
Journal of Combinatorial Theory, Series A 105 (2004) 207–219

Bijections for refined restricted permutations

Sergi Elizalde and Igor Pak

Department of Mathematics, MIT, Cambridge, MA, 02139, USA

Received 11 January 2003

Abstract

We present a bijection between 321- and 132-avoiding permutations that preserves the

number of fixed points and the number of excedances. This gives a simple combinatorial proof

of recent results of Robertson et al. (Ann. Combin. 6 (2003) 427), and Elizalde (Proc. FPSAC

2003). We also show that our bijection preserves additional statistics, which extends the

previous results.
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1. Introduction

The subject of pattern avoiding permutations, also called restricted permutations,
has blossomed in the past decade. A number of enumerative results have been
proved, new bijections found, and connections to other fields established. Despite
recent progress, the so-called Stanley–Wilf conjecture giving an exponential upper
bound on the number of pattern avoiding permutations remains open, and much of
the ongoing research is related to the conjecture.
An unexpected recent result of Robertson et al. [10] gives a new and exciting

extension to what is now regarded as a classical result that the number of 321-
avoiding permutations equals the number of 132-avoiding permutations. They show
that one can ‘‘refine’’ this result by taking into account the number of fixed points in
a permutation. In fact, they study all six patterns in S3 which produce different
‘‘refined’’ statistics, with the above-mentioned result having a highly nontrivial and
technically involved proof. The story continued in a recent paper of Elizalde [4]
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where an additional statistic, ‘‘the number of excedances’’, was added. The proof
uses some nontrivial generating function machinery and is also quite involved.
In this paper we present a bijective proof of the ‘‘refined’’ results on 321- and 132-

avoiding permutations, resolving the problem which was left open in [10,4]. In
fact, our bijection is a composition of two (slightly modified) known bijections into
Dyck paths, and the result follows from a new analysis of these bijections. The
Robinson–Schensted–Knuth (RSK) correspondence is a part of one of them, and the
difficulty of the analysis stems from the complexity of this celebrated correspon-
dence. As a new application of our bijections, we show that the length of the longest
increasing subsequence in 321-avoiding permutations corresponds to a certain
statistic (that we call rank) in 132-avoiding permutations, which further refines the
previous results. We also apply our bijections to ‘‘refined restricted involutions’’ (see
Section 6).
Let n; m be two positive integers with mpn; and let s ¼ ðsð1Þ; sð2Þ;y; sðnÞÞASn

and p ¼ ðpð1Þ; pð2Þ;y; pðmÞÞASm: We say that s contains p if there exist indices
i1oi2o?oim such that ðsði1Þ; sði2Þ;y; sðimÞÞ is in the same relative order as
ðpð1Þ; pð2Þ;y; pðmÞÞ: If s does not contain p; we say that s is p-avoiding. For
example, if p ¼ 132; then s ¼ ð2; 4; 5; 3; 1Þ contains 132; because the subsequence
ðsð1Þ; sð3Þ; sð4ÞÞ ¼ ð2; 5; 3Þ has the same relative order as ð1; 3; 2Þ: However, s ¼
ð4; 2; 3; 5; 1Þ is 132-avoiding.
We say that i is a fixed point of a permutation s if sðiÞ ¼ i: Similarly, i is an

excedance of s if sðiÞ4i: Denote by fpðsÞ and excðsÞ the number of fixed points and
the number of excedances of s; respectively.
Denote by SnðpÞ the set of p-avoiding permutations in Sn: For the case of

patterns of length 3, it is known [6] that regardless of the pattern pAS3; jSnðpÞj ¼
Cn ¼ 1

nþ1ð
2n
n
Þ; the nth Catalan number. While the equalities jSnð132Þj ¼ jSnð231Þj ¼

jSnð312Þj ¼ jSnð213Þj and jSnð321Þj ¼ jSnð123Þj are straightforward, the equality
jSnð321Þj ¼ jSnð132Þj is more difficult to establish. Bijective proofs of this fact are
given in [7,9,12,14]. However, none of these bijections preserves either of the
statistics fpð�Þ or excð�Þ:

Theorem 1 (Robertson et al. [10], Elizalde [4]). The number of 321-avoiding

permutations sASn with fpðsÞ ¼ i and excðsÞ ¼ j equals the number of 132-avoiding

permutations sASn with fpðsÞ ¼ i and excðsÞ ¼ j; for any 0pi; jpn:

A special case of the theorem, which ignores the number of excedances, was given
in [10]. In full, the theorem was shown in [4]. As we mentioned above, both proofs
are non-bijective and technically involved. The main result of this paper is a bijective
proof of the following extension of Theorem 1.
Let lisðsÞ be the length of the longest increasing subsequence of s; i.e., the largest m

for which there exist indices i1oi2o?oim such that sði1Þosði2Þo?osðimÞ:
Define the rank of s; denoted rankðsÞ; to be the largest k such that sðiÞ4k for all
ipk: For example, if s ¼ 63528174; then fpðsÞ ¼ 1; excðsÞ ¼ 4; lisðsÞ ¼ 3 and
rankðsÞ ¼ 2:
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Theorem 2. The number of 321-avoiding permutations sASn with fpðsÞ ¼ i; excðsÞ ¼
j and lisðsÞ ¼ k equals the number of 132-avoiding permutations sASn with fpðsÞ ¼ i;
excðsÞ ¼ j and rankðsÞ ¼ n � k; for any 0pi; j; kpn:

To prove this theorem, we establish a bijection Y between Snð321Þ and Snð132Þ;
which respects the statistics as above. WhileY is not hard to define, its analysis is less
straightforward and will occupy much of the paper.
The rest of the paper is structured as follows. In Section 2 we define Dyck paths

and several new statistics on them. The description of the main bijection is done in
Section 3, and is divided into two parts. First we give a bijection from 321-avoiding
permutations to Dyck paths, and then another one from Dyck paths to 132-avoiding
permutations. In Section 4 we establish properties of these bijections which imply
Theorem 2. Section 5 contains proofs of two technical lemmas. We conclude with
extensions of our results to refined restricted involutions, and other applications.
Let us mention here that whenever possible we refer to the celebrated monograph

[13] rather than to the original source. The interested reader is advised to consult [13]
for the details, history, and further references on the subject.

2. Statistics on Dyck paths

Recall that a Dyck path of length 2n is a lattice path in Z2 between ð0; 0Þ and
ð2n; 0Þ consisting of up-steps ð1; 1Þ and down-steps ð1;�1Þ which never goes below
the x-axis. Sometimes it will be convenient to encode each up-step by a letter u and
each down-step by d; obtaining an encoding of the Dyck path as a Dyck word. We
shall denote by Dn the set of Dyck paths of length 2n; and by D ¼

S
nX0 Dn the class

of all Dyck paths.
For any DAD; we define a tunnel of D to be a horizontal segment between two

lattice points of D that intersects D only in these two points, and stays always below
D: Tunnels are in obvious one-to-one correspondence with decompositions of
the Dyck word D ¼ AuBdC; where BAD (no restrictions on A and C). In the
decomposition, the tunnel is the segment that goes from the beginning of u to the end
of d: If DADn; then D has exactly n tunnels, since such a decomposition can be given
for each up-step of D:
A tunnel of DADn is called a centered tunnel if the x coordinate of its midpoint (as

a segment) is n; that is, the tunnel is centered with respect to the vertical line through
the middle of D: In terms of the decomposition of the Dyck word D ¼ AuBdC; this is
equivalent to A and C having the same length jAj ¼ jCj: Alternatively, this can be
taken as a definition of centered tunnel. Throughout the paper we denote by ctðDÞ
the number of centered tunnels of D:
A tunnel of DADn is called a right tunnel if the x coordinate of its midpoint is

strictly greater than n; that is, the midpoint of the tunnel is to the right of the vertical
line through the middle of D: In terms of the decomposition D ¼ AuBdC; this is
equivalent to saying that jAj4jCj:Denote by rtðDÞ the number of right tunnels of D:
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In Fig. 1, there is one centered tunnel drawn with a solid line, and four right tunnels
drawn with dotted lines. Similarly, a tunnel is called a left tunnel if the x coordinate
of its midpoint is strictly less than n: Denote by ltðDÞ the number of left tunnels of D:
Clearly, ltðDÞ þ rtðDÞ þ ctðDÞ ¼ n for any DADn:
We will distinguish between right tunnels of DADn that are entirely contained in

the half plane xXn and those that cross the vertical line x ¼ n: These will be called
right-side tunnels and right-across tunnels, respectively. In terms of Dyck words, a
decomposition D ¼ AuBdC corresponds to a right-side tunnel if jAjXn; and to a
right-across tunnel if jCjojAjon: In Fig. 1 there are three right-side tunnels and one
right-across tunnel. Left-side tunnels and left-across tunnels are defined analogously.
Finally, for any DADn; define nðDÞ to be the height of the middle point of D; that

is, the y coordinate of the intersection of the vertical line x ¼ n with the path. For the
path in Fig. 1, nðDÞ ¼ 2:
We say that i is an antiexcedance of s if sðiÞoi: Sometimes it will be convenient to

represent a permutation sASn as an n � n array with a cross on the squares ði; sðiÞÞ:
Note that fixed points, excedances, and antiexcedances correspond respectively to
crosses on, strictly to the right, and strictly to the left of the main diagonal of the
array.

3. Two bijections into Dyck paths

The bijection Y :Snð321Þ-Snð132Þ that we present will be the composition of
two bijections, one from Snð321Þ to Dn; and another one from Dn to Snð132Þ:
The first bijection C :Snð321Þ-Dn is defined in two steps. Given sASnð321Þ; we

start by applying the RSK correspondence to s [13, Section 7.11] (see also [6]). This
correspondence gives a bijection between the symmetric group Sn and pairs ðP;QÞ
of standard Young tableaux of the same shape lAn: For sASnð321Þ the algorithm is
particularly easy because in this case the tableaux P and Q have at most two rows.
The insertion tableau P is obtained by reading s from left to right and, at each step,
inserting sðiÞ to the partial tableau obtained so far. Assume that sð1Þ;y; sði � 1Þ
have already been inserted. If sðiÞ is larger than all the elements on the first row of
the current tableau, place sðiÞ at the end of the first row. Otherwise, let m be the
leftmost element on the first row that is larger than sðiÞ: Place sðiÞ in the square that
m occupied, and place m at the end of the second row (in this case we say that sðiÞ
bumps m). The recording tableau Q has the same shape as P and is obtained by
placing i in the position of the square that was created at step i (when sðiÞ was
inserted) in the construction of P; for all i from 1 to n: We write RSKðsÞ ¼ ðP;QÞ:
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Now, the first half of the Dyck path CðsÞ is obtained by adjoining, for i from 1 to
n; an up-step if i is on the first row of P; and a down-step if it is on the second row.
Let A be the corresponding word of u’s and d’s. Similarly, let B be the word obtained
from Q in the same way. We define CðsÞ to be the Dyck path obtained by the
concatenation of the word A and the word B written backwards. For example, from
the tableaux P and Q as in Fig. 2 we get the Dyck path shown in Fig. 1. The
following proposition summarizes properties of this bijection C:

Proposition 3. The bijection C :Snð321Þ-Dn satisfies fpðsÞ ¼ ctðCðsÞÞ; excðsÞ ¼
rtðCðsÞÞ; and lisðsÞ ¼ 1

2
ðn þ nðCðsÞÞÞ; for all sASnð321Þ:

Suppose RSKðsÞ ¼ ðP;QÞ for any sASn: A fundamental and highly nontrivial

property of the RSK correspondence is the duality: RSKðs�1Þ ¼ ðQ;PÞ [13, Section
7.13]. The classical Schensted’s Theorem states that lisðsÞ is equal to the length of the
first row of the tableau P (and Q). Both results are used in the proof of Proposition 3.
Let us now define the second bijection F :Snð132Þ-Dn as follows. Any

permutation sASn can be represented as an n � n array with crosses in positions
ði; sðiÞÞ: From this array of crosses, we obtain the diagram of s as follows. For each
cross, shade the cell containing it and the squares that are due south and due east of
it. The diagram is the region that is left unshaded. It is shown in [8] that this gives a
bijection between Snð132Þ and Young diagrams that fit in the shape ðn � 1; n �
2;y; 1Þ: Consider now the path determined by the border of the diagram of s; that
is, the path with up and right steps that goes from the lower-left corner to the upper-
right corner of the array, leaving all the crosses to the right, and staying always as
close to the diagonal connecting these two corners as possible. Define FðsÞ to be the
Dyck path obtained from this path by reading an up-step every time it goes up and a
down-step every time it goes right. Since the path in the array does not go below the
diagonal, FðsÞ does not go below the x-axis.
The bijection F is essentially the same bijection between Snð132Þ and Dn given

by Krattenthaler [7] (see also [5]), up to reflection of the path from a vertical line
(Fig. 3).

Proposition 4. The bijection F :Snð132Þ-Dn satisfies fpðsÞ ¼ ctðFðsÞÞ; excðsÞ ¼
rtðFðsÞÞ; and rankðsÞ ¼ 1

2
ðn � nðFðsÞÞÞ; for all sASnð132Þ:

ARTICLE IN PRESS

2 32 2 3 5 3 5
2
1 1 3 4

2 5
61 3 4

2 5
61 3 4

2 5
8 61 3 4

2 5 8
7

61 3 4
2 5 8

7P = 1 2 3 6 7
4 5 8

1 2 3 6 7
4 5 8

2 3 6 7
4 5
12 3 6

4 5
12 3

4 5
12 3

4
12 31211

Q =
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Proof. Let us show using the diagram representation that F maps fixed points to
centered tunnels and excedances to right tunnels. To do that we define the inverse

map F�1 :Dn-Snð132Þ: Given a Dyck path DADn; the first step needed to reverse
the above procedure is to transform D into a path U from the lower-left corner to the
upper-right corner of an n � n array, not going below the diagonal connecting these
two corners. Then, the squares to the left of this path form a diagram, and we can
shade all the remaining squares. From this diagram, the permutation sASnð132Þ
can be recovered as follows: row by row, put a cross in the leftmost shaded square
such that there is exactly one cross in each column. Start from the top and continue
downward until all crosses are placed.
For the proof of this proposition, instead of using D ¼ FðsÞ; it will be convenient

to consider the path U from the lower-left corner to the upper-right corner of the
array of s:We will talk about tunnels of U to refer to the corresponding tunnels of D

under this trivial transformation.
Consider the arrangement of crosses of s as defined earlier. We now show how to

associate a unique tunnel of D to each cross of this array. Observe that given a cross
in position ði; jÞ; U has a vertical step in row i and a horizontal step in column j: In
D; these two steps correspond to steps u and d; respectively, so they determine a
decomposition D ¼ AuBdC (see Fig. 4), and therefore a tunnel of D: According to
whether the cross was to the left of, to the right of, or on the main diagonal, the
associated tunnel will be, respectively, a left, right, or centered tunnel of D: Thus,
fixed points give centered tunnels and excedances give right tunnels.
To prove the last equality of the proposition, notice that rankðsÞ is the largest m

such that an m � m square fits in the upper-left corner of the diagram of s:
Therefore, the height of FðsÞ at the middle is exactly nðFðsÞÞ ¼ n � 2 rankðsÞ: &

The main result of the paper follows now easily from these two propositions.
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Fig. 4. A cross and the corresponding tunnel.
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Proof of Theorem 2. Propositions 3 and 4 imply that Y ¼ F�1
3C is a bijection from

Snð321Þ to Snð132Þ which satisfies fpðYðsÞÞ ¼ ctðCðsÞÞ ¼ fpðsÞ; excðYðsÞÞ ¼
rtðCðsÞÞ ¼ excðsÞ; and

rankðYðsÞÞ ¼ 1
2
ðn � nðCðsÞÞÞ ¼ n � 1

2
ðn þ nðCðsÞÞÞ ¼ n � lisðsÞ:

This implies the result. &

4. Proof of Proposition 3

Let us first consider only fixed points in a permutation sASn: Observe that if
sASnð321Þ and sðiÞ ¼ i; then ðsð1Þ; sð2Þ;y; sði � 1ÞÞ is a permutation of
f1; 2;y; i � 1g; and ðsði þ 1Þ; sði þ 2Þ;y; sðnÞÞ is a permutation of fi þ 1; i þ
2;y; ng: Indeed, if sðjÞ4i for some joi; then necessarily sðkÞoi for some k4i; and
ðsðjÞ; sðiÞ; sðkÞÞ would be an occurrence of 321.
Therefore, when we apply RSK to s; the elements sðiÞ; sði þ 1Þ;y; sðnÞ will never

bump any of the elements sð1Þ; sð2Þ;y; sði � 1Þ: In particular, the subtableaux of P

and Q determined by the entries that are smaller than i will have the same shape.
Furthermore, when the elements greater than i are placed in P and Q; the rows in
which they are placed are independent of the subpermutation ðsð1Þ; sð2Þ;y; sði �
1ÞÞ: Note also that sðiÞ will never be bumped.
When the Dyck path CðsÞ is built from P and Q; this translates into the fact that

the steps corresponding to sðiÞ in P and to i in Q will be, respectively, an up-step in
the first half and a down-step in the second half, both at the same height and at the
same distance from the center of the path. Besides, the part of the path between them
will be itself the Dyck path corresponding to ðsði þ 1Þ � i; sði þ 2Þ � i;y; sðnÞ � iÞ:
So, the fixed point sðiÞ ¼ i determines a centered tunnel in CðsÞ: It is clear that the
converse is also true, that is, every centered tunnel comes from a fixed point. This
shows that fpðsÞ ¼ ctðCðsÞÞ; proving the first part of Proposition 3.
Let us now consider excedances in a permutation sASnð321Þ: Our goal is to show

that the excedances of s correspond to right tunnels of CðsÞ: The first observation is
that we can assume without loss of generality that s has no fixed points. Indeed,
if sðiÞ ¼ i is a fixed point of s; then the above reasoning shows that we can
decompose CðsÞ ¼ AuBdC; where AC is the Dyck path Cððsð1Þ; sð2Þ;y; sði � 1ÞÞÞ
and B is a translation of the Dyck path Cððsði þ 1Þ � i;y; sðnÞ � iÞÞ: But we have
that excðsÞ ¼ excððsð1Þ; sð2Þ;y; sði � 1ÞÞÞ þ excððsði þ 1Þ � i;y; sðnÞ � iÞÞ and
rtðAuBdCÞ ¼ rtðACÞ þ rtðBÞ; so in this case the result holds by induction on the
number of fixed points. Note also that the above argument showed that fpðsÞ ¼
fpððsð1Þ;sð2Þ;y; sði � 1ÞÞÞ þ fpððsði þ 1Þ � i;y; sðnÞ � iÞÞ þ 1 and ctðAuBdCÞ ¼
ctðACÞ þ ctðBÞ þ 1:
Suppose that sASnð321Þ has no fixed points. It is known that a permutation is

321-avoiding if and only if both the subsequence determined by its excedances and
the one determined by the remaining elements (in this case, the antiexcedances) are
increasing (see e.g. [8]). Denote by Xi :¼ ði; sðiÞÞ the crosses of the array
representation of s: To simplify the presentation, we will refer indistinctively to i
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or Xi; hoping this does not lead to a confusion. For example, we will say ‘‘Xi is an
excedance’’, etc.
Define a matching between excedances and antiexcedances of s by the following

algorithm. Let sði1Þosði2Þo?osðikÞ be the excedances of s and let
sðj1Þosðj2Þo?osðjn�kÞ be the antiexcedances.

Matching Algorithm

(1) Initialize a :¼ 1; b :¼ 1:
(2) Repeat until a4k or b4n � k:

(a) If ia4jb; then b :¼ b þ 1: (Xjb is not matched.)

(b) Else if sðiaÞosðjbÞ; then a :¼ a þ 1: (Xia is not matched.)

(c) Else, match Xia with Xjb ; a :¼ a þ 1; b :¼ b þ 1:

(3) Output the matching sequence.

Example. Let s ¼ ð4; 1; 2; 5; 7; 8; 3; 6; 11; 9; 10Þ as in Fig. 5 below. We have i1 ¼ 1;
i2 ¼ 4; i3 ¼ 5; i4 ¼ 6; i5 ¼ 9; and j1 ¼ 2; j2 ¼ 3; j3 ¼ 7; j4 ¼ 8; j5 ¼ 10; j6 ¼ 11: In the
first execution of the loop in step (2) of the algorithm, neither i14j1 nor sði1Þosðj1Þ
hold, so Xi1 ¼ ð1; 4Þ and Xj1 ¼ ð2; 1Þ are matched. Now we repeat the loop with

a ¼ b ¼ 2; and since i24j2; we are in the case given by (2a) (Xj2 ¼ ð3; 2Þ is not
matched). In the next iteration, a ¼ 2 and b ¼ 3; so we match Xi2 ¼ ð4; 5Þ and Xj3 ¼
ð7; 3Þ: Now we have a ¼ 3 and b ¼ 4; so we match Xi3 ¼ ð5; 7Þ and Xj4 ¼ ð8; 6Þ: The
values of a and b in the next iteration are 4 and 5, respectively, so we are in the case
of (2b), sði4Þ ¼ 8o9 ¼ sðj5Þ; and Xi4 ¼ ð6; 8Þ is unmatched. Now a ¼ b ¼ 5; and we
match Xi5 ¼ ð9; 11Þ and Xj5 ¼ ð10; 9Þ: The matching algorithm ends here because

now a ¼ 645 ¼ k:
An informal, more geometrical description of the matching algorithm is the

following. For each pair of crosses of the array (seen as embedded in the plane),
consider the line that they determine. If one of these lines has positive slope and
leaves all the remaining crosses to the right, match the two crosses that determine it,
and delete them from the array. If there is no line with these properties, delete the
cross that is closer to the upper-left corner of the array (it is unmatched). Repeat the
process until no crosses are left.
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Now we consider the matched excedances on one hand and the unmatched ones
on the other. We summarize rather technical results in the following two lemmas,
which are proved in Section 5.

Lemma 5. The following quantities are equal:

(1) the number of matched pairs ðXi;XjÞ; where Xi is an excedance and Xj an

antiexcedance;
(2) the length of the second row of P (or Q);
(3) the number of right-side tunnels of CðsÞ;
(4) the number of left-side tunnels of CðsÞ;
(5) 1

2
ðn � nðCðsÞÞÞ;

(6) n � lisðsÞ:

Note that ð5Þ ¼ ð6Þ implies that lisðsÞ ¼ 1
2

n þ nðCðsÞÞð Þ; which is the third part of
Proposition 3.

Lemma 6. The number of unmatched excedances (resp. antiexcedances) of s equals the

number of right-across (resp. left-across) tunnels of CðsÞ:

Since each excedance of s either is part of a matched pair ðXi;XjÞ or is unmatched,
Lemmas 5 and 6 imply that the total number excðsÞ of excedances equals the number
of right-side tunnels of CðsÞ plus the number of right-across tunnels, which is
rtðCðsÞÞ: This implies the second part of Proposition 3.
To summarize, we have shown that the bijection C satisfies all three properties

described in the proposition. This completes the proof. &

5. Proofs of the lemmas

Proof of Lemma 5. From the descriptions of the RSK algorithm and the matching, it
follows that an excedance Xi and an antiexcedance Xj are matched with each other

precisely when sðjÞ bumps sðiÞ when RSK is performed on s; and that these are the
only bumpings that take place. Indeed, an excedance never bumps anything because
it is larger than the elements inserted before. On the other hand, when an
antiexcedance Xj is inserted, it bumps the smallest element larger than sðjÞ which has
not been bumped yet (which corresponds to an excedance that has not been matched
yet), if such an element exists. This proves equality ð1Þ ¼ ð2Þ:
To see that ð2Þ ¼ ð3Þ; observe that right-side tunnels correspond to up-steps in the

right half of CðsÞ; which by the construction of the bijection C correspond to
elements on the second row of Q: Equality ð3Þ ¼ ð5Þ follows easily by counting the
number of up-steps and down-steps of the right half of the path. Equality ð4Þ ¼ ð5Þ is
analogous.
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Finally, Schensted’s theorem states that the size of the first row of P equals the
length of a longest increasing subsequence of s (see [11] or [13, Section 7.23]). This
implies that (2)=(6), which completes the proof. &

The reasoning used in the above proof gives a nice equivalent description of the
recording tableau Q in terms of the array and the matching. Read the rows of the
array from top to bottom. For i from 1 to n; place i on the first row of Q if Xi is an
excedance or it is unmatched, and place i on the second row if Xi is a matched
antiexcedance. In the construction of the right half of CðsÞ; this translates into
drawing the path from right to left while reading the array from top to bottom,
adjoining an up-step for each matched antiexcedance and a down-step for each other
kind of cross.
To get a similar description of the tableau P; we use duality. By construction of the

matching algorithm, the matching in the output is invariant under transposition of
the array (reflection along the main diagonal). Recall the duality of the RSK

correspondence: if RSKðsÞ ¼ ðP;QÞ; then RSKðs�1Þ ¼ ðQ;PÞ (see e.g. [13, Section
7.13]). Therefore, the tableau P can be obtained by reading the columns of the array
of s from left to right and placing integers in P according to the following rule. For
each column j; place j on the first row of P if the cross in column j is an
antiexcedance or it is unmatched. Similarly, place j on the second row if the cross is a
matched excedance. Equivalently, the left half of CðsÞ; from left to right, is obtained
by reading the array from left to right and adjoining a down-step for each matched
excedance, and an up-step for each of the remaining crosses.
In particular, when the left half of the path is constructed in this way, every

matched pair ðXi;XjÞ produces an up-step and a down-step, giving the latter a left-
side tunnel. Similarly, in the construction of the right half of the path, a matched pair
gives a right-side tunnel.

Proof of Lemma 6. It is enough to prove it only for the case of excedances. The case

of antiexcedances follows from it considering s�1 and noticing that the path Cðs�1Þ
is obtained by reflecting CðsÞ in a vertical axis through the middle of the path
(this follows immediately from the duality of RSK). Let Xk be an unmatched
excedance of s: We use the above description of CðsÞ in terms of the array and the
matching. Each cross Xi produces a step ri in the right half of the Dyck path and
another step ci in the left half. Crosses above Xk produce steps to the right of rk; and
crosses to the left of Xk produce steps to the left of ck: In particular, there are k � 1
steps to the right of rk; and sðkÞ � 1 steps to the left of ck: Note that since Xk is an
excedance and s is 321-avoiding, all the crosses above it are also to the left of it.
Consider the crosses that lie to the left of Xk: They can be of the following four
kinds:

* Unmatched excedances Xi: They will necessarily lie above Xk; because the
subsequence of excedances of s is decreasing. Each one of these crosses
contributes an up-step to the left of ck and down-step to the right of rk:
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* Unmatched antiexcedances Xj: They also have to lie above Xk; otherwise Xk would

be matched with one of them. So, each such Xj contributes an up-step to the left

of ck and down-step to the right of rk:
* Matched pairs ðXi;XjÞ (i.e. Xi is an excedance and Xj an antiexcedance), where

both Xi and Xj lie above Xk: Both crosses together will contribute an up-step and a

down-step to the left of ck; and an up-step and a down-step to the right of rk:
* Matched pairs ðXi;XjÞ (i.e. Xi is an excedance and Xj an antiexcedance), where Xj

lies below Xk: The pair will contribute an up-step and a down-step to the left of ck:
However, to the right of rk; the only contribution will be a down-step produced
by Xi:

Note that there cannot be an antiexcedance Xj to the left of Xk matched with an

excedance to the right of Xk; because in this case Xj would have been matched with

Xk by the algorithm. In the first three cases, the contribution to both sides of the
Dyck path is the same, so that the heights of rk and ck are equally affected. But since
sðkÞ4k; at least one of the crosses to the left of Xk must be below it, and this must
be a matched antiexcedance as in the fourth case. This implies that the step rk is at a
higher y coordinate than ck: Let hk be the height of ck:We now show thatCðsÞ has a
right-across tunnel at height hk:
Observe that hk is the number of unmatched crosses to the left of Xk; and that the

height of rk is the number of unmatched crosses above Xk (which equals hk) plus the
number of excedances above Xk matched with antiexcedances below Xk: The part of
the path between ck and the middle always remains at a height greater than hk: This
is because the only possible down-steps in this part can come from matched
excedances Xi to the right of Xk; but then such a Xi is matched with an antiexcedance
Xj to the right of Xk but to the left of Xi; which produces an up-step compensating

the down-step associated to Xi: Similarly, the part of the path between rk and the
middle remains at a height greater than hk: This is because the hk down-steps to the
right of rk that come from unmatched crosses above Xk do not have a corresponding
up-step in the part of the path between rk and the middle. Hence, ck is the left end of
a right-across tunnel, since the right end of this tunnel is to the right of rk; which in
turn is closer to the right end of CðsÞ than ck is to its left end.
It can easily be checked that the converse is also true, namely that in every right-

across tunnel ofCðsÞ; the step at its left end corresponds to an unmatched excedance
of s: &

6. Further applications

(6.1) Recall the result in [10] that the number of permutations sASnð132Þ (or
sASnð321Þ) with no fixed points is the Fine number Fn: This sequence is most easily
defined by its relation to Catalan numbers:

Cn ¼ 2Fn þ Fn�1 for nX2; and F1 ¼ 0; F2 ¼ 1:
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Although defined awhile ago, Fine numbers have received much attention in recent
years (see a survey [3]). Special cases of our results give simple bijections between
these two combinatorial interpretations of Fine numbers and a new one: the set of
Dyck paths without centered tunnels. In particular, we obtain a bijective proof of the
following result.

Corollary 7. The number of Dyck paths DADn without centered tunnels is equal to Fn:

An analytical proof of this corollary can be easily deduced by combining results on
Dyck paths in [4] with a combinatorial interpretation of Fine numbers given in [10].
However, ours is the first bijective proof of Corollary 7.

(6.2) We can also extend Propositions 3 and 4 to statistics ncðDÞ defined as the
height at x ¼ n � c of the Dyck path DADn; for any cAf0;71;72;y;7ðn � 1Þg:
The corresponding statistics in Snð132Þ and in Snð321Þ are generalizations of the
rank of a permutation and the length of the longest increasing subsequence in a
certain subpermutation of s: The corresponding generalization of Theorem 2 is
straightforward and is left to the reader.

(6.3) Let us also note that the limiting distribution of lisð�Þ on Snð321Þ has been
studied in [1]. From Theorem 2, the results in [1] can be translated into results on the
limiting distribution of rankð�Þ on Snð132Þ:

(6.4) Our final application has appeared unexpectedly after the results of this
paper have been obtained. We say that a permutation sASn is an involution if

s ¼ s�1: In a recent paper [2] the authors introduce a notion of refined restricted

involutions by considering the ‘‘number of fixed points’’ statistic on involutions
avoiding different patterns pAS3: They prove the following result:

Theorem 8 (Deutsch [2]). The number of 321-avoiding involutions sASn with fpðsÞ ¼
i equals the number of 132-avoiding involutions sASn with fpðsÞ ¼ i; for any 0pipn:

Let us show that Theorem 8 follows easily from our investigation. Indeed, for
every Dyck path DADn denote by D� the path obtained by reflection of D from a

vertical line x ¼ n: Now observe that if FðsÞ ¼ D; then Fðs�1Þ ¼ D�: Similarly, if

CðsÞ ¼ D; then Cðs�1Þ ¼ D� (by the duality of RSK). Therefore, sASnð321Þ is an
involution if and only if so is YðsÞASnð132Þ; which implies the result. Furthermore,
we obtain the following extension of Theorem 8.

Theorem 9. The number of 321-avoiding involutions sASn with fpðsÞ ¼ i; excðsÞ ¼ j

and lisðsÞ ¼ k equals the number of 132-avoiding involutions sASn with fpðsÞ ¼ i;
excðsÞ ¼ j and rankðsÞ ¼ n � k; for any 0pi; j; kpn:

We leave the easy details of the proof to the reader.
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