2+37x−10)z5

+(25x2−22x−52)z6+(25x3−22x2−41x+16)z7+(−12x2+16x+16)z8+(−12x3+16x2

+12x− 8)z9] / [(1− z2)2(1− 4z2)(1− 7z2 + z4)].

Proof. As shown at the beginning of the previous proof, ϕ induces a bijection between
Sn(132, 12 · · · (k + 1)) and D≤k, the set of Dyck paths of height at most k. Thus, by
Lemma 2.3,

Mk(x, z) =
∑

D∈D≤k

xct(D)z|D|.

In order to find a recursion for this generating function, we are going to count pairs
(D,S) where D ∈ D≤k and S is a subset of CT(D), the set of centered tunnels of D. In
other words, we are considering Dyck paths where some centered tunnels (namely those in
S) are marked. Each such pair is given weight (x−1)|S|z|D|, so that for a fixedD, the sum of
weights of all pairs (D,S) is

∑
S⊆CT(D) (x− 1)|S|z|D| = ((x−1)+1)|CT(D)|z|D| = xct(D)z|D|,

which is precisely the weight that D has in Mk(x, z).

k

k−l
u d

A
C

B

Figure 9: A path of height k with two marked centered tunnels.

If D ∈ D≤k has some marked centered tunnel, consider the decomposition D =
AuBdC given by the longest marked tunnel (i.e., all the other marked tunnels are inside
the part B of the path). Let ` be the distance between this tunnel and the line y = k
(see Figure 9). Equivalently, A ends at height k − `, the same height where C begins.
Then, B is an arbitrary Dyck path of height at most `−1 with possibly some marked cen-
tered tunnels, so its corresponding generating function is M`−1(x, z) (with the convention
M−1(x, z) := 0, since for ` = 0 there is no such B). Giving weight (x − 1) to the tunnel
that determines our decomposition, we have that the part uBd of the path contributes
(x− 1)zM`−1(x, z) to the generating function.

Now we look at the generating function for the part A of the path. Let R̃k,`(w) :=∑
n≥0 gk,`(n)wn, where gk,`(n) is the number of paths from (0, 0) to (n, k − `) staying
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always between y = 0 and y = k. It is known (see for example [13, Appendix]) that

R̃k,`(w) =
U`(

1
2w

)

wUk+1(
1

2w
)
.

The part C of the path D, flipped over a vertical line, can be regarded as a path with
the same endpoints as A, since it must have the same length and end at the same height
k − `. Thus, the generating function for pairs (A,C) of paths of the same length from
height 0 to height k − ` and not going above y = k is

∑
n≥0 g

2
k,`(n)zn = Rk,`(z).

Hence, the generating function for paths D ∈ D≤k having the longest marked centered
tunnel at height k − ` is Rk,`(z)(x− 1)zM`−1(x, z).

If D has no marked tunnel, decompose it as D = AC where A and C have the same
length. Letting k − ` be again the height where A ends and C begins, the situation
is the same as above but without any contribution coming from the central part of D.
The parameter ` can take any value between 0 and k. Thus, summing over all possible
decompositions of D, we get

Mk(x, z) =
k∑

`=0

Rk,`(z)(1 + (x− 1)zM`−1(x, z)).

�

4.2 b, b’) {231, 321} ∼ {312, 321}
Proposition 4.3

F{312,321}(x, q, z) =
1− qz

1− (x+ q)z + (x− 1)qz2
. (12)

Proof. The length of the longest decreasing subsequence of π equals the height of the
Dyck path ϕ(π̄). In particular, we have a bijection

Sn(312, 321) ←→ D≤2
n

π 7→ ϕ(π̄)

Thus, by Lemma 2.3,

F{312,321}(x, q, z) =
∑

D∈D≤2

xtd0(D)qtd<0(D)z|D|.

But the only tunnels of depth 0 that a Dyck path of height at most 2 can have are
hills, and the only tunnels of negative depth that it can have are peaks at height 2. A
path D ∈ D≤2 can be written uniquely as D = uA1duA2d · · ·uArd, where each Ai is a
(possibly empty) sequence of hills. An empty Ai creates a tunnel of depth 0 in D, so it
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contributes as x. An Ai of length 2j > 0 contributes as qjzj , since it creates j peaks at
height 2 in D. Thus,

F{312,321}(x, q, z) =
1

1− z
(
x+

qz

1− qz
) ,

which is equivalent to (12). �

Corollary 4.4

F{231,321}(x, q, z) =
1− z

1− (x+ 1)z + (x− q)z2
.

Proof. It follows from Lemma 2.2 that F{231,321}(x, q, z) = F{312,321}(x
q
, 1

q
, qz). �

As in the previous section, these results can be generalized to the case when instead
of the pattern 321 we have a decreasing pattern (k + 1)k · · · 21 of arbitrary length. For
i, h ≥ 0, let C≤h

i be the number of Dyck paths of length 2i and height at most h. As
mentioned before, it is known that∑

i≥0

C≤h
i zi =

Uh(
1

2
√

z
)

√
zUh+1(

1
2
√

z
)
,

where Um are the Chebyshev polynomials of the second kind. Let

C≤h
<i (z) :=

i−1∑
j=0

C≤h
j zj .

The following theorem deals with fixed points and excedances in Sn(312, (k + 1)k · · · 1)
for any k ≥ 0.

Theorem 4.5 Let C≤h
i = |D≤h

i | and C≤h
<i (z) be defined as above. Then, for k ≥ 0,

F{312,(k+1)k···1}(x, q, z) = Ak
0(x, q, z),

where Ak
i is recursively defined by

Ak
i (x, q, z) =


1

1− z[(x− 1)C≤k−i−1
i qizi + (q − 1)C≤k−i−1

<i (qz) + Ak
i+1(x, q, z)]

if i < k,

1 if i = k.

For example, for k = 2 we obtain Proposition 4.3, and for k = 3 we get

F{312,4321}(x, q, z) =
1

1− z
x− 1 +

1

1− z
[
(x− 1)qz + q − 1 + 1

1−qz

]


=
1− 2qz + (q2 − xq)z2 + (xq2 − q2)z3

1− (x+ 2q)z + (xq + q2 − q)z2 + (x2q − xq)z3 + (−x2q2 + 2xq2 − q2)z4
.
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Proof. It is analogous to the proof of Theorem 3.8, with the only difference that here we
consider only those paths that do not go above the line y = k. �

Making the appropriate substitutions in the statement of Theorem 4.5, we obtain an
expression for the generating function F{231,(k+1)k···1}(x, q, z) = F{312,(k+1)k···1}(x

q
, 1

q
, qz).

4.3 c) {132, 213}
Proposition 4.6

F{132,213}(x, q, z) =
1− (1 + q)z − 2qz2 + 4q(1 + q)z3 − (xq2 + xq + 5q2)z4 + 2xq2z5

(1− z)(1− xz)(1− qz)(1− 4qz2)
.

Proof. We use again the bijection ϕ : Sn(132) −→ Dn. From its description given in
Subsection 2.2, it is not hard to see that a permutation π ∈ Sn(132) avoids 213 if and
only if all the valleys of the corresponding Dyck path ϕ(π) have their lowest point on
the x-axis. A path with such property can be described equivalently as a sequence of
pyramids. Denote by Pyrn ⊆ Dn the set of sequences of pyramids of length 2n, and let
Pyr :=

⋃
n≥0Pyrn. We have just seen that ϕ restricts to a bijection between Sn(132, 213)

and Pyrn. By Lemma 2.3, we can write F{132,213}(x, q, z) as∑
D∈Pyr

xct(D)qrt(D)z|D|.

Since for each n ≥ 1 there is exactly one pyramid of length 2n, the univariate generating
function of sequences of pyramids is just

∑
D∈Pyr z

|D| = 1
1− z

1−z
= 1−z

1−2z
= 1+

∑
n≥1 2n−1zn.

Let us first consider elements of Pyr that have height 0 in the middle (equivalently,
the two central steps are du). Each one of their halves is a sequence of pyramids, both
of the same length. They have no centered tunnels, and the number of right tunnels is
given by the semilength of the right half. Thus, their multivariate generating function is

1 +
∑
m≥1

4m−1qmz2m = 1 +
qz2

1− 4qz2
. (13)

Now we count elements of Pyr whose two central steps are ud. They are obtained
uniquely by inserting a pyramid of arbitrary length in the middle of a path with height 0
at the middle. The tunnels created by the inserted pyramid are all centered tunnels, so
the corresponding generating function is

xz

1− xz
(

1 +
qz2

1− 4qz2

)
. (14)

It remains to count the elements of Pyr that in the middle have neither a peak nor
a valley. From a non-empty sequence of pyramids with height 0 in the middle, if we
increase the size of the leftmost pyramid of the right half by an arbitrary number of
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Figure 10: A sequence of pyramids.

steps, we obtain a sequence of pyramids whose two central steps are uu. Reciprocally, by
this procedure every such sequence of pyramids can be obtained in a unique way from a
sequence of pyramids with height 0 in the middle. Thus, the generating function for the
elements of Pyr whose two central steps are uu is

qz

1− qz ·
qz2

1− 4qz2
. (15)

By symmetry, the generating function for the elements of Pyr whose two central steps
are dd is

z

1− z ·
qz2

1− 4qz2
, (16)

where the difference with respect to 15 is that now the pyramid across the middle does
not create right tunnels. Adding up (13), (14), (15) and (16) we get the desired generating
function. �

4.4 d) {231, 312}
Proposition 4.7

F{231,312}(x, q, z) =
1− qz2

1− xz − 2qz2
.

Proof. We have shown in the proof of Proposition 4.6 that ϕ induces a bijection between
Sn(132, 213) and Pyrn, the set of sequences of pyramids of length 2n. Composing it with
the complementation operation, we get a bijection π 7→ ϕ(π̄) between Sn(231, 312) and
Pyrn. Together with Lemma 2.3, this allows us to express F{231,312}(x, q, z) as∑

D∈Pyr

xtd0(D)qtd<0(D)z|D|.

All that remains is to observe how many tunnels of zero and negative depth are created by
a pyramid according to its size. A pyramid of odd semilength 2m+ 1 creates one tunnel
of depth 0 and m tunnels of negative depth. A pyramid of even semilength 2m creates
only m tunnels of negative depth. Thus, we have that

F{231,312}(x, q, z) =
1

1− xz

1− qz2
− qz2

1− qz2

,

which equals the expression above. �
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4.5 e, e’) {132, 231} ≈ {213, 231} ∼ {132, 312} ≈ {213, 312}
Proposition 4.8

F{132,231}(x, q, z) = F{213,231}(x, q, z) =
1− z − qz2 + xqz3

(1− xz)(1− z − 2qz2)
.

Proof. As usual, we use the bijection ϕ : Sn(132) −→ Dn. Now we are interested in how
the condition that π avoids 231 is reflected in the Dyck path ϕ(π). It is easy to see from
the description of ϕ and ϕ−1 in Subsection 2.2 that π is 231-avoiding if and only if ϕ(π)
does not have any two consecutive up-steps after the first down-step (equivalently, all the
non-isolated up-steps occur at the beginning of the path). Let En ⊆ Dn be the set of Dyck
paths with this condition, and let E :=

⋃
n≥0 En. Then, ϕ induces a bijection between

Sn(132, 231) and En. By Lemma 2.3, F{132,231}(x, q, z) can be written as∑
D∈E

xct(D)qrt(D)z|D|.

Figure 11: A path in E with a peak in the middle and two bottom tunnels.

If D ∈ E , centered tunnels of D can appear only in the following two places. There can
be a centered tunnel produced by a peak in the middle ofD. All the other centered tunnels
of D must have their endpoints in the initial ascending run and the final descending run
of D (that is, in their corresponding decomposition D = AuBdC, A is a sequence of
up-steps and C is a sequence of down-steps). For convenience we call this second kind of
tunnels bottom tunnels. All the right tunnels of D come from peaks on the right half.

It is an exercise to check that the number of paths in En having a peak in the middle
and r peaks on the right half is

(
n−r−1

r

)
2r−1 if r ≥ 1, and 1 if r = 0. Similarly, the number

of paths in En with no peak in the middle and r peaks on the right half is
(

n−r
r

)
2r−1 if

r ≥ 1, and 0 if r = 0. Let us ignore for the moment the bottom tunnels. For peaks in the
middle and right tunnels we have the following generating function.

P (x, q, z) :=
∑

D∈E\E0

x#{peaks in the middle of D}qrt(D)z|D|

=
∑
n≥1

bn/2c∑
r=1

(
n− r
r

)
2r−1qr + x

1 +

b(n−1)/2c∑
r=1

(
n− r − 1

r

)
2r−1qr

 zn

=
xz + (q − x)z2 − xqz3

(1− z)(1− z − 2qz2)
. (17)
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Now, to take into account all centered tunnels, we use that every D ∈ E can be written
uniquely as D = ukD′dk, where k ≥ 0 and D′ ∈ E has no bottom tunnels. The generating
function for elements of E that do have bottom tunnels, where xmarks peaks in the middle,
is zx + zP (x, q, z) (the term zx is the contribution of the path ud). Hence, the sought
generating function where x marks all centered tunnels is

F{132,231}(x, q, z) =
1

1− xz [1 + P (x, q, z)− zx − zP (x, q, z)] = 1 +
1− z
1− xzP (x, q, z),

which together with (17) implies the proposition. �

Corollary 4.9

F{132,312}(x, q, z) = F{213,312}(x, q, z) =
1− qz − qz2 + xqz3

(1− xz)(1− qz − 2qz2)
.

Proof. It follows from Lemma 2.2 that F{132,312}(x, q, z) = F{132,231}(x
q
, 1

q
, qz). �

4.6 f) {132, 321} ≈ {213, 321}
Proposition 4.10

F{132,321}(x, q, z) = F{213,321}(x, q, z) =
1− (1 + q)z + 2qz2

(1− z)(1− xz)(1− qz) .

Proof. From the definition of the bijection ϕ : Sn(132) −→ Dn and the description of
its inverse given in Subsection 2.2, it follows that the number of peaks of the Dyck path
ϕ(π) equals the length of the longest decreasing subsequence of π. In particular, π is 321-
avoiding if and only if ϕ(π) has at most two peaks. By Lemma 2.3, F{132,321}(x, q, z) =∑
xct(D)qrt(D)z|D|, where the sum is over Dyck paths D with at most two peaks. Clearly,

such a path can be uniquely written as D = ukD′dk, where k ≥ 0 and D′ is either empty
or a pair of adjacent pyramids (see Figure 12). Therefore,

F{132,321}(x, q, z) =
1

1− xz
(

1 +
z

1− z ·
qz

1− qz
)
,

since centered tunnels are produced by the steps outside D′, and right tunnels are created
by the right pyramid of D′. �

This case can be generalized to the situation when instead of 321 we have a decreas-
ing pattern of arbitrary length. Observe that by Lemma 2.2, F{132,(k+1)k···21}(x, q, z) =
F{213,(k+1)k···21}(x, q, z) for all k.

Theorem 4.11∑
k≥0

F{132,(k+1)k···21}(x, q, z) pk =
2(1 + xz(p− 1))

(1− p)[1 + (1 + q − 2x)z − qz2(p− 1)2 +
√
f1(q, z)]

,

where f1(q, z) = 1−2(1+q)z+[(1−q)2−2q(p−1)(p+3)]z2−2q(1+q)(p−1)2z3+q2(p−1)4z4.
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Figure 12: A path with two peaks.

Proof. As in the previous proof, we use the fact that the number of peaks of ϕ(π) equals
the length of the longest decreasing subsequence of π. Thus, ϕ induces a bijection between
Sn(132, (k+ 1)k · · · 21) and the subset of Dn of paths with at most k peaks. This implies
that

∑
k≥0 F{132,(k+1)k···21}(x, q, z) pk can be expressed as

1

1− p
∑
D∈D

xct(D)qrt(D)p#{peaks of D}z|D|.

The result now follows from [7, Theorem 6.5] and the expression for the generating function∑
xct(D)qrt(D)p#{peaks of D}z|D| given in its proof. �

4.7 g, g’) {123, 231} ∼ {123, 312}
Proposition 4.12

F{123,312}(x, q, z)

=
1 + xz + (x2 − 2q)z2 + (−x2q + xq2 + 3q2)z4 + 3q3z5 − q3z6 − 4q4z7 − 2xq4z8

(1− qz2)3(1− q2z3)
.

Proof. We have seen in the proof of Proposition 4.10 that ϕ induces a bijection between
Sn(132, 321) and the set of paths in Dn with at most two peaks. Composing it with the
complementation bijection, we get a bijection π 7→ ϕ(π̄) between Sn(123, 312) and such set
of Dyck paths. Using Lemma 2.3, we can write F{123,312}(x, q, z) =

∑
xtd0(D)qtd<0(D)z|D|,

where the sum is over Dyck paths D with at most two peaks. Again, such a D can be
uniquely written as D = ukD′dk, where k ≥ 0 and D′ is either empty or a pair of adjacent
pyramids, i.e., D′ = uidiujdj with i, j ≥ 1. The idea is to consider cases depending on
the relations among i, j and k.

To enumerate Dyck paths with at most two peaks with respect to td0(·) and td<0(·), it
is important to look at where the tunnels of depth 0 and depth 1 occur. For convenience
in this proof, we call such tunnels frontier tunnels, since they determine where tunnels of
negative depth are: above them all tunnels have negative depth, and below them tunnels
have positive depth. There are four possibilities according to where the frontier tunnels
of D occur in the decomposition above:

(1) outside D′,
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(2) inside one of the pyramids of D′,

(3) inside both pyramids of D′,

(4) D has no frontier tunnel.

(1) (2)

(3) (4)

Figure 13: Four possible locations of the frontier tunnels.

Figure 13 shows an example of each of the four cases. The frontier tunnels (whose
depth is 0 in this example) are drawn with a solid line, while the dotted lines are the
tunnels of negative depth.

Note that in case (4) the tunnels of negative depth are exactly those in D′. We show
as an example how to find the generating function in case (1). In this case, the frontier
tunnel T gives a decomposition D = AuBdC where A = um, C = dm, m ≥ 0, and
B is a Dyck path with at most two peaks, of semilength |B| = m if depth(T ) = 0, and
|B| = m+1 if depth(T ) = 1. It follows from Proposition 4.10 that the generating function
for Dyck paths with at most two peaks is 1−2z+2z2

(1−z)3
. In the situation where depth(T ) = 0,

we have that |D| = 2|B| + 1 and td<0(D) = |B|. Thus, the corresponding generating
function is

xz · 1− 2qz2 + 2q2z4

(1− qz2)3
.

Similarly, in the situation where depth(T ) = 1, we have that |D| = 2|B| and td<0(D) =
|B|, so the corresponding generating function is

1− 2qz2 + 2q2z4

(1− qz2)3
.

The other cases are similar. Adding up the generating functions obtained in each case,
we get the desired expression for F{123,312}(x, q, z). �
Corollary 4.13

F{123,231}(x, q, z)

=
1 + xz + (x2 − 2q)z2 + (−x2q + xq + 3q2)z4 + 3q2z5 − q3z6 − 4q3z7 − 2xq3z8

(1− qz2)3(1− qz3)
.
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Proof. By Lemma 2.2, we have that F{123,231}(x, q, z) = F{123,312}(x
q
, 1

q
, qz). �

4.8 h) {123, 321}
Proposition 4.14

F{123,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (2xq + q2 + q)z3 + 4q2z4.

Proof. By a well-known result of Erdős and Szekeres, any permutation of length at least
5 contains an occurrence of either 123 or 321. This reduces the problem to counting fixed
points and excedances in permutations of length at most 4, which is trivial. �

5 Triple restrictions

Here we consider simultaneous avoidance of any three patterns of length 3. Applying
Lemma 2.2, the triplets of patterns fall into the following equivalence classes.

a) {123, 132, 213}
b) {231, 312, 321}

c) {123, 132, 231} ≈ {123, 213, 231} ∼ c’) {123, 132, 312} ≈ {123, 213, 312}
d) {132, 231, 321} ≈ {213, 231, 321} ∼ d’) {132, 312, 321} ≈ {213, 312, 321}

e) {132, 213, 231} ∼ e’) {132, 213, 312}
f) {132, 231, 312} ≈ {213, 231, 312}

g) {123, 231, 312}
h) {132, 213, 321}

i) {123, 132, 321} ≈ {123, 213, 321}
j) {123, 231, 321} ∼ j’) {123, 312, 321}

It is known [18] that the number of permutations in Sn avoiding the triplets in the
classes a) and b) is the Fibonacci number Fn+1. The number of permutations avoiding
any of the triplets in the classes c), c’), d), d’), e), e’), f), g) and h) is n. The cases
of the triplets i), j) and j’) are trivial, because they are avoided only by permutations of
length at most 4.

In terms of generating functions, when we substitute x = q = 1 in FΣ(x, q, z) where Σ
is a triplet from one of the classes between a) and g), we get

FΣ(1, 1, z) =
∑
n≥0

Fn+1z
n =

1

1− z − z2
.

If Σ is any triplet from the classes between c) and h), we get

FΣ(1, 1, z) =
∑
n≥0

nzn =
1− z + z2

(1− z)2
.

The following theorem gives all the generating functions of permutations avoiding any
triplet of patterns of length 3.
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Theorem 5.1 a)

F{123,132,213}(x, q, z) =
1 + xz + (x2 − q)z2 + (−xq + q2 + q)z3 − x2qz4

(1 + qz2)(1− 3qz2 + q2z4)

b)

F{231,312,321}(x, q, z) =
1

1− xz − qz2

c)

F{123,132,231}(x, q, z) = F{123,213,231}(x, q, z)

=
1 + xz + (x2 − q)z2 + qz3 + (−x2q + xq + q2)z4

(1− qz2)2

c’)

F{123,132,312}(x, q, z) = F{123,213,312}(x, q, z)

=
1 + xz + (x2 − q)z2 + q2z3 + (−x2q + xq2 + q2)z4

(1− qz2)2

d)

F{132,231,321}(x, q, z) = F{213,231,321}(x, q, z) =
1− z + qz2

(1− z)(1− xz)
d’)

F{132,312,321}(x, q, z) = F{213,312,321}(x, q, z) =
1− qz + qz2

(1− xz)(1− qz)
e)

F{132,213,231}(x, q, z) =
1− z − qz2 + 2qz3 + (−x2q + q2 − xq)z4 + (x2q − 2q2)z5 + xq2z6

(1− z)(1− xz)(1− qz2)2

e’)

F{132,213,312}(x, q, z)

=
1− qz − qz2 + 2q2z3 + (−x2q − xq2 + q2)z4 + (x2q2 − 2q3)z5 + xq3z6

(1− xz)(1− qz)(1− qz2)2

f)

F{132,231,312}(x, q, z) = F{213,231,312}(x, q, z) =
1 + xqz3

(1− xz)(1− qz2)

g)

F{123,231,312}(x, q, z) =
1 + xz + (x2 − q)z2 + xqz3 + q2z4

(1− qz2)2
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h)

F{132,213,321}(x, q, z) =
1− (1 + q)z + 2qz2 − xqz3

(1− z)(1− xz)(1− qz)
i)

F{123,132,321}(x, q, z) = F{123,213,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (xq + q2 + q)z3 + q2z4

j)
F{123,231,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (2xq + q)z3 + q2z4

j’)
F{123,312,321}(x, q, z) = 1 + xz + (x2 + q)z2 + (2xq + q2)z3 + q2z4

Proof. Throughout this proof we will use the bijection ϕ : Sn(132) −→ Dn described in
Subsection 2.2.

a) As in the proof of Proposition 4.1, we have that π ∈ Sn(132) avoids 123 if and only
if the Dyck path ϕ(π) has height at most 2. Similarly, from the proof of Proposition 4.6,
π avoids 213 if and only if ϕ(π) is a sequence of pyramids. Thus, ϕ induces a bijection
between Sn(123, 132, 213) and Pyr≤2

n := Pyr≤2 ∩ Dn, where Pyr≤2 denotes the set of
sequences of pyramids of height at most 2. By Lemma 2.3,

F{123,132,213}(x, q, z) =
∑

D∈Pyr≤2

xct(D)qrt(D)z|D|.

To count centered and right tunnels, we distinguish cases according to which steps are
the middle steps of D. A path in Pyr≤2 of height 0 at the middle can be split in two
elements of Pyr≤2 of equal length, only the right one producing right tunnels. Since the
number of D ∈ Pyr≤2

n is Fn+1, the generating function for paths of height 0 at the middle
is ∑

n≥0

F 2
m+1q

mz2m =
1− qz2

(1 + qz2)(1− 3qz2 + q2z4)
.

Multiplying this expression by xz (resp. by x2z2) we obtain the generating function for
paths in Pyr≤2 having in the middle a centered pyramid of height 1 (resp. of height 2).

A B

Figure 14: A sequence of pyramids of height at most 2.

Paths D ∈ Pyr≤2 whose two middle steps are dd can be written as D = AuuddB,
where A,B ∈ Pyr≤2 and |B| = |A|+1 (see Figure 14). Thus, the corresponding generating
function is ∑

n≥1

FmFm+1q
mz2m+1 =

qz3

(1 + qz2)(1− 3qz2 + q2z4)
.
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By symmetry, multiplying this expression by q we get the generating function for paths
whose two middle steps are uu.

Adding up all the cases, we get the desired generating function

F{123,132,213}(x, q, z) =
(1 + xz + x2z2)(1− qz2)

(1 + qz2)(1− 3qz2 + q2z4)
+

(q + q2)z3

(1 + qz2)(1− 3qz2 + q2z4)
.

b) Using the same reasoning as in a), we have that π 7→ ϕ(π̄) induces a bijection
between Sn(231, 312, 321) and Pyr≤2

n . Now, Lemma 2.3 implies that

F{231,312,321}(x, q, z) =
∑

D∈Pyr≤2

xtd0(D)qtd<0(D)z|D|.

Each pyramid of height 1 produces a tunnel of depth 0, and each pyramid of height 2
creates a tunnel of negative depth. Therefore,

F{231,312,321}(x, q, z) =
1

1− xz − qz2
.

c) We saw in the proof of Proposition 4.8 that π ∈ Sn(132) avoids 231 if and only
if the Dyck path ϕ(π) does not have any two consecutive up-steps after the first down-
step. Therefore, ϕ induces a bijection between Sn(123, 132, 312), and paths in Dn with
the above condition and height at most 2. Such paths (except the empty one) can be
expressed uniquely as D = uAdB, where A and B are sequences of hills (i.e, they have
the form (ud)k for some k ≥ 0). Lemma 2.3 reduces the problem to enumerating centered
tunnels and right tunnels on these paths.

If B is empty, D = uAd has a centered tunnel at height 0. The contribution of paths
of this kind to our generating function is xz

1−qz2 for |A| even, and x2z2

1−qz2 for |A| odd.

Assume now that |A| < |B|, so that A is within the left half of D = uAdB. If the
middle of D is at height 0, then D is determined by the length of A and the number of
hills in B to the left of the middle. Thus, the contribution of this subset to the generating
function is

qz2

(1− qz2)2
.

Multiplying this expression by xz gives the generating function for paths whose midpoint
is on top of a hill of B.

A

Bu d

Figure 15: An example with |A| = 3 and |B| = 2.
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It remains the case in which |A| ≥ |B| > 0. If |A| − |B| is even, the contribution of
these paths to the generating function is

z · qz2

1− qz2
· 1

1− qz2
,

where the last factor counts how larger A is than B. If |A|−|B| is odd, the corresponding
generating function is

z · qz2

1− qz2
· xz

1− qz2
,

since in this case there is a centered tunnel of height 1 inside A (see Figure 15).
Summing up all the cases, we get

F{123,132,231}(x, q, z) = 1 +
xz + x2z2

1− qz2
+

(1 + xz)qz2

(1− qz2)2
+
qz3(1 + xz)

(1− qz2)2
.

c’) By Lemma 2.2, we have that F{123,132,312}(x, q, z) = F{123,132,231}(x
q
, 1

q
, qz), so the

formula follows from part c).

d) As in the proof of Proposition 4.8, we use that π ∈ Sn(132) avoids 231 if and only if
the Dyck path ϕ(π) does not have any two consecutive up-steps after the first down-step.
Besides, as in Proposition 4.10, π ∈ Sn(132) avoids 321 if and only if ϕ(π) has at most
two peaks. Thus, π ∈ Sn(132, 231, 321) if and only if ϕ(π) ∈ Dn has the form ukBdk,
where B is either empty or is a pair of pyramids, the second of height 1. Fixed points and
excedances of π are mapped to centered tunnels and right tunnels of ϕ(π) respectively,
by Lemma 2.3. Thus, F{123,132,312}(x, q, z) equals the generating function enumerating
centered and right tunnels in these paths.

If B is not empty, the contribution of the first pyramid is z
1−z

, and the second pyramid
contributes qz. Centered tunnels come from the steps outside B. Hence,

F{123,132,312}(x, q, z) =
1

1− xz
(

1 +
z

1− z · qz
)
.

d’) It follows from part d) and Lemma 2.2.

e) Let π ∈ Sn(132). We have seen that the condition that π avoids 213 translates
into ϕ(π) being a sequence of pyramids. The additional restriction of π avoiding 231
implies that all but the first pyramid of the sequence ϕ(π) must have height 1. Thus, by
Lemma 2.3, F{132,213,231}(x, q, z) can be obtained enumerating centered and right tunnels
in paths of the form D = AB, where A is any pyramid and B is a sequence of hills.

The contribution of such paths when B is empty is just 1
1−xz

. Assume now that B is
not empty. If |A| > |B|, the corresponding contribution is

qz2

1− qz2
· z

1− z ,
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where the second factor counts how larger A is than B. It remains the case |A| ≤ |B|,
in which A is within the left half of D. If the middle of D is at height 0, then D is
determined by the length of A and the number of hills in B to the left of the middle.
Thus, the contribution of this subset to the generating function is

qz2

(1− qz2)2
.

Multiplying this expression by xz gives the generating function for paths whose midpoint
is on top of a hill of B.

A

B

Figure 16: A pyramid followed by a sequence of hills.

Summing all this up, we get

F{132,213,231}(x, q, z) =
1

1− xz +
qz3

(1− z)(1− qz2)
+

(1 + xz)qz2

(1− qz2)2
.

e’) It follows from part e) and Lemma 2.2.

f) Reasoning as in the proof of e), we see that π 7→ ϕ(π̄) induces a bijection between
Sn(123, 231, 312) and the subset of paths in Dn consisting of a pyramid followed by a
sequence of hills. By Lemma 2.3, it is enough to enumerate these paths according to the
statistics td0(·) and td<0(·). If the path is not empty, the first pyramid contributes xz

1−qz2

if it has odd size (since then it contains a tunnel of depth 0) and qz2

1−qz2 if it has even size.

The sequence of hills contributes 1
1−xz

. Therefore,

F{132,231,312}(x, q, z) = 1 +
xz + qz2

1− qz2
· 1

1− xz .

g) Let π ∈ Sn(132). We have seen that π avoids 213 if and only if ϕ(π) is a sequence
of pyramids, and that π avoids 321 if and only if ϕ(π) has at most two peaks. In other
words, ϕ induces a bijection between Sn(132, 213, 321) and the subset of paths in Dn that
are a sequence of at most two pyramids. Composing with the complementation operation,
we have that π ∈ Sn(123, 231, 312) if and only if ϕ(π̄) is in that subset. Now, Lemma 2.3
implies that F{123,231,312} can be obtained enumerating sequences of at most 2 pyramids
according to td0(·) and td<0(·). Each pyramid contributes xz

1−qz2 if it has odd size and
qz2

1−qz2 if it has even size. Thus,

F{123,231,312}(x, q, z) = 1 +
xz + qz2

1− qz2
+

(
xz + qz2

1− qz2

)2

.
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h) We have shown in the proof of g) that π ∈ Sn(132, 213, 321) if and only if ϕ(π)
is a sequence of at most two pyramids. Using Lemma 2.3, it is enough to enumerate
centered tunnels and right tunnels in such paths. The contribution of paths with exactly
two pyramids is

z

1− z ·
qz

1− qz ,

since only the one on the right gives right tunnels. Centered tunnels appear when there
is only one pyramid. Thus we obtain

F{132,213,321}(x, q, z) =
1

1− xz +
qz2

(1− z)(1− qz) .

i, j, j’) These cases are trivial because only permutations of length at most 4 can
avoid 123 and 321 simultaneously. �

After having studied all the cases of double and triple restrictions, the next step is to
consider restrictions of higher multiplicity. However, for Σ ⊆ S3, |Σ| ≥ 4, the sets Sn(Σ)
are very easy to describe (see for example [18]), and the distribution of fixed points and
excedances is trivial. In particular, in these cases |Sn(Σ)| ∈ {0, 1, 2} for all n.

6 Pattern-avoiding involutions

Recall that a permutation π is an involution if π = π−1. In terms of the array repre-
sentation of π, this condition is equivalent to the array being symmetric with respect
to the main diagonal. Denote by In the set of involutions of length n. In this section
we consider the distribution of the statistics fp(·) and exc(·) in involutions avoiding any
subset of patterns of length 3.

For any π ∈ Sn, it is clear that fp(π) + exc(π) + exc(π−1) = n (each cross in the array
of π is either on, to the right of, or to the left of the main diagonal). Thus, if π ∈ In,
then exc(π) = 1

2
(n− fp(π)), so the number of excedances is determined by the number of

fixed points. Therefore, it is enough here to consider only the statistic ‘number of fixed
points’ in pattern-avoiding involutions.

For any set of patterns Σ, let In(Σ) := In ∩ Sn(Σ), and let ikn(Σ) := |{π ∈ In(Σ) :
fp(π) = k}|. Define

GΣ(x, z) :=
∑
n≥0

∑
π∈In(Σ)

xfp(π)zn.

By the reasoning above,
∑

n≥0

∑
π∈In(Σ) x

fp(π)qexc(π)zn = GΣ(xq−1/2, zq1/2).
Clearly, π̂ is an involution if and only if π is an involution. Therefore, from Lemma 2.1

we get the following.

Lemma 6.1 Let Σ be any set of permutations. We have

(1) GbΣ(x, z) = GΣ(x, z),
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(2) GΣ−1(x, z) = GΣ(x, z).

The property stated in the following lemma is what allows us to apply our techniques
for studying statistics in pattern-avoiding permutations to the case of involutions.

Lemma 6.2 Let π ∈ Sn(132) and let D = ϕ(π) ∈ Dn. Then,

π is an involution⇐⇒ ϕ(π) is symmetric.

Proof. The array of crosses representing π−1 is obtained from the one of π by reflection
over the main diagonal. Therefore, from the description of the bijection ϕ given in Sub-
section 2.2, we have that ϕ(π−1) = D∗. It follows that π is an involution if and only if
D = D∗, which is equivalent to D being a symmetric Dyck path. �

6.1 Single restrictions

It is known [18] that for σ ∈ {123, 132, 213, 321}, |In(σ)| =
(

n
bn/2c

)
, and that for σ ∈

{231, 312}, |In(σ)| = 2n−1. From Lemma 6.1 it follows that for all k ≥ 0, ikn(132) = ikn(213)
and ikn(231) = ikn(312). It is shown in [5] (see also [8] for a bijective proof) that in fact
ikn(132) = ikn(321). So, for single restrictions there are three cases to consider.

Theorem 6.3 ([12, 5]) Let n ≥ 1, k ≥ 0. We have

(1) i0n(123) = i2n(123) =

{ (
n−1

n
2

)
if n is even,

0 if n is odd,

i1n(123) =

{ (
n

n−1
2

)
if n is odd,

0 if n is even,

ikn(123) = 0 if k ≥ 3.

(2) ikn(132) = ikn(213) = ikn(321) =

{
k+1
n+1

(
n+1
n−k

2

)
if n− k is even,

0 if n− k is odd.

(3) G231(x, z) = G312(x, z) =
1− z2

1− xz − 2z2
.

Proof. (1) Clearly a 123-avoiding permutation cannot have more than two fixed points. On
the other hand, if π ∈ In, we have fp(π) = n− 2exc(π), which explains that ikn(123) = 0
if n − k is odd. This implies that for odd n, fp(π) = 1 for all π ∈ In, so i1n(123) =
|In(123)| = (

n
n−1

2

)
. For even n, all we have to show is that i0n(123) = i2n(123).

The bijection ψ : Sn(123) −→ Dn described in Subsection 3.1 has the property that
π ∈ In(123) if and only if ψ(π) is a symmetric Dyck path. If n is even, involutions π ∈ In

with fp(π) = 2 are mapped to symmetric Dyck paths with a peak in the middle, and
those with fp(π) = 0 are mapped to symmetric Dyck paths with a valley in the middle.
We can establish a bijection between these two sets of Dyck paths just by changing the
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middle peak ud into a middle valley du (this can always be done because the height at
the middle of a Dyck path of even semilength is always even, so it cannot be 1). This
proves that i0n(123) = i2n(123), and in particular it equals 1

2
|In(123)| = (

n−1
n
2

)
.

(2) We use the bijection ϕ : Sn(132) −→ Dn, which by Lemma 6.2 restricts to a
bijection between In(132) and Ds. Thus, by Lemma 2.3, G123(x, z) can be expressed as∑

D∈Ds x
ct(D)z|D|, where the sum is over all symmetric Dyck paths. But the number of

centered tunnels of a symmetric Dyck path is just its height at the middle. Therefore,
taking only the first half of the path, ikn(123) counts the number of paths from (0, 0) to
(n, k) never going below the x-axis, which equals the ballot number given in the theorem.

(3) Consider the bijection
Sn(312) ←→ Dn

π 7→ ϕ(π̄)
. Then π ∈ In(312) if and only

if ϕ(π̄) is a sequence of pyramids. In fact, it turns out [18] that In(312) = In(231) =
Sn(231, 312). By Lemma 2.3, fixed points of π are mapped to tunnels of depth 0 of ϕ(π̄),
which are produced by pyramids of odd size. Thus, as in Proposition 4.7,

G312(x, z) =
1

1− xz+z2

1−z2

.

�

6.2 Multiple restrictions

Theorem 6.4 a)

G{123,132}(x, z) = G{123,213}(x, z) =
1 + xz + (x2 − 1)z2

1− 2z2

b)

G{231,321}(x, z) = G{312,321}(x, z) =
1

1− xz − z2

c)

G{132,213}(x, z) =
1− z2

(1− xz)(1− 2z2)

d)

G{231,312}(x, z) =
1− z2

1− xz − 2z2

e)

G{132,231}(x, z) = G{213,231}(x, z) = G{132,312}(x, z) = G{213,312}(x, z) =
1 + xz3

(1− xz)(1− z2)

f)

G{132,321}(x, z) = G{213,321}(x, z) =
1

(1− xz)(1− z2)
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g)

G{123,231}(x, z) = G{123,312}(x, z) =
1 + xz + (x2 − 1)z2 + xz3 + z4

(1− z2)2

h)
G{123,321}(x, z) = 1 + xz + (x2 + 1)z2 + 2xz3 + 2z4

Proof. All the equalities between GΣ for different Σ follow trivially from Lemma 6.1.
To find expressions for these generating functions, the idea is to use again the same
bijections as in Section 4, between permutations avoiding two patterns of length 3 and
certain subclasses of Dyck paths. The main difference is that here we will have to deal
only with symmetric Dyck paths, as a consequence of Lemma 6.2.

a) From the proof of Proposition 4.1 and Lemma 6.2, we have that ϕ restricts to a
bijection between In(123, 132) and symmetric Dyck paths D ∈ Dn of height at most 2.
By Lemma 2.3, ϕ maps fixed points to centered tunnels, so all we have to do is count
elements D ∈ Ds of height at most 2 according to the number of centered tunnels. Such
a D can be uniquely written as D = ABC, where A = C∗ ∈ D≤2 and B is either empty
or has the form B = uB1d, where B1 is a sequence of hills. If |B1| is even (resp. odd),

then D has one (resp. two) centered tunnels, so the contribution of B is 1+ (1+xz)xz
1−z2 . The

contribution of A and C is 1−z2

1−2z2 . The product of these two quantities gives the expression
for G{123,132}(x, z).

b) We have seen ([18]) that In(231) = Sn(231, 312). Therefore, In(231, 321) =
Sn(231, 312, 321). This case was treated in Theorem 5.1 b).

c) From the proof of Proposition 4.6 and Lemma 6.2, we have that ϕ gives a bijection
between In(132, 213) and symmetric sequences of pyramids D ∈ Pyrn, and that it maps
fixed points of the permutation to centered tunnels of the Dyck path. Such a D can be
written uniquely as D = ABC, where A = C∗ ∈ Pyr, and B is either empty or a pyramid.
The contribution of B is 1

1−xz
, whereas A and C contribute 1−z2

1−2z2 . Multiplying these two
expressions we get a formula for G{132,213}(x, z).

d) Again, In(231) = Sn(231, 312) implies that In(231, 312) = Sn(231, 312), which has
been considered in Proposition 4.7.

e) We have that In(132, 231) = Sn(132, 231, 312), so the fromula follows from Theo-
rem 5.1 f).

f) From the proof of Proposition 4.10 and Lemma 6.2, we have that ϕ gives a bijection
between In(132, 321) and symmetric paths D ∈ Dn with at most two peaks. Counting
centered tunnels in such paths is very easy, since they have the form D = ukBdk, where
k ≥ 0 and B is either empty or a pair of identical pyramids. The contribution of B is

1
1−z2 , whereas the rest contributes 1

1−xz
.

g) We have that In(123, 231) = Sn(123, 231, 312), so the formula follows from Theo-
rem 5.1 g).

h) It is trivial since Sn(123, 321) = ∅ for n ≥ 5. �

The case of involutions avoiding simultaneously three or more patterns of length 3 is
very easy and does not involve any new idea, so we omit it here.
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7 Final remarks

Looking at the results of this paper, one can observe that the generating functions
FΣ(x, q, z) that we have obtained for Σ ⊆ S3 are all rational functions when |Σ| ≥ 2.
This contrasts with the fact that they are not rational when |Σ| = 1, since in that case

FΣ(1, 1, z) = 1−√
1−4z

2z
= C(z). For the case of involutions, all the generating functions

GΣ(x, z) for Σ ⊆ S3 are rational except when Σ ∈ {{123}, {132}, {213}, {321}}.
Regarding possible extensions of this work, it would be interesting to find a generating

function for fixed points and excedances in 123-avoiding permutations, the only case of
patterns of length 3 that remains unsolved. In particular, just for the enumeration of
fixed points in these permutations, we expect that an expression simpler than the one in
Theorem 3.3 can be given.

Another further direction of research would consist in describing the cycle structure of
pattern-avoiding permutations. Using the same bijective techniques from this paper, one
can easily derive generating functions for the cycle index of permutations in Sn(231, 312),
in Sn(231, 321) and in Sn(132, 321). However, it is not clear whether for permutations
avoiding other subsets of patterns of length 3, the distribution of the cycle type has a
simple description.
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