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Abstract

We use the cluster method to enumerate permutations avoiding consecutive patterns. We
reprove and generalize in a unified way several known results and obtain new ones, including
some patterns of length 4 and 5, as well as some infinite families of patterns of a given shape. By
enumerating linear extensions of certain posets, we find a differential equation satisfied by the
inverse of the exponential generating function counting occurrences of the pattern. We prove
that for a large class of patterns, this inverse is always an entire function.

We also complete the classification of consecutive patterns of length up to 6 into equivalence
classes, proving a conjecture of Nakamura. Finally, we show that the monotone pattern asymp-
totically dominates (in the sense that it is easiest to avoid) all non-overlapping patterns of the
same length, thus proving a conjecture of Elizalde and Noy for a positive fraction of all patterns.
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1 Introduction

In this paper we use the cluster method of Goulden and Jackson in order to obtain new results on
the enumeration of permutations avoiding consecutive patterns. Recall that a permutation π avoids
a consecutive pattern σ if no subsequence of adjacent entries of π is in the same relative order as
the entries of σ. Given a pattern σ, the cluster method consists of counting partial permutations in
which each element is involved in at least one occurrence of σ, the so-called clusters. By inclusion-
exclusion, the enumeration of clusters provides the enumeration of permutations according to the
number of occurrences of σ.

Counting clusters can be seen as counting linear extensions in a certain poset. For instance, if σ
is the monotone pattern, the corresponding poset is simply a chain, and counting linear extensions
is a trivial task. In fact, not only the monotone pattern 12 · · ·m can be analyzed in this way, but
also the pattern 123 · · · (s−1)(s+1)s(s+2)(s+3) · · ·m (Corollary 2.5), and other related patterns,
which we call chain patterns (Theorem 2.4). Another significant case is that of non-overlapping
patterns σ, which are those for which two occurrences of σ in a permutation cannot overlap in more
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than one position. The associated poset is not difficult to analyze when σ1 = 1, in which case the
number of permutations avoiding σ ∈ Sm depends only on the value b = σm, and we can derive
a linear differential equation (Theorem 3.1) satisfied by the inverse of the associated exponential
generating function. A weaker version of this result was proved in [7] using representations of
permutations as binary trees. For chain patterns and non-overlapping patterns, the differential
equations that we obtain can also be deduced from the work of Khoroshkin and Shapiro [12].

A more intricate example is the pattern 1324. This case was left open in [7] and cannot be
solved with the techniques from [12] either. The number of linear extensions of the associated poset
is related to the Catalan numbers, and we prove that the inverse of the generating function for
this pattern satisfies a linear differential equation of order five with polynomial coefficients. Again,
the technique can be extended to cover the general pattern 134 · · · (s + 1)2(s + 2)(s + 3) · · ·m
(Theorem 4.2). For other patterns of length 4, namely 1423 and 2143, we find recurrence relations
satisfied by their cluster numbers (Section 5), which already appeared in [3], but we are not able to
find closed solutions in terms of differential equations. In fact, we conjecture that the inverse of the
generating function for permutations avoiding 1423 is not D-finite. If true, this conjecture would
give the first instance of a pattern with this property, and it would make a related conjecture of
Noonan and Zeilberger for classical patterns less believable.

The present situation for small patterns is the following. Say that two patterns are equivalent
if their numbers of occurrences in permutations have the same distribution. There are two inequiv-
alent patterns of length 3, already solved in [7]. There are seven inequivalent patterns of length
4, four of which are solved now, but we still do not have closed solutions for 1423, 2143 and 2413.
There are 25 inequivalent patterns of length 5. Four of these are easily solved with the techniques
from [7], and we can now solve four additional ones, namely 12435, 12534, 13254 and 13425. The
remaining 17 patterns (which include 2 non-overlapping ones) are unsolved in terms of closed solu-
tions or differential equations. For patterns of length 6, we prove four conjectures of Nakamura [15]
regarding the equivalence of certain pairs, completing the classification into equivalence classes,
and proving that there are exactly 92 inequivalent patterns.

Regarding asymptotic enumeration of permutations avoiding a pattern, we prove that the mono-
tone pattern dominates all non-overlapping patterns of the same length (Theorem 6.8), thus proving
a special case of a conjecture by Elizalde and Noy [7]. It was shown by Bóna [2] that the number
of non-overlapping patterns is asymptotically a positive fraction of all patterns. We also show that
the inverse of the generating function of permutations according to the number of occurrences of a
given pattern is an entire function in several important cases (Theorem 6.1), but not for the pattern
2143.

We conclude this introductory section with definitions and preliminaries needed in the rest of
the paper. In Sections 2 and 3 we study monotone and non-overlapping patterns, and related
patterns. Section 4 is devoted to the pattern 1324 and generalizations, and Section 5 to some other
patterns of length 4. In Section 6 we present our asymptotic and analytic results. We end the
paper with some open problems.

1.1 Consecutive patterns

Given a sequence of distinct positive integers τ = τ1 · · · τk, we define the reduction st(τ) as the
permutation of length k obtained by relabelling the elements of τ with {1, . . . , k} so that the order
relations among the elements remains the same. For instance st(46382) = 34251. Given permuta-
tions π ∈ Sn and σ ∈ Sm, we say that π contains σ as a consecutive pattern if st(πi · · · πi+m−1) = σ
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for some i ∈ {1, . . . , n − m + 1}. We denote by cσ(π) the number of occurrences of σ in π as a
consecutive pattern, and by αn(σ) the number of permutations in Sn that avoid σ as a consecutive
pattern. In the rest of the paper, the notions of occurrence, containment and avoidance always
refer to consecutive patterns, even if it is not explicitly stated.

Let

Pσ(u, z) =
∑

n≥0

∑

π∈Sn

ucσ(π)
zn

n!

be the bivariate exponential generating function for occurrences of σ in permutations. It is conve-
nient to define ωσ(u, z) = 1/Pσ(u, z). Note that

Pσ(0, z) =
1

ωσ(0, z)
=
∑

n≥0

αn(σ)
zn

n!

is the generating function of permutations avoiding σ. We drop the subscript σ from P and ω when
the pattern is clear from the context. If Σ is a set of patterns, we define PΣ(u, z) and ωΣ(u, z)
similarly, where u marks the total number of occurrences of all the patterns in Σ.

Two occurrences of σ in a permutation may overlap in certain positions. This is a basic issue in
what follows and motivates the following definition. Let Oσ be the set of indices i with 1 ≤ i < m
such that st(σi+1σi+2 . . . σm) = st(σ1σ2 . . . σm−i). Equivalently, i ∈ Oσ if there is some permutation
in Sm+i where both its leftmost m entries and its rightmost m entries form occurrences of σ (these
occurrences overlap in exactly m − i positions). We call Oσ the set of overlaps of σ. Note that if
m ≥ 2, then m− 1 ∈ Oσ.

We say that two patterns σ and τ are strongly c-Wilf-equivalent, or simply, that they fall in
the same class, if Pσ(u, z) = Pτ (u, z). While this implies that αn(σ) = αn(τ) for all n, it is an
open question to determine whether the converse holds. Given a pattern σ1 · · · σm, its reversal is
σm · · · σ1, and its complementation is (m+1−σ1) · · · (m+1−σm). Reversal and complementation
do not change the equivalence class of a pattern. Patterns of small length were first studied in [7].
It was shown that patterns of length three fall into two classes, represented by 123 and 132, and
the associated generating functions Pσ(u, z) were computed explicitly. Patterns of length four fall
into seven classes, represented by 1234, 2413, 2143, 1324, 1423, 1342 and 1243. Three of them,
namely 1234, 1342 and 1243, were solved in [7] in terms of the generating functions. Let us remark
that the situation is quite different for classical patterns, that is, patterns that appear in non-
necessarily consecutive positions of a permutation. For instance, all permutations of length 3 are
Wilf-equivalent in the classical setting, due to a non-trivial bijection between permutations avoiding
123 and those avoiding 132.

1.2 The cluster method

The cluster method of Goulden and Jackson [10, 11] is a powerful method for enumerating words
with respect to occurrences of certain substrings, based on inclusion-exclusion. Several extensions
and implementations of the method have been given in the literature, most notably in [17]. Let
us now summarize an adaptation of the cluster method to the enumeration of permutations with
respect to the number of occurrences of a consecutive pattern. This adaptation has been recently
used in [3], and it has many similarities with a method of Mendes and Remmel [14] based on the
combinatorics of symmetric functions.

For fixed σ ∈ Sm, a k-cluster of length n with respect to σ is a pair (π, (i1, i2, . . . , ik)) where
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• π ∈ Sn,

• 1 = i1 < i2 < · · · < ik = n−m+ 1,

• for each 1 ≤ j ≤ k, st(πijπij+1 . . . πij+m−1) = σ,

• for each 1 ≤ j ≤ k − 1, ij+1 ≤ ij +m− 1.

In other words, the ij are starting positions of occurrences of σ in π, all the entries of π are in
at least one of the marked occurrences, and neighboring marked occurrences overlap. Note that
ij+1 − ij ∈ Oσ (the overlap set) for all j, and that π may have more than k occurrences of σ.
Sometimes we write (π; i1, i2, . . . , ik) instead of (π, (i1, i2, . . . , ik)). For example, if σ = 1324, then
(142536879; 1, 3, 6) is a 3-cluster of length 9, since 1425, 2536 and 6879 are occurrences of σ and
all the entries are in at least one of the occurrences. Notice that the 1425 and 2536 overlap in two
positions, whereas 2536 and 6879 overlap only in one position.

Let rn,k be the number of k-clusters of length n with respect to a fixed σ. We denote by

Rσ(t, z) =
∑

n,k

rn,kt
k z

n

n!

the exponential generating function (EGF for short) for clusters, and by

R̂σ(t, x) =
∑

n,k

rn,kt
kxn

the corresponding ordinary generating function (OGF for short).
The following theorem, which is an adaptation of [11, Theorem 2.8.6] to the case of permutations,

expresses the EGF for occurrences of σ as a consecutive pattern in permutations in terms of the
EGF for clusters. We include a short proof for completeness.

Theorem 1.1 ([11]). For any pattern σ we have

ωσ(u, z) = 1− z −Rσ(u− 1, z).

In particular, the EGF for σ-avoiding permutations is

Pσ(0, z) =
1

ωσ(0, z)
=

1

1− z −Rσ(−1, z)
.

Proof. A permutation π can be seen as a sequence of consecutive blocks, where each block consists
either of elements all belonging to an occurrence of σ, or of an element not belonging to any occur-
rence of σ. The first kind of block is a cluster and is encoded by the generating function Rσ(−1, z)
(since setting u = −1 marks, by inclusion-exclusion, the exact number of occurrences of σ), and
the single elements are encoded by z. Notice that the fact that occurrences in a cluster overlap
guarantees the uniqueness of the decomposition. Finally, the sequence construction corresponds to
1/(1 − (z +Rσ(−1, z)), thus proving the result.

We usually denote Â(t, x) = 1 − x − R̂(t, x) and A(t, z) = 1 − z − R(t, z), so that ωσ(u, z) =
A(u− 1, z).
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Theorem 1.1 reduces the study of the distribution of occurrences of a pattern in permutations
to computing the cluster numbers rn,k. We now show that these numbers can be expressed in terms
of linear extensions of certain posets. Fix σ ∈ Sm. For given n, k, let

Iσ
n,k = {(i1, i2, . . . , ik) : i1 = 1, ik = n−m+ 1, and ij+1 − ij ∈ Oσ for 1 ≤ j ≤ k − 1}, (1)

and fix (i1, . . . , ik) ∈ Iσ
n,k. A permutation π ∈ Sn has the property that (π; i1, . . . , ik) is a k-cluster

of length n if and only if, for each 1 ≤ j ≤ k,

st(πijπij+1 . . . πij+m−1) = σ. (2)

If we denote by ς ∈ Sm the inverse of σ, so that ςℓ is the position of ℓ in σ, then (2) is equivalent to

πς1+ij−1 < πς2+ij−1 < · · · < πςm+ij−1. (3)

The conditions (3) for 1 ≤ j ≤ k define a partial order on the set {π1, π2, . . . , πn}. We denote the
corresponding partially ordered set (poset) by P σ

n,i1,...,ik
. If we denote by L(P ) the set of linear

extensions (i.e., compatible linear orders) of P , then it follows that (π; i1, . . . , ik) is a k-cluster of
length n with respect to σ if and only if π ∈ L(P σ

n,i1,...,ik
). We denote by Pσ

n,k the multiset of
such posets for all values of (i1, . . . , ik) ∈ Iσ

n,k. Note that some posets in Pσ
n,k can appear with

multiplicity, as in the cases discussed in Section 2. Alternatively, we could mark the elements
πi1 , πi2 , . . . , πik in P σ

n,i1,...,ik
, to ensure that all the posets in Pσ

n,k are different as marked posets. We
have that

rn,k =
∑

P∈Pσ
n,k

|L(P )|. (4)

We also define the multisets Pσ
n =

⋃
k≥1Pσ

n,k and Pσ =
⋃

n Pσ
n .

Finally, note that for the reversal or complementation of a pattern σ, the corresponding clusters
are also reversed or complemented, the set Oσ does not change, and the posets that we obtain are
isomorphic to those for σ.

1.3 Ordinary and exponential generating functions

Here we describe a tool that we use to switch between the OGF and the EGF of a sequence. Let
L be the linear operator on formal power series such that L(xk) = zk

k! for all k ≥ 0.

Lemma 1.2. Let Â(x) =
∑

n≥0 anx
n be an OGF and let A(z) =

∑
n≥0 an

zn

n! be the corresponding

EGF. Let I denote the integral operator with respect to z, that is, IF (z) =
∫ z
0 F (v) dv, and let

j ≥ 0. Then

1. L(xjÂ) = IjA;

2. L(xj+1Â ′) = Ij(zA′);

3. L(xjÂ(j)) = zjA(j).

Proof. All the properties are easy to prove. For instance, claim 1 follows from

L(xjÂ) = L
(∑

anx
n+j
)
=
∑

an
zn+j

(n+ j)!
= IjA.
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Given a linear differential equation for Â(x) with polynomial coefficients, Lemma 1.2 will be
used to obtain a linear differential equation for A(z) with polynomial coefficients.

Let us finish this section with a remark about notation. Throughout the paper we deal with
differential equations for multivariate generating functions. All the derivatives that appear are
always partial derivatives with respect to z. Similarly, initial conditions are for z.

2 Monotone and related patterns

2.1 The pattern σ = 12 . . .m

For the monotone pattern σ = 12 . . . m, a differential equation satisfied by ωσ(u, z) was given in [7,
Theorem 3.1]. The proof is based on representations of permutations as increasing binary trees.

Theorem 2.1 ([7]). Let m ≥ 3, let σ = 12 . . . m, and let ω(z) := ωσ(u, z). Then ω is the solution
of

ω(m−1) + (1− u)(ω(m−2) + · · · + ω′ + ω) = 0 (5)

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ m− 2.

To warm up for the more complicated patterns in upcoming sections, let us give an alternative
proof of Theorem 2.1 using the cluster method. It is clear that Oσ = {1, 2, . . . ,m − 1}, so for
π ∈ Sn, (π; i1, . . . , ik) is a k-cluster with respect to σ if and only if π1 < π2 < · · · < πn and
1 ≤ ij+1 − ij ≤ m− 1 for all j. It follows that the OGF for the cluster numbers is

R̂σ(t, x) =
txm

1− t(x+ x2 + · · · + xm−1)
,

and so

Â(t, x) = 1− x− R̂σ(t, x) =
1− x− tx

1− t(x+ x2 + · · ·+ xm−1)
. (6)

Clearing denominators in (6), applying the transformation L, and using Lemma 1.2, we get that

(1− t(I + I2 + · · ·+ Im−1))A(t, z) = 1− z − tz. (7)

Differentiating m− 1 times we obtain a differential equation for A(t, z):

A(m−1) − t(A(m−2) + · · · +A′ +A) = 0,

with initial conditions A(0) = 1, A′(0) = −1, and A(i)(0) = 0 for 2 ≤ i ≤ m − 2. Equation (5) is
now obtained making the substitution t = u− 1 and using Theorem 1.1. Note that for m = 2, the
right hand side of (7) does not cancel, but it produces a term −1− t, from where one can recover
the well-known generating function for the Eulerian numbers.

In fact, we see from equation (6) that

1− x− R̂σ(−1, x) =
1− x

1− xm
=
∑

j≥0

xjm −
∑

j≥0

xjm+1,

so

ωσ(0, z) =
∑

j≥0

zjm

(jm)!
−
∑

j≥0

zjm+1

(jm+ 1)!
, (8)
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recovering a formula from [11]. Equivalently,

ωσ(0, z) =
1

m

m−1∑

j=0

(
1− 1

λj

)
eλjz,

where λj = e
2πij

m are the mth roots of unity.

2.2 Chain patterns

The ideas in the above proof of Theorem 2.1 extend to any pattern σ for which the poset satisfied
by the entries of π in every cluster is a chain. Recall that a poset is a chain if it is a linear order,
that is, all its elements are comparable.

Definition 2.2. We say that σ ∈ Sm is a chain pattern if all the posets in Pσ are chains.

Examples of chain patterns are given in Subsection 2.3. The following result shows that the
condition of being a chain pattern is quite restrictive.

Lemma 2.3. Let m ≥ 3, and let σ ∈ Sm be a chain pattern. Then σ (or one of the permutations
obtained by applying the reversal and/or complementation operations) satisfies that σ1 = 1, σ2 = 2
and σm = m. In particular, m− 2 ∈ Oσ.

Proof. Recall that always m − 1 ∈ Oσ. By hypothesis, the poset P σ
2m−1,1,m, corresponding to

clusters consisting of two occurrences of σ overlapping in one position, is a chain. Denoting by
ς ∈ Sm the inverse of σ, this poset is determined by the inequalities πς1 < πς2 < · · · < πςm and
πς1+m−1 < πς2+m−1 < · · · < πςm+m−1. Since πm appears in both lists, it must be the rightmost
element of one list and the leftmost one of the other, from where {σ1, σm} = {1,m}. By applying
reversal if necessary, we can assume that σ1 = 1 and σm = m. Since σ1 < σ2 and σm−1 < σm, we
have that m− 2 ∈ Oσ.

Consider now the poset P σ
2m−2,1,m−1, corresponding to clusters consisting of two occurrences of

σ overlapping in two positions, which again is a chain. This poset is determined by the inequalities
π1 < πς2 < · · · < πςm−1 < πm and πm−1 < πς2+m−2 < · · · < πςm−1+m−2 < π2m−2. For this poset
not to have incomparable elements, we must have either ςm−1 = m− 1 or ς2 +m− 2 = m, which
is equivalent to σm−1 = m− 1 or σ2 = 2.

Now we state the generalization of Theorem 2.1 to chain patterns.

Theorem 2.4. Let m ≥ 3, and let σ ∈ Sm be a chain pattern. Let ω(z) := ωσ(u, z). Then ω is the
solution of

ω(m−1) + (1− u)
∑

d∈Oσ

ω(m−d−1) = 0 (9)

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ m− 2.

Proof. For each fixed tuple (i1, i2, . . . , ik) ∈ Iσ
n,k, as defined in (1), there is a unique permutation

π ∈ Sn such that (π; i1, . . . , ik) is a cluster with respect to σ. Indeed, π is the unique linear extension
of the poset P σ

n,i1,i2,...,ik
, as defined in Section 1.2, which is a chain by hypothesis. Thus, the number

of k-clusters of length n is the number of elements of Iσ
n,k, so the corresponding OGF is

R̂σ(t, x) =
txm

1− t
∑

d∈Oσ
xd

,
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and so Â(t, x) = 1− x− R̂σ(t, x) satisfies the equation

Â(t, x)− t
∑

d∈Oσ

xdÂ(t, x) + t
∑

d∈Oσ

(xd − xd+1) + txm + x− 1 = 0. (10)

Now we apply the transformation L to (10) and use Lemma 1.2. Differentiating m − 1 times and
using that {m− 2,m− 1} ⊂ Oσ, which we showed in Lemma 2.3, we get a differential equation for
A(z) = A(t, z):

A(m−1) − t
∑

d∈Oσ

A(m−d−1) = 0,

with initial conditions A(0) = 1, A′(0) = −1, and A(i)(0) = 0 for 2 ≤ i ≤ m − 2. A differential
equation for ω is now obtained making the substitution t = u− 1 and using Theorem 1.1.

2.3 Examples

A good example is the pattern 123 . . . (s − 1)(s + 1)s(s + 2)(s + 3) . . . m, for arbitrary s ≥ 3 and
m ≥ s + 2. By reversal and complementation, we can assume without loss of generality that
m− s ≤ s. In this case, Oσ = {s, s+ 1, . . . ,m− 1}.

Corollary 2.5. Let s ≥ 3 and 2 ≤ m − s ≤ s, let σ = 123 . . . (s − 1)(s + 1)s(s + 2)(s + 3) . . . m,
and let ω(z) := ωσ(u, z). Then ω is the solution of

ω(m−1) + (1− u)(ω(m−s−1) + · · ·+ ω′ + ω) = 0

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ m− 2.

Corollary 2.5 for s = 3 and m = 5 states that ω12435(u, z) satisfies the differential equation

ω(4) + (1− u)(ω′ + ω) = 0.

We can write

P12435(u, z) =

(
∑

α

α3 − α2 + 1− u

4α3 + 1− u
eαz

)−1

,

where the sum is over the four roots α of the characteristic polynomial x4 + (1 − u)(x + 1). For
t = −1, the OGF for the cluster numbers R̂12435(−1, x) = −x5/(1 + x3 + x4) has been obtained
automatically by Baxter, Nakamura and Zeilberger’s Maple package [1].

A more general family of chain patterns can be obtained as follows. Given σ ∈ Sm, let
r ≥ 0 be the largest index such that σ1σ2 . . . σr = 12 . . . r, let s ≥ 0 be the largest such that
σm−s+1 . . . σm−1σm = (m − s + 1) . . . (m − 1)m, let a ≥ 1 be the largest such that σ1σ2 . . . σa is
increasing, let b ≥ 1 be the largest such that σm−b+1 . . . σm−1σm is increasing, and let c = min{a, b}.

Corollary 2.6. Let σ ∈ Sm\{12 . . . m}, and let r, s, a, b, c be defined as above. Suppose that r, s ≥ 1
and r + s ≥ c + 1, and that Oσ ∩ {1, 2, . . . ,m − c − 1} = ∅ (i.e., σ can only overlap with itself at
the initial and final increasing runs). Let ω(z) := ωσ(u, z). Then ω is the solution of

ω(m−1) + (1− u)(ω(c−1) + · · · + ω′ + ω) = 0

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ m− 2.
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In [15], Nakamura conjectures that 123546 and 124536 are strongly c-Wilf-equivalent, that
is, P123546(u, z) = P124536(u, z). We can prove this conjecture using Corollary 2.6. Indeed, for
σ = 123546 we have r = 3, s = 1, a = 4, b = 2, c = 2, Oσ = {4, 5}, while for σ = 124536 all the
parameters are the same except that r = 2. Thus, both ω123546(u, z) and ω124536(u, z) satisfy

ω(5) + (1− u)(ω′ + ω) = 0

with the same initial conditions.

3 Non-overlapping and related patterns

3.1 Non-overlapping patterns

We say that σ ∈ Sm is non-overlapping if Oσ = {m−1}, that is, two occurrences of σ cannot overlap
in more than one position. We assume in this section that m ≥ 2. In [2], Bóna gives asymptotic
estimates on the number of non-overlapping permutations of length m, showing in particular that
there is a positive fraction of them.

In [7, Theorem 3.2], the authors used binary trees to enumerate occurrences of non-overlapping
patterns of the form σ = 12 . . . (b− 1)τb, where 2 ≤ b < m, and τ is any permutation of {b+1, b+
2, . . . ,m}. In fact, the formula holds for slightly more general patterns, as noted in [3], namely
non-overlapping patterns with σ1 = 1.

Theorem 3.1 (a weaker version appears in [7]). Let σ ∈ Sm be a non-overlapping pattern with
σ1 = 1, let b = σm, and let ω(z) := ωσ(u, z). Then ω is the solution of

ω(b) + (1− u)
zm−b

(m− b)!
ω′ = 0 (11)

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ b− 1.

Here we give a proof of Theorem 3.1 using the cluster method, different from the proof in [7].
It will be convenient to describe the posets in Pσ for an arbitrary non-overlapping pattern σ. Let
a = σ1 and b = σm, and note that a 6= b. Without loss of generality we can assume that a < b,
since σ and its reversal have the same cluster numbers. Since σ is non-overlapping, a k-cluster
(π; i1, i2, . . . , ik) with respect to σ has length n = k(m− 1) + 1 and satisfies ij+1 − ij = m− 1 for
all j. In the rest of this section, let n = k(m− 1) + 1.

We have that Iσ
n,k = {(1,m, 2m−1, 3m−2, . . . , (k−1)(m−1)+1)}, and Pσ

n consists of exactly
one poset P . To find the shape of P , denote by ς ∈ Sm the inverse of σ, and observe that the first
m entries of π must satisfy πς1 < πς2 < · · · < πςm to form an occurrence of σ. Similarly, the entries
in positions between m and 2m− 1 must satisfy πς1+m−1 < πς2+m−1 < · · · < πςm+m−1. Note that
πςb = πm = πςa+m−1 appears in both lists of inequalities. Repeating this argument for each of the
k occurrences of σ in the cluster, we see that P is the poset in Figure 1(i). By equation (4), rn,k is
the number of linear extensions of P . Figure 1(ii) shows another drawing of P , containing a central
vertical chain with m+ (b− a)(k − 1) elements, to which there are k − 1 chains pointing upwards
with m− b elements each and k − 1 chains pointing downwards with a− 1 elements each.

It is clear from the above description that the unique poset in Pσ
n depends only on σ1 and σm but

not on the other entries of σ, and hence so do the cluster numbers. It follows, using Theorem 1.1,

9



a− 1

b− 1

m− a

m− b

a− 1

b− 1

m− a

m− b

b− a

(i) (ii)

Figure 1: Two drawings of the unique poset in Pσ
n for a non-overlapping pattern σ ∈ Sm with

σ1 = a and σm = b.

that for a non-overlapping pattern σ ∈ Sm, the generating function Pσ(u, z) depends only on σ1
and σm. This fact was recently observed by Dotsenko and Khoroshkin [3], and independently by
Duane and Remmel [4].

Proof of Theorem 3.1. When σ1 = 1, the poset P in Figure 1(i) can be decomposed by peeling off
the first m − 1 entries of π, which leaves another poset P ′ of the same shape as P whose bottom
element corresponds to the entry πm (because a = 1). Of the peeled off elements, b− 1 are smaller
than πm, and m− b are larger than πm. To produce a linear extension of P given a linear extension
of P ′, one needs to choose the relative order of these m− b elements with respect to the elements
of P ′ other than πm. This is equivalent to choosing an (m − b)-element multiset of the n places
where these elements could be inserted in a linear extension of P ′, where n is the size (number of
elements) of P ′. If R̂σ(t, x) =

∑
n r

σ
n(t)x

n is the generating function for linear extensions of P ′, the
generating function for such linear extensions with m− b chosen places is

∑

n

(
n− 1 +m− b

m− b

)
rσn(t)x

n =
x

(m− b)!

∂m−b

∂xm−b

(
xm−b−1R̂σ(t, x)

)
.

Separating the case in which P has size m and applying the above decomposition to the other cases,
we get a differential equation for R̂σ:

R̂σ(t, x) = txm +
txm

(m− b)!

∂m−b

∂xm−b

(
xm−b−1R̂σ(t, x)

)
.

We can easily turn it into a differential equation for Â(t, x) = 1−x− R̂σ(t, x), which then, applying

10



the operator L and using Lemma 1.2, becomes

A(t, z) = 1− z +
t

(m− b)!
Ib
(
zm−b ∂

∂z
A(t, z)

)
,

where A(t, z) = 1 − z − Rσ(t, z). Differentiating b times, making the substitution t = u − 1, and
using Theorem 1.1, we get the differential equation (11) for ωσ(u, z).

For the special case of b = 2, Theorem 3.1 gives the explicit expression

ωσ(u, z) = 1−
∫ z

0
e
(u−1) vm−1

(m−1)! dv,

which can be easily checked to be the solution of equation (11).

3.2 The patterns 12534 and 13254

Here we consider some patterns that are neither non-overlapping nor chain patterns, yet they can
be solved using similar ideas to those in the proof of Theorem 3.1. The patterns 12534 and 13254
are also special cases of [12, Corollary 3.9].

Proposition 3.2. Let ω(z) = ω12534(u, z). Then ω is the solution of

ω(4) + (1− u)z(ω′′ + ω′) = 0

with ω(0) = 1, ω′(0) = −1, ω′′(0) = ω(3)(0) = 0.

Proof. Let us find an equation satisfied by the OGF for the cluster numbers R̂12534(t, x). Let
(π; i1, . . . , ik) be a k-cluster of length n with respect to 12534. If k = 1, its contribution to
the generating function R̂12534(t, x) is tx5. Suppose now that k ≥ 2. Clearly i2 ∈ {4, 5}, since
i2 − i1 ∈ O12534 = {3, 4}. If i2 = 5, then the poset P 12534

n,i1,...,ik
can be decomposed as a chain

π1 < π2 < π4 < π5 < π3, where π5 is identified with the bottom element of a poset P ′ ∈ P12534
n−4,k−1.

Thus, the contribution of all clusters with i2 = 5 to the generating function is tx5 ∂
∂xR̂12534(t, x),

where the derivative arises when determining the relative order of π3 with respect to the elements
in P ′. Similarly, if i2 = 4, then P 12534

n,i1,...,ik
consists of a chain π1 < π2 < π4 < π5 < π3, where π4

and π5 are identified with the bottom two elements of a poset in P12534
n−3,k−1. The contribution of all

clusters with i2 = 4 is tx5 ∂
∂x

R̂12534(t,x)
x .

It follows that R̂12534(t, x) satisfies the differential equation

R̂12534(t, x) = tx5 + tx5
∂

∂x

((
1 +

1

x

)
R̂12534(t, x)

)
.

Writing Â(t, x) = 1 − x − R̂12534(t, x), applying the operator L, differentiating 4 times, making
the substitution t = u − 1, and using Theorem 1.1, we obtain the stated differential equation for
ω12534(u, z).

Nakamura [15] conjectures that 123645 and 124635 are strongly c-Wilf-equivalent. We can prove
this with an argument analogous to the above proof of Proposition 3.2. Indeed, the posets P σ

n,i1,...,ik

11



are isomorphic for the two patterns, and both ω123645(u, z) and ω124635(u, z) satisfy the differential
equation

ω(5) + (1− u)z(ω′′ + ω′) = 0

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ 4.

Proposition 3.3. Let ω(z) = ω13254(u, z). Then ω is the solution of

ω(4) + (1− u)(ω′′ + zω′) = 0

with ω(0) = 1, ω′(0) = −1, ω′′(0) = ω(3)(0) = 0.

Proof. In this case, O13254 = {2, 4}. A k-cluster with respect to 13254 where ij+1 − ij = 2 for
all j is a chain of length 5 + 2(k − 1). Indeed, the relationships π1 < π3 < π2 < π5 < π4 and
π3 < π5 < π4 < π7 < π6 imply that π1 < π3 < π2 < π5 < π4 < π7 < π6, and so on. Thus, the OGF
for such clusters is tx5

1−tx2 .
Consider now an arbitrary cluster (π; i1, . . . , ik) with respect to 13254. If it is not of the type

considered above, let j be the smallest index such that ij+1 − ij = 4. The poset P 13254
n,i1,...,ik

consists
of a chain π1 < π3 < π5 < π4 < π7 < π6 < · · · < πij+1 < πij+1−1, where πij+1 is identified with the
bottom element of a poset P ′ ∈ P13254. Note that in such a cluster, the relative order of πij+1−1 with
the other elements of P ′ is arbitrary. From this decomposition, the following differential equation
for R̂13254(t, x) follows.

R̂13254(t, x) =
tx5

1− tx2

(
1 +

∂

∂x
R̂13254(t, x)

)
.

The rest of the proof is analogous to that of Proposition 3.2.

We can use an argument analogous to the above proof of Proposition 3.3 to prove another
of Nakamura’s conjectures [15], namely that 132465 and 142365 are strongly c-Wilf-equivalent.
The key observation is that if σ is either of these patterns, a k-cluster with respect to σ where
ij+1 − ij = 3 for all j is a chain of length 6 + 3(k − 1). It follows that the posets P σ

n,i1,...,ik
are

isomorphic for the two patterns, and that both ω132465(u, z) and ω142365(u, z) satisfy the differential
equation

ω(5) + (1− u)(ω′′ + zω′) = 0

with ω(0) = 1, ω′(0) = −1, ω(i)(0) = 0 for 2 ≤ i ≤ 4.
We remark that the ideas from this and the previous section may be used to find differential

equations for more general families of patterns, and also for permutations avoiding more than one
pattern. For more work in this direction, see [12].

4 The pattern 1324 and generalizations

4.1 The pattern 1324

This pattern has been considered in [3, 13]. In [3], Dotsenko and Khoroshkin give a recurrence
for its cluster numbers rn,k. This recurrence, which involves the Catalan numbers, is essentially
equivalent to our derivation of equation (12) below. In [13], Liese and Remmel use a technique
developed in [14] to obtain an ordinary generating function that is equivalent to R̂1324(−1, x). Here
we find the differential equation satisfied by the bivariate generating function ω1324(u, z).

12



Theorem 4.1. Let ω(z) = ω1324(u, z). Then ω is the solution of

zω(5) − ((u− 1)z − 3)ω(4) − 3(u− 1)(2z + 1)ω(3) + (u− 1)((4u − 5)z − 6)ω′′+
(u− 1)(8(u − 1)z − 3)ω′ + 4(u− 1)2zω = 0,

with ω(0) = 1, ω′(0) = −1, ω′′(0) = ω(3)(0) = 0.

Proof. In a cluster (π; i1, . . . , ik) with respect to 1324, we have ij+1 − ij ∈ O1324 = {2, 3} for all j.
Consider first k-clusters of length n where ij+1− ij = 2 for all j, i.e., (i1, . . . , ik) = (1, 3, 5, . . . , 2k−
1) ∈ Iσ

n,k, where n = 2k + 2. The poset in Pσ
n,k corresponding to this choice of indices is drawn in

Figure 2 (when k = 1, this poset is just a chain). The number of linear extensions of this poset is
the Catalan number Ck = 1

k+1

(
2k
k

)
, since it equals the number of standard Young tableau of shape

2× k (see for example [18]).

π1

π2
π3

π4

π5

π6

π7

π2k−2

π2k−1

π2k

π2k+1

π2k+2

Figure 2: The order relationships in k-clusters with respect to 1324 where neighboring occurrences
overlap in two positions.

A cluster (π; i1, . . . , ik) may contain two neighboring occurrences of 1324 that overlap in only
one entry, i.e., ij+1 − ij = 3 for some j. In this case, that entry πij+1 is larger than all the entries
of π to its left and smaller than all the entries to its right. In general, a poset in Pσ

n,k consists
of a tower of pieces isomorphic to the poset in Figure 2, where the top element of each piece is
identified with the bottom element of the piece immediately above. A linear extension of the poset
is uniquely determined by giving a linear extension for each one of the pieces, since there are no
incomparable elements in different pieces. It follows that the OGF for the cluster numbers is

R̂1324(t, x) =
x

1−∑k≥1Cktkx2k+1
− x =

x

1 + x− xC(tx2)
− x (12)

=
x(1− 2tx(1 + x) +

√
1− 4tx2)

2(1 − tx(1 + x)2)
− x,

where C(x) =
∑

k≥0Ckx
k = 1−

√
1−4x
2x .

To be able to apply Theorem 1.1, we need the exponential generating function for the cluster
numbers. From equation (12) and the fact that the generating function for the Catalan numbers
satisfies C(x) = 1 + xC(x)2, we deduce that Â(t, x) = 1 − x − R̂1324(t, x) satisfies the algebraic
equation

(1− tx(1 + x)2)Â(t, x)2 + (2tx(1 + x) + x− 2)Â(t, x)− tx− x+ 1 = 0.

13



It follows that Â(t, x) satisfies a linear differential equation, which we have found using the Maple
package gfun:

(4t2x5 + 8t2x4 + (4t2 − t)x3 − 6tx2 − tx+ 1)x
∂

∂x
Â(t, x)

+ (4t2x5 − 4t2x3 − 2tx3 + 6tx2 − 1)Â(t, x) + (4t2 + 2t)x3 − 7tx2 + 1 = 0.

Applying the operator L to the above equation and using Lemma 1.2, we get

(4t2I5 + 8t2I4 + (4t2 − t)I3 − 6tI2 − tI + 1)z
∂

∂z
A(t, z)

+ (4t2I5 − 4t2I3 − 2tI3 + 6tI2 − 1)A(t, z) + (4t2 + 2t)
z3

6
− 7t

z2

2
+ 1 = 0. (13)

Differentiating (13) four times with respect to z, we obtain a differential equation satisfied by
A(z) = A(t, z), namely

zA(5) − (tz − 3)A(4) − 3t(2z + 1)A(3) + t((4t− 1)z − 6)A′′ + t(8tz − 3)A′ + 4t2zA = 0,

with initial conditions A(0) = 1, A′(0) = −1, A′′(0) = 0, A(3)(0) = 0. Making the substitution
t = u− 1 and using Theorem 1.1, we obtain an equation for ω.

4.2 The pattern 134 . . . (s+ 1)2(s+ 2)(s+ 3) . . .m

The method that we used to find a differential equation satisfied by ω1324(u, z) can be generalized
to the pattern σ = 134 . . . (s + 1)2(s + 2)(s + 3) . . . m for arbitrary s ≥ 2. Note that for m ≥ 2s,
σ is a chain pattern and Corollary 2.6 applies. Thus, in this section we consider only the case
s+ 2 ≤ m ≤ 2s.

Theorem 4.2. Fix s+ 2 ≤ m ≤ 2s, and let σ = 134 . . . (s + 1)2(s + 2)(s + 3) . . . m. Then

R̂σ(t, x) =
xm−s(B(txs)− 1)

1− (x+ x2 + · · ·+ xm−s−1)(B(txs)− 1)
, (14)

where

B(x) =
∑

k≥0

1

(s − 1)k + 1

(
sk

k

)
xk.

Proof. In any cluster (π; i1, . . . , ik) with respect to σ, we have ij+1− ij ∈ Oσ = {s, s+1, . . . ,m−1}
for all j. The overlaps that create incomparable elements in the poset are between neighboring
occurrences of σ that share m−s entries. Let us first consider k-clusters of length n = (k−1)s+m
where ij+1 − ij = s for all j, which we call dense clusters. The poset in Pσ

n,k giving the order
relationships in dense k-clusters is drawn in Figure 3. The number of dense k-clusters is the
number of linear extensions of this poset, which we call Qk. Note that this number does not change
if we erase the bottom element and the top m − s − 1 elements. The linear extensions of the
resulting poset Q̃k are in bijection with lattice paths from (0, 0) to (ks, 0) with steps u = (1, s− 1)
and d = (1,−1) that do not go below the x-axis. We call these s-Dyck paths, and note that 2-Dyck
paths are just standard Dyck paths. Indeed, to construct the path corresponding to a given a linear
extension, read the elements of Q̃k in the increasing order given by the linear extension. For each
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π1

π2
π3

πs

πs+1

πs+2
πs+3

π2s

π2s+1

π2s+2
π2s+3

π3s+1

π(k−2)s+2
π(k−2)s+3

π(k−1)s

π(k−1)s+1

π(k−1)s+2

π(k−1)s+3

πks

πks+1

πks+2
πks+3

π(k−1)s+m

Figure 3: The poset Qk in P134...(s+1)2(s+2)(s+3)...m corresponding to dense k-clusters. In this
picture, s = 5 and m = 10.

element that is circled in Figure 3, draw an up-step u, and for each of the other elements, draw a
down-step d. An example of this bijection is given in Figure 4.

An s-Dyck path L can be uniquely decomposed as L = uL1dL2d . . . Ls−1dLs, where the Lj are
s-Dyck paths. It follows that the ordinary generating function B(x) for s-Dyck paths, where the
exponent of x is the number of up-steps, satisfies the equation

B(x) = 1 + xB(x)s. (15)

It is a standard application of Lagrange inversion to deduce that the number of s-Dyck paths with
k up-steps is

1

(s− 1)k + 1

(
sk

k

)
.

We conclude that the OGF for dense clusters with respect to σ, or equivalently, linear extensions
of posets Qk where k can vary, is xm−s(B(txs)− 1).

In general, since neighboring occurrences in a cluster can overlap in any number between 1 and
m− s of positions, every cluster consists of a sequence of dense clusters, where neighboring dense
clusters overlap in any number between 1 and m − s − 1 of positions. The corresponding poset
consists of a tower of pieces isomorphic to Qk for some k ≥ 1, where the j largest elements (for
some 1 ≤ j ≤ m − s − 1) of each piece are identified with the j smallest elements of the piece
immediately above. Since there are no incomparable elements in different pieces, a linear extension
of the resulting poset is determined by the linear extensions of the pieces. The OGF for the cluster
numbers follows.
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Figure 4: An example of the bijection between linear extensions of Q̃5 and lattice paths, for s = 5
and k = 5.

From the expression in Theorem 4.2 we can proceed as we did for the pattern 1324 to obtain
the EGF for the cluster numbers: we use equations (14) and (15) to get an algebraic equation for
Â(t, x) = 1−x− R̂σ(t, x), which we first turn into a differential equation for Â(t, x) and then, using
Lemma 1.2, into one for ωσ(u, z) = A(u− 1, z).

Example 1. Let σ = 13425, which is the case s = 3,m = 5. From Theorem 4.2, we obtain using
Maple that Â(t, x) = 1− x− R̂σ(t, x) satisfies a differential equation of the form

p0(t, x)x
2 ∂2

∂x2
Â(t, x) + p1(t, x)x

∂

∂x
Â(t, x) + p2(t, x)Â(t, x) +

8∑

i=1

ci(t)x
i = 0,

where the pi(t, x) and the ci(t) are polynomials, and the pi(t, x) have degree 11 in x. In general,
the order of this differential equation is at most s − 1, by [18, Theorem 6.4.6]. Applying the
transformation L and using Lemma 1.2 we obtain the following equation for A(t, z):

p0(t, I)z
2 ∂2

∂z2
A(t, z) + p1(t, I)z

∂

∂z
A(t, z) + p2(t, I)A(t, z) +

8∑

i=1

ci(t)
zi

i!
= 0.

Differentiating 11 times with respect to z, we get a linear differential equation for A(t, z), and hence
also for ωσ(u, z). It is a differential equation of order 13 with polynomial coefficients.

It would be interesting to determine the smallest order of a differential equation satisfied by
wσ(u, z) for arbitrary values of s and m.

5 Other patterns of length 4

5.1 The pattern 1423

As in the case of the pattern 1324, we have that O1423 = {2, 3}. In this case, for each k ≥ 1 there
is a unique k-cluster (π; i1, . . . , ik) of length n = 2k + 2 where ij+1 − ij = 2 for all j, because the
poset P 1423

n,i1,...,ik
is a chain π1 < π3 < π5 < · · · < π2k+1 < π2k+2 < · · · < π4 < π2.
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A general k-cluster consists of blocks of marked occurrences that overlap in two positions as
above, where the last occurrence in each block overlaps the first occurrence of the next block in
one position (so that ij+1 − ij = 3). If the first such block has k1 occurrences of 1423, then, in the
corresponding poset, the block forms a chain with 2k1 + 2 elements. The element just above the
middle of the chain is π2k1+2, which is also the first entry of the second block, and thus the bottom
element of another chain with 2k2 + 2 elements. The poset of order relationships satisfied by the
entries of the cluster is drawn in Figure 5.

k1

k2

k3

k1 + 1

k2 + 1

k3 + 1

Figure 5: A generic poset in P1423.

It follows that the cluster numbers satisfy the recurrence

rn,k =

n/2∑

i=2

(
n− i− 1

i− 1

)
rn−2i+1,k−i+1 (16)

with initial condition r1,0 = 1 and ri,j = 0 for i ≤ 3 in all other cases. This recurrence was found
by Dotsenko and Khoroshkin [3]. Multiplying (16) by (−1)k on both sides, summing over all k,
and letting sn =

∑
k(−1)krn,k, we obtain the recurrence

sn =

n/2∑

i=2

(−1)i−1

(
n− i− 1

i− 1

)
sn−2i+1, (17)

with s1 = 1 and si = 0 for i ≤ 3 in all other cases.
If we let S(x) = 1 +

∑
n≥1 snx

n = 1 + x + R̂1423(−1, x), recurrence (17) is equivalent to the
functional equation

S(x) = 1 +
x

1 + x
S

(
x

1 + x2

)
. (18)

Although it is straightforward to expand this equation to recover (17), we had to use a generating
tree with three labels for the set of clusters to find this equation. Backed by numerical computations
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by Mireille Bousquet-Mélou using the Maple package gfun, we conjecture that S(x) is not D-
finite, that is, it does not satisfy a linear differential equation with polynomial coefficients. This is
equivalent to the following statement.

Conjecture 5.1. The generating function ω1423(0, z) is not D-finite.

This conjecture is interesting for two reasons. On one hand, proving it would give the first
known instance of a pattern σ for which ωσ(0, z) = 1/Pσ(0, z) is not D-finite. On the other hand,
it suggests that a related conjecture for classical patterns (i.e., where occurrences are not restricted
to consecutive positions) may be false. Noonan and Zeilberger [16], extending a speculation of
Gessel [9], conjectured that for any classical pattern, the generating function for the number of
permutations avoiding it is D-finite. Note also that Pσ(0, z) is already not D-finite for σ = 123 (in
the consecutive case), since its denominator has a factor cos(3z/2 + π/6) [7], hence P123(0, z) has
infinitely many singularities.

Similar posets to the one in Figure 5 arise when considering the patterns 154263 and 165243.
If σ is either of these patterns, then Oσ = {3, 5}, and for clusters where ij+1 − ij = 3 for all j,
P σ
n,i1,...,ik

is a chain of length n = 3k + 3 where π3k+3 has exactly k + 1 elements strictly below it.
An argument analogous to the one for the pattern 1423 implies that for every n and k, each poset
in P154263

n,k is isomorphic to exactly one poset in P165243
n,k , and thus 154263 and 165243 are strongly

c-Wilf-equivalent. This proves another conjecture of Nakamura [15].

We finish this section with a curious connection between occurrences of the pattern 1423 and
occurrences of a family of patterns. The poset in Figure 5 suggests a close similarity between
clusters for 1423 and clusters for the infinite set of patterns

Σ = {12 . . . a(a+ 2)(a + 3) . . . (2a)(a+ 1) : a ≥ 2} = {1243, 123564, 12346785, . . . }.
Note that any two of these patterns can only overlap with each other in one position, and that in
two adjacent occurrences, the ‘a+ 1’ of the left occurrence is the ‘1’ of the right occurrence.

To be precise, suppose that a k-cluster with respect to 1423 consists of blocks of k1, k2, . . . , kh
occurrences (with kj ≥ 1 for all j), where adjacent occurrences within a block overlap in two
positions and the last occurrence of each block overlaps the first occurrence of the next block in one
position. This poset, which is drawn in Figure 5, is isomorphic to the poset of order relationships
of an h-cluster with respect to Σ where the jth pattern is 12 . . . kj(kj + 2)(kj + 3) . . . (2kj)(kj +1).
It follows that r1423n,k = rΣn,h when k and h are related by 2k + h+ 1 = n, and that rΣn,h = 0 if n− h

is even. Denoting r1423n (t) =
∑

k r
1423
n,k tk and rΣn (t) =

∑
h r

Σ
n,ht

h, we have

rΣn (t) =

n−1
3∑

h=1
n−h odd

rΣn,ht
h =

n−1
3∑

h=1
n−h odd

r1423n,(n−h−1)/2 t
h =

n−2
2∑

k=n−1
3

r1423n,k tn−2k−1 = tn−1r1423n (
1

t2
)

if t 6= 0, so

RΣ(t, z) =
∑

n

rΣn (t)
zn

n!
=

1

t

∑

n

r1423n (
1

t2
)
(tz)n

n!
=

1

t
R1423(

1

t2
, tz).

In particular, the generating functions enumerating occurrences of these patterns are related by

PΣ(u, z) =
u− 1

u− 2 +
1

P1423

(
1

(u−1)2 + 1, (u− 1)z
)
.
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It follows, for example, that PΣ(2, z) = P1423(2, z), and that ωΣ(0, z) + ωΣ(2,−z) = 2.

5.2 The pattern 2143

Again we have that O2143 = {2, 3}, and so k-clusters with respect to 2143 can be broken into blocks
in such a way that inside each block, adjacent occurrences overlap in two positions, and each block
overlaps with the next in one position. As in the case of the pattern 1423, the poset corresponding
to a block with kj occurrences is a chain of length 2kj + 2. For example, if k1 = i − 1, we get the
chain π2 < π1 < π4 < π3 < · · · < π2i < π2i−1. The second largest element of each chain is the
second smallest element of the next chain, corresponding to the position where a block overlaps
with the next one (see Figure 6).

C 2i

π2i−1

π2i
π2i+1

P ′

π1

π2

Figure 6: A generic poset in P2143.

The smallest element of each chain has the property that it does not cover any other elements in
the poset. The elements other than the bottom one with this property will be called feet. Compare
this poset with the one in Figure 5, which had no feet. Let rn,k,ℓ be the number of k-clusters of
length n where π1 = ℓ+2. Such a cluster corresponds to a linear extension of a poset where exactly
ℓ feet precede π1.

For these refined cluster numbers, one obtains the recurrence

rn,k,ℓ = δn,k,ℓ +

n/2∑

i=2

k−2∑

j=ℓ−1

(n− 2i− j)(ℓ + 1)

(
2i+ j − ℓ− 3

2i− 4

)
rn−2i+1,k−i+1,j, (19)

where δn,k,ℓ equals 1 if n = 2k + 2 and ℓ = 0, and 0 otherwise. An equivalent recurrence was
given by Dotsenko and Khoroshkin [3]. To obtain (19), note that the poset P in Figure 6 is either
a chain with n = 2k + 2 elements (and thus with no feet), or it consists of a chain C with 2i
elements attached to the poset P ′ corresponding to the (k−i+1)-cluster π2iπ2i+1 . . . πn. Given a
linear extension of P ′ having j feet preceding π2i, to produce a linear extension of P having ℓ feet
preceding π1 we have n−2i− j choices for the value of π2i−1, ℓ+1 choices for the value of π2 (since
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it has to be one of the ℓ + 1 values lower than π1), and
(2i+j−ℓ−3

2i−4

)
ways to interleave the 2i − 4

elements of C and the j − ℓ+ 1 elements of P ′ whose value is strictly between π1 and π2i.

6 Asymptotic and analytic results

6.1 Analytic properties of ωσ

Recall that

ωσ(u, z) =
1

Pσ(u, z)

is the inverse of the generating function counting occurrences of σ. In all the cases we have been
able to solve, ωσ(0, z) is an entire function in the complex plane, so that the counting generating
function Pσ(0, z) is a meromorphic function and its dominant singularity is the smallest positive
zero of ωσ(0, z). We do not know if this is always the case (below we show an example where ωσ(2, z)
is not entire), but we can prove it in several interesting cases. Since ωσ(u, z) = 1− z−Rσ(u−1, z),
this is naturally related to the growth of the cluster numbers rn,k. Recall that Pσ

n is set of all posets
associated to clusters of size n with respect to σ.

Theorem 6.1. Let σ ∈ Sm. Suppose that there exists α > 0 so that, for all n, all posets in Pσ
n

contain a chain of length at least αn. Then, for every fixed u ∈ C, ωσ(u, z) is an entire function
of z.

Proof. A poset in Pσ
n is determined by the positions (i1, . . . , ik) of the occurrences of σ in a k-

cluster. Since i1 < · · · < ik, the total number of such tuples (where k is not fixed) is at most 2n.
By hypothesis, each poset has a chain of length αn, and the number of linear extensions is at most
the number of ways of deciding the relative order of the n − αn elements not in the chain. Each
such element has at most n possible placements relative to the elements of the chain and the other
elements that have already been placed. This gives an upper bound nn−αn for the number of linear
extensions of each particular poset. Summing over all clusters of size n with respect to σ we obtain

∑

k

rn,k ≤ 2nnn−αn.

Using the bound n! ≥ nn/en, we get

(∑
k rn,k
n!

)1/n

≤ 2e

nα
,

which tends to 0 as n goes to infinity.
To prove that Rσ(t, z) =

∑
rn,kt

k zn

n! is entire for any t ∈ C, it is enough to show that

lim
n→∞

(∑
k rn,kt

k

n!

)1/n

= 0.

Using that ∣∣∣∣∣
∑

k

rn,kt
k

∣∣∣∣∣ ≤
{

|t|n∑k rn,k if |t| ≥ 1;∑
k rn,k if |t| ≤ 1,

the result follows from the previous bound.
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The above theorem applies trivially to chain patterns, and more generally to patterns with
σ1 = 1, as well as to non-overlapping patterns.

Corollary 6.2. If σ ∈ Sm is a chain pattern, then for any fixed u, ωσ(u, z) is an entire function
of z.

Proof. Every poset in Pσ
n is a chain of length n, so Theorem 6.1 applies with α = 1.

Corollary 6.3. If σ ∈ Sm satisfies σ1 = 1, then for any fixed u ∈ C, ωσ(u, z) is an entire function
of z.

Proof. Let (π; i1, . . . , ik) be a k-cluster with respect to σ. Since πij is the smallest element in the
occurrence of the σ starting in position ij , we have

πi1 < πi2 < · · · < πik .

Since σ has length m, this gives a chain in the associated poset of length k ≥ (n−1)/(m−1) ≥ n/m,
so Theorem 6.1 applies taking α = 1/m.

Corollary 6.4. For any non-overlapping pattern σ ∈ Sm and for every fixed u ∈ C, ωσ(u, z) is an
entire function of z.

Proof. Let a = σ1 and b = σm, and note that a 6= b. Without loss of generality we can assume
that a < b, since σ and its reversal have the same cluster numbers. We know from Section 3 that
k-clusters with respect to σ have length n = k(m− 1) + 1, and Figure 1(ii) shows that every poset
in Pσ

n contains a chain of length m+ (b− a)(k − 1). Since b− a ≤ m− 1, we have that

m+ (b− a)(k − 1) ≥ 1 + (b− a)k = 1 + (b− a)
n− 1

m− 1
≥ b− a

m− 1
n.

Thus, Theorem 6.1 applies with α = (b− a)/(m− 1).

We conclude this section by showing that ωσ(u, z) may fail to be entire. Out of the seven
equivalence classes for consecutive patterns σ of length four, five of them have σ1 = 1, namely
1234, 1324, 1423, 1342 and 1243. By Corollary 6.3, ωσ(u, z) is always an entire function of z for
these patterns. For the pattern σ = 2143, the argument in Section 5.2 shows that every poset in
P2143
n contains a chain of length at least n/3, hence ω2143(u, z) is entire as well by Theorem 6.1.

Perhaps surprisingly, this is not true for the remaining length four pattern 2413.

Proposition 6.5. The function ω2413(2, z) is not entire.

Proof. Note that O2413 = {2, 3}, and consider clusters (π; i1, . . . , i2ℓ) with respect to 2413 where
ij+1 − ij equals 2 for odd values of j, and it equals 3 for even values of j, that is, (i1, i2, . . . ) =
(1, 3, 6, 8, 11, 13, 16, . . . , 5ℓ− 4, 5ℓ − 2). Such a cluster has size n = 5ℓ+ 1, and the poset P 2413

n,i1,...,i2ℓ

is drawn in Figure 7. We claim that this poset has at least ℓ!5 linear extensions, since the poset
can be partitioned into 5 horizonal layers (4 of size ℓ and one of size ℓ + 1) so that the elements
within each layer are incomparable. It follows that for n = 5ℓ+ 1,

rn,2ℓ ≥ |L(P 2413
n,i1,...,i2ℓ

)| ≥ ℓ!5 ≈ nn

(5e)n
,
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using Stirling’s approximation. Hence, disregarding polynomial terms in n,

(∑
k rn,k
n!

)1/n

≥ 1

5
,

and the radius of convergence of R2413(1, z) is finite. Thus ω2413(2, z) = 1 − z − R2413(1, z) is not
an entire function.

π1

π2

π3

π4

π5

π6

π7

π8

π9

π10

π11

π5ℓ

π5ℓ−1

π5ℓ−2

π5ℓ−3

π5ℓ−4

π5ℓ+1

Figure 7: A poset in P2413.

Note that this argument does not disprove that R2413(−1, z) (equivalently, ω2413(0, z)) is entire,
and in fact it is possible that, with all the cancelations that take place in R2413(−1, z), its coefficients
are much smaller.

6.2 Asymptotic behavior of αn(σ)

The first result in the literature regarding the asymptotic behavior of the number of permutations
avoiding an arbitrary consecutive pattern is the following.

Proposition 6.6 ([6]). For every σ ∈ Sm with m ≥ 3, there exist constants 0 < c < d < 1 such

that cnn! < αn(σ) < dnn! for all n. Additionally, limn→∞ (αn(σ)/n!)
1/n exists, and it is strictly

between 0.7839769 and 1.

The value of this limit, which is called the growth constant of the pattern and is sometimes de-
noted ρσ, was determined in [7] for several patterns. The following conjecture, which is equivalent
to the fact that the monotone pattern has the largest growth constant among patterns of the same
length, is still open.

Conjecture 6.7 ([7]). For every σ ∈ Sm there exists n0 such that αn(σ) ≤ αn(12 . . . m) for all
n ≥ n0.

Our main result in this section is a proof of this conjecture for non-overlapping patterns. We
remark that Bóna [2] has shown that the proportion of non-overlapping patterns is greater than
0.364. Hence we verify the conjecture for a positive fraction of all patterns of each length.

Theorem 6.8. Let m ≥ 3 and let σ ∈ Sm be a non-overlapping pattern. Then there exists n0 such
that

αn(σ) < αn(12 . . . m)

for all n ≥ n0.

22



Proof. We prove that the growth constants for these patterns satisfy ρσ < ρ12...m. This is clearly
equivalent to the statement of the theorem.

Let ωmon(z) = ω12...m(0, z) and ωnol(z) = ωσ(0, z). These are both entire functions by Corol-
laries 6.2 and 6.4. It follows that the singularities of the generating functions

1

ωmon(z)
=
∑

n

αn(12 . . . m)
zn

n!
and

1

ωnol(z)
=
∑

n

αn(σ)
zn

n!
(20)

are poles at the zeroes of ωmon(z) and ωnol(z), and that their radii of convergence are 1/ρ12...m
and 1/ρσ , respectively. Since the coefficients of these generating functions are non-negative, Pring-
sheim’s Theorem [8, Theorem IV.6] implies that they have real singularities at zmon = 1/ρ12...m
and znol = 1/ρσ . These values are the smallest positive zeroes of ωmon(z) and ωnol(z), respectively.
Our goal is to show that zmon < znol. Since ωmon(z) and ωnol(z) are continuous functions on R

with ωmon(0) = ωnol(0) = 1, and we know by Proposition 6.6 that 1 < zmon, znol < 1.276, it is
enough to show that ωmon(z) < ωnol(z) for 1 < z < 1.276.

In the rest of the proof, we assume that 1 < z < 1.276. For convenience, we also assume that
m ≥ 4, since the case m = 3 is proved in [7]. By equation (8),

ωmon(z) =
∑

j≥0

zjm

(jm)!
−
∑

j≥0

zjm+1

(jm+ 1)!
< 1− z +

zm

m!
− zm+1

(m+ 1)!
+

z2m

(2m)!
,

since each negative term of the alternating sum is larger in absolute value than the following positive
term. On the other hand, using that k-clusters with respect to σ have length n = k(m − 1) + 1,
and letting dk = rk(m−1)+1,k, we have

ωnol(z) = 1− z −
∑

k≥1

(−1)kdk
zk(m−1)+1

(k(m− 1) + 1)!
> 1− z +

zm

m!
−
∑

k≥2
k even

dk
zk(m−1)+1

(k(m− 1) + 1)!
,

since the dk are positive and d1 = 1. Thus, it suffices to show that

∑

k≥2
k even

dk
zk(m−1)+1

(k(m− 1) + 1)!
<

zm+1

(m+ 1)!
− z2m

(2m)!
(21)

for 1 < z < 1.276 and m ≥ 4.
Let a = σ1 and b = σm, and assume without loss of generality that a < b. When k = 2, the

poset in Figure 1(i) has d2 =
(
a+b−2
a−1

)(
2m−a−b
m−b

)
linear extensions. To find an upper bound on d2,

note that for any fixed value of a+ b, the two binomial coefficients in this product are maximized
when b = a+1. On the other hand, it is an exercise to show that maxa

(
2a−1
a−1

)(
2m−2a−1
m−a−1

)
=
(
2m−3
m−2

)
,

and it is attained when a = 1 or a = m− 1. It follows that d2 ≤
(2m−3
m−2

)
. A similar reasoning shows

that for every k, dk is maximized when a = 1 and b = 2 (or, by symmetry, when a = m − 1 and
b = m). We obtain the bound

dk ≤
(
k(m− 1)− 1

m− 2

)(
(k − 1)(m− 1)− 1

m− 2

)
. . .

(
2(m− 1)− 1

m− 2

)
=

(m− 1)(k(m − 1)− 1)!

(m− 1)!k(k − 1)!
,
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the right hand side being the number of linear extensions of the poset in Figure 1(i) when a = 1
and b = 2. This bound implies that

dk
zk(m−1)

(k(m− 1))!
≤ 1

k!

(
zm−1

(m− 1)!

)k

≤ 1

2

(
zm−1

(m− 1)!

)k

,

for k ≥ 2, and so

∑

k≥2
k even

dk
zk(m−1)+1

(k(m− 1) + 1)!
≤ z

2m− 1

∑

k≥2
k even

dk
zk(m−1)

(k(m− 1))!
<

z

2m− 1

∑

k≥2
k even

(
zm−1

(m− 1)!

)k

=
z2m−1

(2m− 1)(m− 1)!2
(
1− z2(m−1)

(m−1)!2

) .

We have reduced the proof of inequality (21) to showing that

zm−2

(2m− 1)(m− 1)!2
(
1− z2(m−1)

(m−1)!2

) <
1

(m+ 1)!
− zm−1

(2m)!
.

Since z2(m−1) < (m− 1)!2, the above inequality is equivalent to

1

(m+ 1)!
− zm−1

(2m)!
− z2(m−1)

(m− 1)!2(m+ 1)!
+

z3(m−1)

(m− 1)!2(2m)!
− zm−2

(2m− 1)(m− 1)!2
> 0

for 1 < z < 1.276 and m ≥ 4. This is easy to verify, since the first term, which is positive, dominates
all the other terms.

7 Open problems

In analogy with Conjecture 6.7, Nakamura [15, Conjecture 2] conjectures from numerical evidence
that the pattern 123 . . . (m− 2)m(m− 1) (which is non-overlapping) is the hardest to avoid among
all patterns of length m. A special case of this conjecture is that this pattern is harder to avoid
than any other non-overlapping pattern. It also appears to be the case that the pattern 134 . . . m2
is the easiest to avoid among non-overlapping patterns of the same length. The last two conjectures
can be combined as follows. We expect that the ideas in the proof of Theorem 6.8, including a
detailed analysis of the coefficients dk, may be useful in proving this conjecture.

Conjecture 7.1. For every non-overlapping σ ∈ Sm, there exists n0 such that, for all n ≥ n0,

αn(123 . . . (m− 2)m(m− 1)) ≤ αn(σ) ≤ αn(134 . . . m2).

We have seen in Section 6.1 that ωσ(u, z) is an entire function of z for a large class of patterns.
On the other hand, ω2413(2, z) is not entire. However, it is still plausible that ωσ(0, z), which is the
inverse of the generating function for permutations that avoid σ, is always an entire function.

Question 7.2. Is ωσ(0, z) an entire function for every pattern σ?
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To conclude, let us mention a recent result of Ehrenborg, Kitaev and Perry [5], proved using
methods from spectral theory, and previously conjectured by Warlimont [19].

Theorem 7.3 ([5]). For every pattern σ, αn(σ)/n! = γρn + O(rn), where γ, ρ and r are positive
constants such that ρ > r.

It would be interesting to find a more combinatorial proof of this important result using sin-
gularity analysis of generating functions. If Question 7.2 is answered positively, and one can show
that the zero of ωσ(0, z) of smallest modulus is always unique and simple (we know that this is the
case for several patterns), then the tools from [8, Chapter IV] would give a proof of Theorem 7.3
without using spectral theory.
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