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Abstract

A leaf of a plane treeis called an old leaf if it is the leftmost child of its parent, and it is called
a young leaf otherwise. In this paper we enumerate plane trees with given numbers of old leaves
and young leaves. The formula is obtained combinatorially via two bijections between plane trees
and 2-Motzkin paths which map young leaves to red horizontal steps, and old leaves to up steps.
We derive some implications for the enumeration of restricted permutations with respect to certain
statistics such as pairs of consecutive deficiencies, double descents, and ascending runs. Finally, our
main bijection is applied to obtain refinements of two identities of Coker, involving refined Narayana
numbers and the Catalan numbers.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Plane trees, also referred to as ordered trees, are basic objects frequently used in
combinatorics. Many enumerative resultsabout them appear throughout the literature.
For example, a well-known interpretation of the Narayana numbers is that they count the
number of plane trees with a fixed number of leaves. In this paper we classify the leaves of
a plane tree into two different kinds, distinguishing between old leaves and young leaves.
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This definition, which is introduced inSection 2, naturally gives rise to a refinement of the
Narayana numbers.

These refined Narayana numbers also appear in the enumeration of 2-Motzkin paths
with respect to the numbersof up steps and red horizontal steps. Such paths were
introduced in [1], and their structure has proved to be useful in the study of lattice paths,
noncrossing partitions, plane trees [6], and other combinatorial objects and identities.
Our paper gives yet another example of the applicability of 2-Motzkin paths. The key
to several of our results is a new bijection between plane trees and 2-Motzkin paths, with
very convenient properties. It provides a combinatorial derivation of the expression for the
number of plane trees with given numbers of old and young leaves.

Partly motivated by our work, Chen, Yan and Yang [4] give combinatorial
interpretations of two identities involving the Narayana numbers and Catalan numbers,
due to Coker [5]. While the proof in [4] uses a different bijection, the authors note that our
bijection provides a combinatorial proof aswell. Here we will show that a more detailed
analysis of the bijection and its properties gives refinements of the two identities of Coker,
as well as bijective proofs of these refinements.

The paper is structured as follows. InSection 2we review somedefinitions and notation
about plane trees, Dyck paths, Motzkin paths, and 2-Motzkin paths. We also introduce the
concepts of old leaves and young leaves of a plane tree. InSection 3we give the generating
function for plane trees with variables marking the number of old leaves and the number of
young leaves, as well as exact formulas for the number of plane trees of a given size when
the numbers of old and young leaves are fixed. InSection 4we present two bijections
from the set of plane trees withn edges to the set of 2-Motzkin paths of lengthn − 1.
Some interesting properties of these bijections are studied inSection 5. We show that they
map old and young leaves of trees into statistics on 2-Motzkin paths that are easier to
deal with. InSection 6we describe some bijections between plane trees and permutations
avoiding patterns of length 3, and investigate what old and young leaves are mapped to
by these bijections. This implies that the distributions of certain parameters on restricted
permutations are given by the same formulas enumerating plane trees with respect to old
and young leaves. Finally, inSection 7we apply our bijection to obtain refinements of two
combinatorial identities due to Coker [5] and proved combinatorially by Chen, Yan and
Yang [4].

2. Preliminaries

2.1. Plane trees

A plane tree Tcan be defined recursively (see for example [11, Appendix]) as a finite set
of vertices such that one distinguished vertexr is called theroot of T , and the remaining
vertices are put into an ordered partition(T1, T2, . . . , Tm) of m disjoint non-empty sets,
each of which is a plane tree. We will draw plane trees with the root on the top level, with
edges connecting it to the roots ofT1, T2, . . . , Tm, which will be drawn from left to right
on the second level. For each vertexv, the nodes in the next lower level connected tov by
an edge are called thechildren or successorsof v, andv is called theparentof its children.
Clearly each vertex other thanr has exactly one parent. A vertex ofT is called aleaf if it
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has no children (by convention, we assume that theemptytree, formed by a single node,
has no leaves).

We denote byTn the set of (unlabeled) plane trees withn edges. It is well known that

|Tn| = 1
n+1

(
2n
n

)
, then-th Catalan number, and that the number of trees withn edges and

k leaves is the Narayana number1
n

(n
k

) (
n

k−1

)
.

We classify the leaves of a plane tree into old and young leaves. We say that a leaf is
anold leaf if it is the leftmost child of its parent, and that it is ayoung leafotherwise. For
example, the tree inFig. 1has four young leaves, drawn with black filled circles, and three
old leaves, drawn with empty circles. The enumeration of plane trees with respect to the
numbers of old and young leaves is done inSection 3.

2.2. Lattice paths

We review the definitions of Dyck, Motzkin, and 2-Motzkin paths. They are all lattice
paths inZ

2 starting at(0,0), ending on thex-axis, and never going below this axis. A
Dyckpathconsists of stepsU = (1,1) andD = (1,−1). In aMotzkin pathwe also allow
horizontal stepsH = (1,0), so that the path is a sequence of stepsU , D and H . A 2-
Motzkin pathconsists of up and down steps, and horizontal steps that can be colored either
red or blue. We useR to denote a red step, andB a blue step. In the pictures in this paper,
red steps will be drawn with a dashed line to make them distinguishable from bluef steps,
which will be drawn with a solid line. The length of any of these paths is the total number
of steps.

We shall denote byDn the set of Dyck paths of length 2n, by Mn the set of Motzkin
paths of lengthn, and by Nn the set of2-Motzkin paths of lengthn. The number of
paths of each kind is given by|Dn| = Cn, |Mn| = Mn, and |Nn| = Cn+1, where
Mn = ∑n

k=0

( n
2k

)
Ck is then-th Motzkin number.

The generating function for Catalan numbers isC(z) = ∑
n≥0 Cnzn = 1−√

1−4z
2z , and

that for Motzkin numbers isM(z) = ∑
n≥0 Mnzn = 1−z−

√
1−2z−3z2

2z2 .

3. Enumeration of trees with respect to old and young leaves

Here we give anexpression for the generating function:

G(t, s, z) =
∑

T

t#old leaves ofT s#young leaves ofT z#edges ofT ,

where the sum is over all plane treesT .

Theorem 1. Let G(t, s, z) be defined as above. We have

G(t, s, z) = 1 + z − sz− √
1 − 2(1 + s)z + (1 − 4t + 2s + s2)z2

2z
.

Proof. We will find an equation forG = G(t, s, z) using a decomposition of plane trees.
Let T be any plane tree, and letm be the number of children of the root. Ifm = 0, then
the tree has no edges, and its contribution to the generating functionG is 1. If m ≥ 1, let
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Fig. 1. A tree with three old leaves and four young leaves.

T1, T2, . . . , Tm be the sequence of plane trees hanging from left to right from the children
of the root. IfT1 has no edges, then it creates an old leaf ofT ; otherwiseall the old (resp.
young) leaves ofT1 become old (resp. young) leaves ofT . Therefore, the contribution to
the generating function ofT1 and the edge connecting it to the root isz(G − 1 + t). For
i ≥ 2, old and young leaves ofTi become leaves ofT of the same kind as well. However,
if Ti has no edges, then an additional young leaf ofT is created. Thus, the contribution
to the generating function of eachTi with i ≥ 2 and the edge connecting it to the root is
z(G − 1 + s). It follows that form ≥ 1, the contribution of the plane trees whose root has
degreem is zm(G − 1 + t)(G − 1 + s)m−1. Summing over allm ≥ 0 weobtain

G = 1 + z(G − 1 + t)

1 − z(G − 1 + s)
. (1)

Isolating G, the formula follows. �

Proposition 2. (1) The number of plane trees with n edges, i old leaves, and j young
leaves is

1

n

(n

i

)(
n − i

j

) (
n − i − j

i − 1

)
.

(2) Thenumber of plane trees with n edges and k old leaves is

2n−2k+1

k

(
n − 1

2k − 2

) (
2k − 2

k − 1

)
.

(3) The number of plane trees with n edges and k young leaves is(
n − 1

k

)
Mn−k−1.

First proof. If we let G0 = G(t, s, z) − 1, Eq. (1) can be written asG0 = z[G2
0 +

(s + 1)G0 + t]. Applying the Lagrange inversion formula, we obtain that, forn >

0, the coefficient ofzn in G(t, s, z) is 1
n [xn−1](x2 + (s + 1)x + t)n, where [xn−1]

denotes the coefficient ofxn−1. It follows that the coefficient oft i sj zn in G(t, s, z) is
1
n

(n
i

) (
n−i

j

) (
n−i− j

i−1

)
, which isthe first expression. For the other two expressions, apply
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Fig. 2. Horizontal merge and vertical merge.

the Lagrange inversion to the same equation, after making the substitutionss = 1 and
t = 1 respectively. �

Second proof. We can give a bijective proof of the first part ofProposition 2as follows.
In [3], the author gives a bijective algorithm to decompose any labeled plane tree with
n edges (where the set of vertex labels is{1,2, . . . ,n + 1}) into a setF of n matches
with labels{1, . . . ,n,n + 1, (n + 2)∗, . . . , (2n)∗}, where a match is a rooted tree with two
vertices. The reverse procedure of the decomposition algorithm is the following merging
algorithm. We start with a setF of matches on{1, . . . ,n+1, (n+2)∗, . . . , (2n)∗}. A vertex
labeled with a mark∗ is called a marked vertex.

(1) Find the treeT with the smallest root in which no vertex is marked. Leti be the root of
T .

(2) Find the treeT∗ in F that contains the smallest marked vertex. Letj ∗ be this marked
vertex.

(3) If j ∗ is the root of T∗, then mergeT andT∗ by identifying i and j ∗, keepi as the
new vertex, and place the subtrees ofT∗ to the right ofT . Theoperation is called a
horizontal merge. If j ∗ is a leaf ofT∗, then replacej ∗ with T in T∗. Thisoperation is
called avertical merge. SeeFig. 2.

(4) Repeat the above procedure untilF becomes a labeled tree.

For any labeled plane tree withn edges,i old leaves, andj young leaves, the
corresponding setF of n matches consists ofi matches without marked vertices,j matches
with marked roots and unmarked leaves, and all leaves in the remaining matches are
marked vertices. Thus, we can count the number of labeled plane trees withn edges,i
old leaves, andj young leaves as follows:(

n + 1

2i

)
(2i )!

i !
(

n + 1 − 2i

j

) (
n − 1

j

)
j !

(
n − 1 − j

n − i − j

)
(n − i − j )!

= (n + 1)!
n

(n

i

)(
n − i

j

) (
n − i − j

i − 1

)
.

Now, to count unlabeled plane trees we just divide by(n + 1)!, obtaining the desired
formula.

Summing for all j we obtain the formula in part (2)of the proposition, and summing
for all i we derive the third formula. �

Particular cases of this proposition give rise to the following two statements. The second
one appeared already in [7] as a manifestation of the Motzkin numbers.
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Corollary 3. (1) Thenumber of plane trees inTn with exactly oneold leaf is2n−1.
(2) Thenumber of plane trees inTn with no young leaves is Mn−1.

4. Two bijections between plane trees and 2-Motzkin paths

In this section we present two bijectionsΨ andΨ ′ between the set of plane trees withn
edges and the set of 2-Motzkin paths of lengthn − 1. These bijections have the convenient
property that they map old and young leaves of the tree to certain statistics of the 2-Motzkin
path that are very easy to deal with, as shown inthe next section. This will allow us to give
bijective proofs ofCorollary 3 and some parts ofProposition 2. The two bijections have
very similar properties, and in fact one of them would be enough to prove the results in the
next section. However, they are defined in quite different ways, and we feel that presenting
both bijections gives a better insight into how old and young leaves correspond to statistics
on paths.

Let us start by describing the bijectionΨ . It consists ofthree steps. Given a plane tree
T ∈ Tn (assumen ≥ 1), we first transform it into a Dyck path using the following well-
known bijection, which we denote asθ . Starting from theroot, traverse the edges of the
tree in preorder from right to left. To each edge passed on the way down there corresponds
a stepU , and to each edge passed on the way up there corresponds a stepD. This gives us
a Dyck pathθ(T) of length 2n.

The next step is to replace each peakU D of the path followed by aU step with a red
horizontal stepR. That is, we traverse the pathθ(T) from left to right replacing eachU DU
with RU. This givesus a Motzkin path with stepsU , D andR, whose length is variable.

Finally, we need to transform this Motzkin path into a 2-Motzkin pathΨ (T) of length
n − 1. The bijection that we will use for this purpose is essentially the same one as was
described by Callan [2] betweenU DU -free Dyck paths and Motzkin paths, where we
“ignore” the stepsR of our path and let the new level steps all beB steps. Notice that
after the transformation in the previous paragraph, every peakU D in our Motzkin path is
followed by a D step, unless it is at the end of the path. This last transformation is done
as follows. Place a mark on eachU that is followed by aD, on eachD that is followed
by anotherD, andon theD at the end of the path. Next, change each unmarkedU whose
matchingD is marked into anB. (The matching D is the step that is encountered directly
east ofU .) Lastly, delete all the marked steps.

After this procedure we obtain a 2-Motzkin pathΨ (T) with n − 1 steps. For example,
for the treeT in Fig. 1, applying the first part of the bijection we get the Dyck path in
Fig. 3. Replacing eachU DU with RU, we get the Motzkin path inFig. 4. In the third
part of the bijection, we markthe steps that are thicker inFig. 5. Changing each unmarked
U with a marked matchingD to a B, we getU B RU̇ ḊḊDRU B BU̇ ḊḊ ḊDB RRU̇ Ḋ Ḋ,
where thedots indicate the marked steps. Finally, deleting the marked steps, we obtain the
2-Motzkin path inFig. 6.

It is clear that the first two steps of this map are reversible, that is, from the Motzkin path
with stepsU , D andR it is easy to recover the tree. The factthat the last step is a bijection
as well follows from the description of the inverse given in [2]. The only difference here
is that we need to disregard the stepsR that we havenow in the path, since they are not
affected by this part of the bijection.
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Fig. 3. The Dyck pathθ(T) for T in Fig. 1.

Fig. 4. The Motzkin pathUU RUDDDRUUUU DDDDU RRU DD.

Fig. 5. The Motzkin path with some steps marked.

Fig. 6. The 2-Motzkin pathΨ(T) = U B RDRUB B DB RR.

Now we describe another bijectionΨ ′ betweenTn and the set of 2-Motzkin paths
of length n − 1. We can constructΨ ′ recursively. Given a plane treeT , considerthe
decomposition given inFig. 7, where(e1,e2, . . . ,ek) is the path obtained starting at the
root and successively descending to the rightmost child until we reach a leaf.T1, T2, . . . , Tk

are possibly empty subtrees hanging from the vertices of this path. Wheni �= k, if the
subtreeTi consists of a single vertex, then we encode the edgeei with B; otherwise,ei is
encoded with aU and aD. Wheni = k, if the subtreeTk consists of a single vertex, then
the edgeek does not produce any step in the encoding; otherwise,ek is encoded withR.
We traverse the path from e1 to ek and constructΨ ′(T) as follows. If the encoding ofei is
B or R, then we recordQi = B or Qi = RΨ ′(Ti ) respectively. If the encoding ofei is a
U and aD, then we denoteQi = UΨ ′(Ti )D. Joining these segmentsQi from 1 tok, we
obtain a 2-Motzkin pathM = Q1Q2 · · · Qk.

Here is an alternative way to describeΨ ′. Given a plane treeT with n edges, label its
vertices withU, D, B or R while traversing it in preorder. For an internal vertex, if it is
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Fig. 7. Decomposition of a plane tree.

not the leftmost child ofits parent we label it withU ; otherwisewe label the vertex with
B. A young leaf is labeled withR and an old leaf withD, except the last old leaf that we
encounter, which is left unlabeled. Thus all vertices get a label except the root and the last
old leaf.

To construct the 2-Motzkin path we traverse the vertices of the tree in a different order
and read the labels. Suppose that the root ofT hask childrenv1, v2, . . . , vk and thatTi is
the subtree with rootvi . Then we traverse first the verticesvk, vk−1, . . . , v1 in this order,
and then traverseT1, T2, . . . , Tk recursively. It can be shown that the path obtained in this
way isΨ ′(T).

5. Consequences of the bijections

The main properties ofΨ andΨ ′ are given in the following proposition. We state it only
for Ψ , but exactly the same resultholds if we replaceΨ with Ψ ′. Theproof forΨ ′ follows
easily from its recursive description.

Proposition 4. Let T be a plane tree with n≥ 1 edges, and let P= Ψ (T) be the
corresponding 2-Motzkin path. We have

(1) # of old leaves of T= 1 + # of U steps of P,
(2) # of young leaves of T= # of R steps of P.

Proof. Let us first take a look at how old and young leaves are transformed by the first part
θ of the bijection, which consists in readingT in preorder from right to left and building a
Dyck path out of it. It is clear that each leaf ofT produces a peak inθ(T). Now, ayoung
leaf of T corresponds to a peakU D followed by aU step, whereas an old leaf ofT gives
rise to a peakU D not followed by aU .

The second part of the bijection transforms each peakU D followed by aU into a red
stepR, and these steps remainunchanged by the third part of the bijection. This proves
(2). The remaining peaks of the Dyck path are followed either by aD or by nothing, and
they are not affected by the second part of the bijection, so these are the only peaks in the
Motzkin path. In the final part, we place a mark on eachD that is followed by anotherD
or by nothing, and the onlyD’s thatare not erased are the unmarked ones. Therefore, the
number ofU steps (equivalently, the number ofD steps) inΨ (T) equals the number ofD’s
in the Motzkin path that are left unmarked. TheD steps in the Motzkin path can be grouped
in sequences of consecutiveD’s, each such sequence immediately following a peak (note
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that the path has no occurrences ofRD, so eachD is in one of these sequences). In the
sequence ofD’s following the rightmost peak all thesteps are marked. For each remaining
peak, among theD steps in theconsecutive sequence following it, all but the last one are
marked. Thus, only oneD step survives for each peak other than the rightmost one. In
other words, the number ofD steps inΨ (T) is the number of peaks of the Motzkin path
minus one. This implies (1). �

By means of the bijectionΨ and the properties described above, we can now give a
combinatorial proof ofCorollary 3. To prove the first part, observe thatby property (1)
of Proposition 4, Ψ induces a bijection between plane trees with exactly one old leaf and
2-Motzkin paths with noU steps. But these paths are justsequences of horizontal steps,
each of which can be colored red or blue. Thus, the number of plane trees onn edges with
exactly oneold leaf is 2n−1.

A direct proof of this nice fact, without using bijections to lattice paths, can be given as
follows. Let T be a tree with n edges and exactly one old leaf, call it�. We can find� by
following the path that starts at the root and always continues to the leftmost child. LetP
be this path. Then� must be at the end ofP. Now we claim that the remaining nodes of
T are leaves hanging from the nodes ofP other than�. Indeed, if a node ofP had achild
not in P with successors, then following the path that starts at this child and continues
always to the leftmost child, we would end at another old leaf, which is a contradiction.
Reciprocally, if only leaves are hanging fromP, then no more old leaves appear. Now, the
number of trees consisting of a pathP with leaves hanging from its nodes is clearly 2n−1.
Indeed, one can think of it as a composition ofn, sayn = a1 + a2 + · · ·, whereai is the
number of children of thei -th node ofP.

More generally, we can use our bijection to give a combinatorial proof of the second
part of Proposition 2, namely the number of plane trees withn edges andk old leaves

is 2n−2k+1

k

(
n−1
2k−2

) (
2k−2
k−1

)
. By the firstproperty ofΨ given above, we have to count the

number of 2-Motzkin paths of lengthn − 1 with k − 1 U steps. To produce such a path,

we can choose in
(

n−1
2k−2

)
ways thepositions of thek − 1 U ’s andk − 1 D’s in the path.

Deciding which of these positions will be filled with a U or with a D is equivalent to

choosing a Dyck path with 2k − 2 steps, and this can be done in1k

(
2k−2
k−1

)
ways. The

remaining n − 2k + 1 positions are horizontal steps, which can be colored red or blue in
2n−2k+1 ways.

To show the second part ofCorollary 3 combinatorially, notice that property (2) of
Proposition 4implies thatΨ maps plane trees with no young leaves into 2-Motzkin paths
with no R steps. These are just Motzkin paths with stepsU , D and B. Therefore, the
number of plane trees onn edges with no young leaves equals the number of Motzkin
paths with n − 1 steps, which is Mn−1.

More generally, the same property ofΨ can be used to prove the last part of
Proposition 2, namely the number of plane trees withn edges andk young leaves is(

n−1
k

)
Mn−k−1. Indeed, now the problem is equivalent to counting 2-Motzkin paths of

lengthn − 1 with k R steps. We can choose in
(

n−1
k

)
ways where theseR stepsgo, and

then the remainingn−k−1 stepscan be filled with a Motzkin path with stepsU , D andB.
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Remark. Another combinatorial proof of part (3) ofProposition 2can be obtained using

the result mentioned in [6] (and proved also in [12]), that
(

n−1
k

)
Mn−k−1 counts the

number of Dyck paths of length 2n with k DU D’s.

The description ofΨ implicitly contains a bijection between Dyck paths and 2-Motzkin
paths. There is asimpler bijection, perhaps the most standard one, that transforms a
2-Motzkin path of lengthn−1 into a Dyck path of length 2n, by first applying the following
rules:

U → UU, D → DD, R → U D, B → DU,

and then inserting aU at the beginning and aD at the end of the path. ApplyingΨ followed
by this bijection, young leaves of the tree are mapped to peaks at even height in the Dyck
path. This shows that the statistic ‘number of young leaves’ inTn is equidistributed with
the statistic ‘number of peaks at even height’ inDn.

6. Some statistics on restricted permutations

Using someknown bijections between Dyck paths and permutations avoiding a pattern
of length 3, the parameters counting the number of old and young leaves in plane trees
correspond to certain statistics on restricted permutations. Given a patternσ , we denote by
Sn(σ ) the set ofpermutations in the symmetric groupSn avoidingσ . It is well known that
if σ is any pattern of length 3, then|Sn(σ )| = Cn, then-th Catalan number [9].

We begin with a few definitions. Letπ be a permutation. We say thatπi is anexcedance
if πi > i , that it is aweak excedanceif πi ≥ i , and thatit is a deficiencyif πi < i . The
distribution of excedances and deficiencies in permutations avoiding patterns of length 3
was studied in [8]. A left-to-right minimumof π is an elementπi suchthatπi < π j for
all j < i . We define adouble descentof π as a sequence of three consecutive decreasing
elementsπi > πi+1 > πi+2 (equivalently, two consecutive descents). Adouble ascentis
defined analogously. Anascending runis a maximal increasing sequence of (at least two)
consecutive elements ofπ , i.e., πi < πi+1 < · · · < πi+k, with k ≥ 1.

Proposition 5. There is a bijectionϕ1 : Tn −→ Sn(321) such that, if T ∈ Tn and
π := ϕ1(T) ∈ Sn(321), then

(1) # of young leaves of T= # of pairs of consecutive weak excedances ofπ ,
(2) # of old leaves of T= # of weak excedances ofπ not followed by another weak

excedance.

Proof. We use abijectionψ betweenSn(321) andDn which is similar to the one given by
Krattenthaler [10] fromSn(123) toDn. Here is a way to describe it. Letπ ∈ Sn(321), and
let πi1, πi2, . . . , πik be its weak excedances, from left to right. Defineψ(π) to be the path
that starts withπi1 up steps, then has, for eachj from 2 tok, i j − i j −1 down steps followed
byπi j −πi j −1 up steps, and finally ends withn + 1− i k down steps. It can be checked that
this is indeed a bijection between 321-avoiding permutations and Dyck paths.

Our bijectionϕ1 is defined asϕ1 = ψ−1 ◦ θ . Recall thatθ reads a plane tree in preorder
from right to left and creates a Dyck path.
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Wesee that young leaves ofT correspond to occurrences ofU DU in the pathθ(T), and
that old leaves ofT are mapped byθ to either aU DD or a terminal (i.e., at the end of the
path)U D. Now, if π ∈ Sn(321), aU DU is obtained inψ(π) precisely when we have a
weak excedance followed by another weak excedance, which causes one of the descending
slopes to have lengthi j − i j −1 = 1. Similarly, a U DD corresponds to a weak excedance
followed by a deficiency (i.e., an element that is not a weak excedance), and a terminal
U D corresponds to the weak excedanceπn = n. �

For example, ifT is the tree inFig. 1, with θ(T) given inFig. 3, then the corresponding
permutation isϕ1(T) = (3,4,1,2,5,9,6,7,8,11,12,13,10) ∈ S12(321). It has four
pairs of consecutive weak excedances, namely(3,4), (5,9), (11,12) and (12,13), and
three weak excedances not followed by another weak excedance, namely 4, 9 and 13.

A similar result for 132-avoiding permutations is given next. Forπ ∈ Sn, let (n + 1)π
(resp.π(n + 1)) be thepermutation inSn+1 obtained by insertingn + 1 at thebeginning
(resp. at the end) ofπ .

Proposition 6. There is a bijectionϕ2 : Tn −→ Sn(132) such that, if T ∈ Tn and
π := ϕ2(T) ∈ Sn(132), then

(1) #of young leaves of T= # of double descents of(n + 1)π ,
(2) #of old leaves of T= # of ascending runs ofπ(n + 1).

Proof. We use the bijection from Sn(132) to Dn denoted byΦ that appears in
Krattenthaler [10]. Given π ∈ Sn(132), let πi1, πi2, . . . , πik be its left-to-right minima,
from left to right. ThenΦ(π) is the Dyck path that starts withn + 1 − πi1 up steps, then
has, for eachj from 2 to k, i j − i j −1 down steps followed byπi j −1 − πi j up steps, and
finally ends withn + 1 − i k down steps. It can be checked that this is indeed a bijection
between 132-avoiding permutations and Dyck paths. The bijection we are looking for is
ϕ2 := Φ−1 ◦ θ .

Each young leaf ofT produces an occurrence ofU DU in θ(T). Such an occurrence
appears inΦ(π) for each pair of consecutive left-to-right minima. These two elements,
together with the entry of(n + 1)π immediately to their left, form a decreasing sequence
of three consecutive elements (a double descent). To see that these are the only double
descents of(n+1)π , notice that from the structure of 132-avoiding permutations it follows
that if π j > π j +1 is a descent ofπ , thenπ j +1 must be a left-to-right minimum.

The reasoning for old leaves is similar. They correspond to occurrences ofU DD and
possibly aU D at the end or, equivalently, to occurrences ofU DD in θ(T)D (i.e., the Dyck
pathθ(T) with a D stepappended at the end). Each of these occurrences marks the start of
a maximal sequence of at least two consecutiveD steps inθ(T)D, and each such sequence
corresponds to an ascending run ofπ(n + 1). �

For example, ifT is again the tree inFig. 1, then the corresponding 132-avoiding
permutation isπ = ϕ2(T) = (11,10,12,13,9,5,6,7,8,3,2,1,4). Note that(n+1)π =
(14, π) has four double descents, namely(14,11,10), (13,9,5), (8,3,2) and (3,2,1),
and(π,14) has three ascending runs, namely(10,12,13), (5,6,7,8) and(1,4,14).

There is another well-known bijection between plane trees and Dyck paths, which
we denote asδ. Given a treeT , traverse it in preorder (from left to right) and build
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δ(T) as follows. For each node withr children, drawr up steps followed by one
down step; draw aD for each leaf except for the last leaf, for which we do not
draw anything. For example, the path corresponding to the tree inFig. 1 is δ(T) =
UUUU DUUU DDDDU DU DU DDDU DUU DD.

Define adropof a Dyck path to be a maximal succession of at least two consecutiveD
steps, and atriple fall to be an occurrence ofDDD. Then the bijectionδ maps each old
leaf of T to a drop ofδ(T)D, and each young leaf to a triple fall ofδ(T)D. For the above
example,δ(T)D has three drops and four triple falls.

Following arguments similar to the ones inPropositions 5and6, butusing the bijection
δ instead ofθ , weobtain the next two results.

Proposition 7. There is a bijectionϕ3 : Tn −→ Sn(321) such that, if T ∈ Tn and
π := ϕ3(T) ∈ Sn(321), then

(1) #of young leaves of T= # of pairs of consecutive deficiencies ofπ (+1 if πn < n),

(2) # of old leaves of T= # of weak excedances ofπ not followed by another weak
excedance.

Proposition 8. There is a bijectionϕ4 : Tn −→ Sn(132) such that, if T ∈ Tn and
π := ϕ4(T) ∈ Sn(132), then

(1) # of young leaves of T= # of double ascents ofπ(n + 1),
(2) # of old leaves of T= # of ascending runs ofπ(n + 1).

7. Refinements of two combinatorial identities

In [5] Coker established the following two identities, involving the Narayana and the
Catalannumbers:

n∑
k=1

1

n

(n

k

) (
n

k − 1

)
4n−k =

	(n−1)/2
∑
k=0

Ck

(
n − 1

2k

)
4k5n−2k−1, (2)

n∑
k=1

1

n

(n

k

) (
n

k − 1

)
x2k(1 + x)2n−2k = x2

n−1∑
k=0

Ck+1

(
n − 1

k

)
xk(1 + x)k. (3)

He stated the open problem of finding a combinatorial interpretation of these identities.
In [4], Chen, Yan and Yang proved these identities combinatorially. In this section we use
the properties ofΨ given inProposition 4to obtain refinements of the identities (2) and (3).

Theorem 9. For n ≥ 1, wehave

	(n−1)/2
∑
i=1

n−2i+1∑
j =0

1

n

(n

i

)(
n − i

j

) (
n − i − j

i − 1

)
xi−1y j

=
	(n−1)/2
∑

k=0

Ck

(
n − 1

2k

)
xk(1 + y)n−2k−1. (4)
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Proof. It will be convenient to use the termcritical leaf to denote the last old leaf that we
encounter when we traverse a plane tree in preorder. Given a plane treeT with n edges,
assign weights to the vertices ofT as follows: young leaves are given weighty, old leaves
other than the critical one are given weightx, and the rest of the vertices (including the
critical leaf) are given weight 1. The weight ofT is the product of the weights of its
vertices. Then, the left hand side of (4) is the sum of the weights of all plane trees withn
edges.

By Proposition 4, Ψ is a weight preserving bijection between the set of weighted plane
trees onn edges, with weights given as above, and the set of weighted 2-Motzkin paths of
lengthn − 1 where weights are assigned as follows:U steps are given weight x, R steps
are given weighty, and all the remaining steps are given weight 1, defining the weight of
a 2-Motzkin path to be the product of weights of its steps. We claim that the right hand
sideof (4) is the sum of the weights of all 2-Motzkin paths of lengthn − 1. Indeed, let
k ≤ 	(n − 1)/2
 and consider the weighted 2-Motzkin paths withk up steps andk down
steps. These up and down steps from a Dyck path of length 2k, and thepositions of these

2k stepscan be chosen in
(

n−1
2k

)
ways. They contributexk to the weight of the path. The

remaining n − 2k − 1 steps are either R or B steps. SinceR steps have weight y and B
steps have weight 1, the total contribution of the horizontal steps in paths withk up steps
is (1 + y)n−2k−1. This justifies the right hand side. �

With the substitutiony = x in Eq. (4) we recover the result proved in [4], and the
particular casey = x = 4, together with the symmetry of the Narayana numbers, yields
Eq. (2). A refinement of the second identity (3) is givennext.

Theorem 10. For n ≥ 1, wehave

	(n−1)/2
∑
i=1

n−2i+1∑
j =0

1

n

(n

i

)(
n − i

j

) (
n − i − j

i − 1

)
x2(i−1)y j zn−2i− j +1

=
n−1∑
k=0

Ck+1

(
n − 1

k

)
xk(y + z − 2x)n−1−k. (5)

Proof. Recall the definition of the critical leaf from the proof ofTheorem 9. Given a plane
treeT with n edges, assign weights to the vertices ofT in the following way. Old leaves
other than the critical one are given weightx, theparents of such leaves are given weight
x as well, young leaves are given weighty, the critical leaf and its parent are given weight
1, and the rest of the vertices are given weightz. As before, the weight ofT is the product
of the weights of its vertices. Notice that two different old leaves cannot have the same
parent, so the weight of a tree withi old leaves andj young leaves isx2(i−1)y j zn−2i− j +1.
The left hand side of (5) is the sum of theweights of all plane trees withn edges.

By Proposition 4, a treewith i old leaves andj young leaves is mapped byΨ to a
2-Motzkin path with i −1 up steps,i −1 down steps,j horizontalR steps, andn−2i − j +1
horizontalB steps. To makeΨ a weight preserving bijection between plane trees onn
edges with the above weights and 2-Motzkin paths of lengthn − 1, we assign weights to
the steps of a 2-Motzkin path by giving weightx to U andD steps, weighty to R steps,
and weightz to B steps.
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Consider now the set of 3-Motzkin paths of lengthn − 1, where horizontal steps can
be either red, blue or green (call themR, B and G steps respectively). Assign weights
to the steps bygiving weighty + z − 2x to G steps andweight x to all theother steps.
Again, the weight of a path is the product of weights of its steps. This weight assignment
for 3-Motzkin paths has the property that the sum of the weights of anR step, aB step
and aG step equals the sumof the weights of anR stepand aB step in the assignment for
2-Motzkin paths above (namelyx + y), and also thatU andD steps have thesame weight
x in both assignments. This implies that the sum of weights over all 2-Motzkin paths with
the above weight assignment equals the sum of weights over all 3-Motzkin paths with this
new assignment. Therefore, it remains to show that the right hand side of (5) is thetotal
sum of the weights of 3-Motzkin paths of lengthn−1. But this is clear because if we fix the
number ofG steps of a 3-Motzkin path to ben − 1− k, then the positions of theseG steps

can be chosen in
(

n−1
k

)
ways. The remaining steps,U , D, R and B, form a 2-Motzkin

path of lengthk, and thenumber of such paths isCk+1. �

To recover identity (3) weonly need to substitutex(1+ x) for x, x2 for y, and(1+ x)2

for z in Eq. (5), and notice that a tree withi old leaves andj young leaves hask = i + j
leaves in total.
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