Measuring symmetry in lattice paths and partitions

Sergi Elizalde
Dartmouth College
FPSAC 2020 Poster Session

Measuring symmetry

For some combinatorial objects, one can study the subset of those that are symmetric, such as

- symmetric Dyck paths,
- self-conjugate partitions,
- palindromic compositions,
- symmetric binary trees,
- etc.

To refine this idea, we introduce the notion of degree of symmetry, a combinatorial statistic that measures how close an object is to being symmetric.

The degree of symmetry of lattice paths

Grand Dyck paths: $\mathcal{G} \mathcal{D}_{n}=\{$ paths from $(0,0)$ to $(2 n, 0)$ with

$$
\text { steps }(1,1) \text { and }(1,-1)\}
$$

Dyck paths: $\quad \mathcal{D}_{n}=$ paths in $\mathcal{G} \mathcal{D}_{n}$ that do not go below the x-axis

Definition

The degree of symmetry of a path $P \in \mathcal{G} \mathcal{D}_{n}$, denoted by $\mathrm{ds}(P)$, is the number of steps in the first half of p that are mirror images of steps in the second half.

The generating function for grand Dyck paths

Theorem

The GF for grand Dyck paths by their degree of symmetry is

$$
\sum_{n \geq 0} \sum_{P \in \mathcal{G} \mathcal{D}_{n}} s^{\mathrm{ds}(P)} z^{n}=\frac{1}{2(1-s) z+\sqrt{1-4 z}}
$$

The reason for this simple generating function is that when we fold a grand Dyck path along the middle, the blocks of steps that do not coincide form parallelogram polyominoes, which are counted by the Catalan numbers.

Another measure of symmetry

One can also measure symmetry of a grand Dyck path by the number of symmetric vertices: vertices in the first half that are mirror images of vertices in the second half.

Theorem

The GF for grand Dyck paths by their number of symmetric vertices is

$$
\sum_{n \geq 0} \sum_{P \in \mathcal{G} \mathcal{D}_{n}} v^{\operatorname{sv}(P)} z^{n}=\frac{1}{1-v+v \sqrt{1-4 z}}
$$

Denote by $\operatorname{ret}(P)$ the number of returns of P to the x-axis. The following result also has a bijective proof:

Corollary

The statistics sv and ret are equidistributed on $\mathcal{G} \mathcal{D}_{n}$.

The generating function for Dyck paths

In contrast to the simplicity of the GF for grand Dyck paths by their degree of symmetry, the GF for Dyck paths

$$
D(s, z)=\sum_{n \geq 0} \sum_{P \in \mathcal{D}_{n}} s^{\mathrm{ds}(P)} z^{n}
$$

is unwieldy. We rephrase the problem in terms of walks in the plane, and then apply some transformations on these walks.
$\mathcal{W}_{n}^{1}=\{$ walks in the first quadrant starting at $(0,0)$, ending on diagonal, and having n steps $\mathcal{X}\}$
$\mathcal{W}_{n}^{2}=\{$ walks in the first octant starting at $(0,0)$, ending on diagonal, and having n steps Σ, with 2 colors for \searrow leaving diagonal $\}$
$\mathcal{W}_{n}^{3}=\{$ walks in the first quadrant starting at $(0,0)$, ending on x-axis, and having n steps , with 2 colors for \nwarrow leaving x-axis $\}$

From Dyck paths to walks in the plane

We build a sequence of bijections:

$$
\mathcal{D}_{n} \xrightarrow{\text { combine halves }} \mathcal{W}_{n}^{1} \xrightarrow{\text { fold along } y=x} \mathcal{W}_{n}^{2} \xrightarrow{(x, y) \mapsto\left(y, \frac{x-y}{2}\right)} \mathcal{W}_{n}^{3}
$$

walks in	first octant	first quadrant	first octant	first quadrant
allowed steps	\swarrow	\searrow	\searrow	\square
length	$2 n$	n	n	n
ending on	x-axis	diagonal	diagonal	x-axis
2 colors for			\searrow leaving diagonal	\nwarrow leaving x-axis
ds counts	symmetric steps	steps on diagonal	steps on diagonal	steps on x-axis

Computing $D(s, z)$ is equivalent to counting walks in \mathcal{W}_{n}^{3} with respect to the number of steps on the x-axis.

Let $W(x, y, s, z)$ be the GF for walks like those in \mathcal{W}_{n}^{3} but with an arbitrary endpoint (whose coordinates are marked by x, y), where s marks the number of steps on the x-axis.

The generating function for Dyck paths

Theorem

The GF for Dyck paths by their degree of symmetry is
$D(s, z)=W(1,0, s, z)$, where $W(x, y):=W(x, y, s, z)$ satisfies the functional equation

$$
\begin{array}{r}
\left(x y-z\left(y+x^{2}\right)(1+y)\right) W(x, y)=x y-z y(1+y) W(0, y) \\
+z\left(y^{2}-x^{2}+(s-1) y\left(x^{2}+1\right)\right) W(x, 0) \\
-z y(y+s-1) W(0,0) .
\end{array}
$$

Computations by Alin Bostan using this equation suggest:

Conjecture

$D(s, z)$ is D-finite in z but not algebraic.

Partitions by self-conjugate parts

Let \mathcal{P} be the set of all integer partitions, i.e., $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k} \geq 1$.
$\lambda^{\prime}=$ conjugate of λ, obtained by transposing its Young diagram.
Define the degree of symmetry of $\lambda \in \mathcal{P}$ as

$$
\operatorname{ds}(\lambda)=\left|\left\{i: \lambda_{i}=\lambda_{i}^{\prime}\right\}\right| .
$$

Example

If $\lambda=(5,4,4,2,1,1)$, then $\lambda^{\prime}=(6,4,3,3,1)$, and so $\mathrm{ds}(\lambda)=2$.

Partitions by self-conjugate parts

For $\lambda \in \mathcal{P}$, let $\operatorname{sp}(\lambda)=\lambda_{1}+\lambda_{1}^{\prime}$ denote the semiperimeter of its Young diagram.

Theorem

Two GF for partitions by their degree of symmetry:

$$
\begin{gathered}
\sum_{\lambda \in \mathcal{P}} s^{\operatorname{ds}(\lambda)} z^{\max \left\{\lambda_{1}, \lambda_{1}^{\prime}\right\}}=\frac{1-s z}{2(1-s) z+\sqrt{1-4 z}} . \\
\sum_{\lambda \in \mathcal{P}} s^{\mathrm{ds}(\lambda)} z^{\operatorname{sp}(\lambda)}=1+\frac{z^{2}\left((1-s)(1-2 z)-\sqrt{1-4 z^{2}}\right)}{(2 z-1)\left(2(1-s) z^{2}+\sqrt{1-4 z^{2}}\right)} .
\end{gathered}
$$

Partitions by self-conjugate hooks

Another measure of symmetry of a partition λ is the number of self-conjugate diagonal hooks, denoted by ds $\ulcorner(\lambda)$.

has 3 diagonal hooks, 2 of which are self-conjugate, so ds $\ulcorner(\lambda)=2$

Theorem

$$
\sum_{\lambda \in \mathcal{P}} s^{\mathrm{ds}\ulcorner(\lambda)} z^{\max \left\{\lambda_{1}, \lambda_{1}^{\prime}\right\}}=\frac{1-z}{(1-s) z+\sqrt{1-4 z}}
$$

Corollary

$$
\begin{aligned}
\mid\left\{\lambda \in \mathcal{P}: \lambda_{1} \leq n,\right. & \lambda_{1}^{\prime} \leq n, \mathrm{ds}\ulcorner(P)=k\} \mid \\
& =\mid\left\{P \in \mathcal{G} \mathcal{D}_{n}: P \text { has } k \text { peaks at height } 1\right\} \mid .
\end{aligned}
$$

Unimodal compositions

Unimodal compositions with a centered maximum are sequences of positive integers $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ s.t.

$$
1 \leq a_{1} \leq \cdots \leq a_{\lfloor(k+1) / 2\rfloor}, \quad a_{\lceil(k+1) / 2\rceil} \geq \cdots \geq a_{k-1} \geq 1
$$

Similarly to how partitions are represented as Young diagrams, compositions can be represented as bargraphs:

$$
(1,1,2,3,4,2,2,1) \mapsto
$$

The degree of symmetry is the number of $i \leq k / 2$ s.t. $a_{i}=a_{k+1-i}$.

Unimodal compositions

$\mathcal{U}=$ unimodal bargraphs with a centered maximum
For $B \in \mathcal{U}$, let
$e(B)=$ number of east steps
$n(B)=$ number of north steps
$\mathrm{ds}(B)=$ degree of symmetry

$$
\mathrm{ds}(B)=2, e(B)=8, n(B)=4
$$

Theorem

$$
\sum_{B \in \mathcal{U}} s^{\mathrm{ds}(B)} x^{e(B)} y^{n(B)}=\frac{y(1+x-y)}{(1-s) x^{2}+\sqrt{\left((x+1)^{2}-y\right)\left((x-1)^{2}-y\right)}}-y .
$$

Some open questions

- Prove that the GF for Dyck paths by the degree of symmetry is D-finite but not algebraic.
- Enumerate partitions by the degree of symmetry and the area (instead of the semiperimeter).
- Study the degree of symmetry of other combinatorial objects; for sequences and words, there is work in progress with Emeric Deutsch.
- Study refined enumerations of walks with small steps in the quarter plane with an additional variable marking some parameter (e.g. the number of certain type of steps).

