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Abstract

Motivated by the recent proof of the Stanley—Wilf conjecture, we study the asymptotic behavior of the
number of permutations avoiding a generalized pattern. Generalized patterns allow the requirement that
some pairs of letters must be adjacent in an occurrence of the pattern in the permutation, and consecutive
patterns are a particular case of them.

We determine the asymptotic behavior of the number of permutations avoiding a consecutive pattern,
showing that they are an exponentially small proportion of the total number of permutations. For some
other generalized patterns we give partial results, showing that the number of permutations avoiding them
grows faster than for classical patterns but more slowly than for consecutive patterns.

0 2005 Elsevier Inc. All rights reserved.

1. Introduction

One of the most important breakthroughs in the subject of pattern-avoiding permutations has
been the proof by Marcus and Tardos [17] of the so-called Stanley-Wilf conjecture, which had
been open for over a decade. This is a basic result regarding the asymptotic behavior of the
number of permutations that avoid a given pattern. It states that for any pattiwere exists
a constank such that, ife, (o) denotes the number ef-avoiding permutations of size, then
a, (o) < A", The notion of pattern avoidance that this result is concerned with is the standard
one, namely, where a permutation is said to avoid a pattern if it does not contain any subsequence
which is order-isomorphic to it.
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In [3], Babson and Steingrimsson introduced the notiogesieralized patternsvhich allows
the requirement that certain pairs of letters of the pattern must be adjacent in any occurrence of
it in the permutation. One particular case of thesecaresecutive patterpsvhich were indepen-
dently studied by Elizalde and Noy [10]. For a subsequence of a permutation to be an occurrence
of a consecutive pattern, its elements have to appear in adjacent positions of the permutation.

Analogously to the case of classical patterns, it is natural to study the asymptotic behavior
of the number of permutations avoiding a generalized pattern. This problem is far from being
understood. It follows from our work that for most generalized patterns the number of permuta-
tions avoiding them behaves very differently than in the case of classical patterns. In this paper
we determine the asymptotic behavior for the case of consecutive patterns, showingtigat if
a consecutive pattern angl (o) denotes the number of permutations of sizavoiding it, then
lim,_ o </, (0)/n!is a positive constant. For some particular generalized patterns we obtain the
same asymptotic behavior, and for patterns of length 3 the problem is solved as well. However,
the general case remains open, and it seems from our investigation that there is a big range of
possible asymptotic behaviors. For some generalized patieofitfength 4 we give asymptotic
upper and lower bounds @, (o).

The paper is structured as follows. In Section 2 we introduce the definitions and notation for
generalized pattern avoidance. We also mention some generating function techniques that will be
used in the paper, as well as previous results regarding consecutive patterns. In Section 3 we give
the exponential generating functions for permutations avoiding a special kind of generalized
patterns, extending the results from [10]. In Section 4 we study the asymptotic behawior as
goes to infinity of the number of permutations of sizavoiding a generalized pattern, solving
the problem only in some cases. In Section 5 we give lower and upper bounds on the number of
12-34-avoiding permutations, and in Section 6 we obtain a similar result for the pattern 1-23-4.
Finally, in Section 7 we discuss some open problems and further research.

2. Preliminaries

In this section we define most of the notation that will be used later on. We start introducing
the notion of generalized pattern avoidance.

2.1. Generalized patterns

These patterns, which were introduced by Babson and Steingrimsson [3], extend the classi-
cal notion of pattern avoidance. We will denote 8y the symmetric group ofl, 2, ..., n}.
Let n, m be two positive integers wittm < n, and letr = myno--- 7, € S, be a permuta-
tion. A generalized pattera is obtained from a permutatiosyos-- -0, € S;; by choosing,
foreachj =1,...,m — 1, either to insert a dash—betweenando; 1 or not. More formally,
0 = 01610262 - - £u—10m, Where each; is either the symbol—or the empty string.

With this notation, we say that contains(the generalized patterm) if there exist indices
i1 <ip<---<Iy suchthat

(i) foreachj=1,...,m—1,ife; isempty then;;1=i; + 1, and

(i) p(mwiymi,---m;,) = o102---0,, Wherep is the reduction consisting in relabeling the ele-
ments with{1, ..., m} so that they keep the same order relationships they had(Equiva-
lently, this means that for all indicesandb, r;, < 7;, if and only if o, < 0,.)
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In this caser;, 7;, - - - 7;,, is called arpccurrenceof o in 7.

If = does not contair, we say thatr avoidso, or that it iso-avoiding For example, the
permutatiorrt = 3542716 contains the pattern 12-4-3, and it has exactly one occurrence of it,
namely the subsequence 3576. On the other haraypids the pattern 12-43.

Observe that in the case wherehas dashes in ath — 1 positions, we recover the classical
definition of pattern avoidance, because in this case condition (i) holds trivially. On the other
end, the case in whick has no dashes corresponds to consecutive patterns. In this situation, an
occurrence of in 7 has to be a consecutive subsequence. Consecutive patterns were introduced
independently in [10], where the authors give generating functions for the number of occur-
rences of certain consecutive patterns in permutations. Several papers deal with the enumeration
of permutations avoiding generalized patterns. In [7], Claesson presented a complete solution
for the number of permutations avoiding any single 3-letter generalized pattern with exactly one
adjacent pair of letters. Claesson and Mansour [8] (see also [16]) did the same for any pair of
such patterns. In [9], Elizalde and Mansour studied the distribution of several statistics on per-
mutations avoiding 1-3-2 and 1-23 simultaneously. On the other hand, Kitaev [13] investigated
simultaneous avoidance of two or more 3-letter generalized patterns without dashes.

All the patterns that appear in this paper will be represented by the notation just described. In
particular, a patterir = o102 - - - o, without dashes will denote a consecutive pattern. We will
represent classical patterns by writing dashes between any two adjacent elements, namely, as
01-02--++=Op;.

If o is a generalized pattern, I8}, (o) denote the set of permutationsd that avoido . Let
o, (0) =S, (0)] be the number of such permutations, and let

As@ =Y (@)

n>0
be the exponential generating function countingvoiding permutations.
2.2. Labeled classes and exponential generating functions

Here we recall some basic machinery for exponential generating functions that will be used
later. We direct the reader to [12] for a detailed account on combinatorial classes and the symbolic
method. LetA be a class of labeled combinatorial objects anddéte the size of an object
¢ € A. If A, denotes the objects id of sizern anda, = |.A,|, then theexponential generating
function EGF for short, of the clasd is

Sl n

AQ =Y =D

reA n=0

In our context, the size of a permutation is simply its length.

There is a direct correspondence between set-theoretic operations (or “constructions”) on
combinatorial classes and algebraic operations on EGFs. Table 1 summarizes this correspon-
dence for the operations that are used in the paper. There “union” means union of disjoint copies,
“labeled product” is the usual Cartesian product enriched with the relabeling operation, and “set”
forms sets in the usual sense. Particularly important for us is the construction “boxed product”
A = B % C, which corresponds to the subset®f C (the usual labeled product) formed by
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Table 1
The basic combinatorial constructions and their translation into exponential generating functions
Construction Operation on GF
Union A=BUC A(z) =B(2) + C(2)
Labeled product A=BxC A(z) =B(2)C(2)
Set A=T1(B) A(z) =exp(B(2))
Boxed product A=BUxC A(z) = fé(% B(1))-C(t)dt
X z 1y d?
Double boxed product A=B%xC A@) = [; fOV(d,_ZB(t)) -C(t)dtdy

those pairs in which the smallest label lies in Bieomponent. Another similar construction is
the “double boxed productd = B¥ «C, which denotes the subsetB# C formed by those pairs
in which both the smallest and the largest label lie inBheomponent.

2.3. Consecutive patterns of lendgth

For patterns of length 3 with no dashes, it follows from the trivial reversal and complemen-
tation operations that, (123) = «,(321) and«,(132 = «,(23) = ¢,(312 = «,(213. The
EGFs for these numbers are given in the following theorem of Elizalde and Noy [10], which we
will use later in the paper. The symbel between two sequences indicates that they have the
same asymptotic behavior.

Theorem 2.1 [10]. We have

V3 e%/? 1

A123(2) = — , A1322) = ————->—
2 cos(%éer ) 1— [ye*2at
Their coefficients satisfy
o, (123 ~ y1- (pD)" - n!, o, (132) ~ y2- (p2)" - n!,

where p; = 37‘/5 y1 =337 (p)~Lis the unique positive root ofy e g1 =1, andy, =
¢P7%/2 the approximate values being

p1=0.8269933 y; =1.8305194 pp=0.7839769 y,=22558142
Furthermore, for every: > 4, we have
o, (123 > «,(132).
3. Patternsof theform 1-o

In this section we study a very particular class of generalized patterns, namely those that start
with 1-, followed by a consecutive pattern (i.e., without dashes).
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Proposition 3.1. Leto = 0102 - - - 0 € S be a consecutive pattern, and et denote the gen-
eralized patterrl-(o1 + 1) (o2 + 1) --- (6x + 1). Then,

Z

A14(2) =eXp</A(,(t)dt).

0

Proof. Given a permutation, letmy > mo > --- > m, be the values of its left-to-right minima
(recall thatr; is a left-to-right minimum ofr if n; > n; for all j <i). We can writer =
miwimaw? - - - m,w,, Where eachy; is a (possibly empty) subword af, each of whose elements
is greater tham; . We claim thatr avoids 1e if and only if each of the blocks; (more precisely,
its reductionp (w;)) avoids the consecutive pattesnIndeed, it is clear that if one of the blocks
w; contains, thenm; together with the occurrence efforms an occurrence of &- Conversely,
if 7 contains 1, then the elements of corresponding ta have to be adjacent, and none of
them can be a left-to-right minimum (since the element corresponding to ‘1’ has to be to their
left), therefore they must be all inside the same blagKor somei.

If we denote byA the class of permutations avoidiag then, in the notation of Table 1, the
class of permutations avoidingd. €an be expressed as

M((z)° » A).

where{z}P = A corresponds to a block; w;, with the box indicating that the left-to-right mini-

mum has the smallest label. The set construction arises from the fact given a collection of blocks
m;w;, there is a unique way to order them, namely with the left-to-right minima in decreasing
order. The expressioA1, (z) = exp(foZ A (1) dt) follows now from this construction.

Proposition 3.1 also appears independently in a preprint of Kitaev [14].

Example. The only permutation avoiding = 12 (respectivelyy = 21) is the decreasing (re-
spectively increasing) one. Therefore, by Proposition 3.1,

Z
A1-23(2) = A1-32(2) = exp( [ e df> =1
0

the EGF for Bell numbers, which agrees with the result in [7].

Example. For the consecutive patterns 132, 231, 312 and 213, the generating function for the
number of permutations avoiding either of them is given in Theorem 2.1 (which follows from
[10, Theorem 4.1]). Now, by Proposition 3.1, we get the following expression:

Z dt
A1.243(2) = A1-342(2) = A1-423(z) = A1-324(2) = exp( / 1—f—2/2du)

2 ,—u
e
0 0
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Example. The EGF for permutations avoiding 123 or 321 is also given in Theorem 2.1. Pro-
position 3.1 implies now that

V3 [ dr
A1-234(2) = A1.4322) = €Xp| —- / —.
5 cos( 5t + %)

Combined with the results of [10], Proposition 3.1 gives expressions for the B@F&)
whereo has one of the following forms:
o =123k,
o=k(k—1)---21,
oc=12--at(a+1),
oc=(@+Drtaa—1)---21,
o=ktk—1)---(k+1—a)t’ (k—a),
o=k—-a)t'k+1-a)k+2—a)- -k,

wherek, a are positive integers with < k — 2, t is any permutation ofa + 2,a + 3, ..., k}
andz’ is any permutation ofl, 2, ...,k —a — 1}.

4. Asymptotic enumeration

Here we discuss the behavior of the numhgr&r) asn goes to infinity, for a given general-
ized patterny. We use the symbot to indicate that two sequences of numbers have the same
asymptotic behavior (i.e., we writg, ~ b, if lim,_, - (a,/b,) = 1), and we use the symbet
to indicate that a sequence is asymptotically smaller than another one (i.e., we,w«té,, if
lim;,— o0 (an /by) = 0).

Let us first consider the case of consecutive patterns.

Theorem 4.1. Letk > 3 and leto € S; be a consecutive pattern.
(i) There exist constan®< ¢, d < 1 such that
c'n! <a, (o) <d"n!

forall n > k.
(i) There exists a constaft< w < 1 such that

1/n
lim (“”“”) —w
n—00 n!

Note thatc, d and w depend only ore. Compare this result with the conjecture of War-
limont [20] that for any consecutive pattesnthere exist constantg > 0 andw < 1 such that
ay(o)/n!~yw".
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Proof. The key observation is that, for any consecutive patéern

(@) < (@)t (0) (’" : ”) )

To see this, just observe thataavoiding permutation of lengtix + » induces two juxtaposed
o -avoiding permutations of lengtlws andn.
By induction onn > k one gets

m+n

i (0) <d’”m!d”n!( ):d’"+"(m+n)!

n
for some positivel < 1.

For the lower bound, let = p(o10203) be the reduction of the first three elementsoof
Clearly S, (t) C S, (o) for all n, since an occurrence of in a permutation produces also an
occurrence of, hencew, (1) < a, (o). But the fact that € S3 implies thatw,, (o) equals either
,(123 or «,(132. In any case, by Theorem 2.1 we have that

a,(0) > a, (132 > "n!

for somec > 0.
To prove part (ii), we can express (1) as

Aypgn(0) am(0) oy (o)
m+n)! > m!

and applyFekete’s lemmésee [19, Lemma 11.6] or [11]) to the functiety«, (o) to conclude
that lim,_ oo (s (o) /n!) YY" exists. Calling itw, then part (i) implies that

1/n
w<1l and w> lim ) =0.7839769 O

n—oo

(an (132

n!

In order to study the asymptotic behavior®f(c) for a generalized patters we separate
the problem into the following three cases. Assume from now onihat3 and thato is a
generalized pattern of length We use the wordglot to refer to the place between two adjacent
elements ob, where there can be a dash or not.

e Casel. The patterrs has dashes between any two adjacent elements; kegi-02- - - - -0

These are just the classical patterns, which have been widely studied in the literature. The
asymptotic behavior of the number of permutations avoiding them is given by the Stanley—Wilf
conjecture, which has been recently proved by Marcus and Tardos [17], after several authors had
given partial results over the last few years [1,2,5,15].

Theorem 4.2 (Stanley—Wilf conjecture, proved in [17]For every classical patternr =
o1-09-- - - -0, there is a constart (which depends only am) such that

ay (o) < A"

forall n > 1.
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On the other hand, it is clear that (o) > o, (0(01-02-03)) = C, ~ (1//mn)4", whereC,
denotes theith Catalan numberAs shown by Arratia [2], Theorem 4.2 is equivalent to the
statement that lim., o </, (o) exists. The value of this limit has been computed for several
classical patterns: it is clearly 4 for patterns of length 3, it is known [18] takbe 1)? for
c=1-2----- k, it has been shown [4] to be 8 fer= 1-3-4-2, and it has recently been proved by
Bona [6] to be nonrational for certain patterns.

e Case2. The patterro has two consecutive slots without a dgefuivalently, three consec-
utive elements without a dash between them.,oc = ---0;0; 11042 - .

Proposition 4.3. Let o be a generalized pattern having three consecutive elements without a
dash. Then there exist constafts ¢, d < 1 such that

"n! <a,(c) <d'n!
forall n > k.

Proof. For the upper bound, notice that if a permutation contains the consecutive pattern
010203 - - -0 Obtained by removing all the dashesdn then it also containg. Therefore,
a,(0) < ay(o10203---oy) for all n, and now the upper bound follows from part (i) of Theo-
rem4.1.

For the lower bound, we use that, (o) > a,(p(0;0,+10i12)) = a,(132 > ¢"n!, where
0;0;4+10;+2 are three consecutive elementsinwithout a dash. O

e Case 3. The patterny has at least a slot without a dash, but not two consecutive slots without
dashes.

This case includes all the patterns not considered in Cases 1 and 2. The asymptotic behavior
of a, (o) for these patterns is not known in general. The case of patterns of length 3 is covered
by the following result, due to Claesson [7]. LB} denote the:th Bell number which counts
the number of partitions of amelement set.

Proposition 4.4 [7]. Leto be a generalized pattern of lengBwith one dash.

(i) If o €{1-23,3-21,32-1,12-3,1-32,23-1, 3-12, 21-3}, thena, (0) = B,,.
(i) If o €{2-13,2-31,31-2,13-2}, thenw,(0) = C,,.

Itis known that the asymptotic behavior of the Catalan numbers is givél by (1/./mn )4".
For the Bell numbers, one has the formula

1 e
B, ~ ﬁ)\(n)nJrl/Zek(n) n 1,

wherei(n) is defined byi (n) In(A(n)) = n. Another useful description of the asymptotic behav-
ior of B, is the following:

InB, Inlnn
=Inn—-Inlnn+ 0O .
n Inn
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This shows in particular that' « B,, « ¢"n! for any constants, ¢ > 0.

For patternss of lengthk > 4 that have slots without a dash, but not two consecutive slots
without dashes, not much is known in general about the number of permutations avoiding them.
It follows from Cases 1 and 2 that

8" < a(o1-09--+--0p) < ap(0) <a(oroz---0) <d"n!

for some constant§ > 0 andd < 1. Clearly, if o contains one of the patterns in part (i) of
Proposition 4.4, then the lower bound can be improve,toHowever, determining the precise
asymptotic behavior af, (o) seems to be a difficult problem. In the rest of the paper we discuss
a few partial results in this direction.

The next statement is about permutations of the forsn 1-

Corollary 4.5. Leto be a consecutive pattern, and let be defined as in Propositighl Then,

lim (“”(1'“))1/n: lim (“"(")>1/n.
n—00 n! n— oo n!

Proof. By Proposition 3.1 we know that1,(z) = exp(foz A, () dr). Since the exponential is
an analytic function over the whole complex plane, we obtain fhaf(z) has the same radius
of convergence a4, (z), from where the result follows. O

5. Thepattern 12-34

The next proposition gives an upper and a lower bound for the nurah€t2-34. Given two
formal power series”(z) = 3_,~0 fuz" andG(z) = 3,50 8s2", We use the notatiod (z) <
G (z) to indicate thatf, < g, for all n, andF (z) < G(z) to indicate thatf, < g,.

Proposition 5.1. For k > 1, let

=1t
k= 2 P

k

K\? :
be(2)=) (l) (24 2(hik—i — hi)]e"?,

i=0

(k+1Dz k '
() =1 Z(é) (kﬂ) [z+2<hki —h) ;}e
5 i

k+1 =\ i
S@=Y @+ ).
k>1 k>1
Then
eSO < A1p.3a(z) < S@FTETL
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Fig. 1. The first values of/«;, (12-34)/n! between the lower and the upper bound given by Proposition 5.1.

If we write 5@ = ¥ 1,5 andeS@+¢ -1 = ¥y, 20 to denote the coefficients of the se-
ries giving the lower and the upper bound respectively, then the graph in Fig. 1 shows the
values of ¥/, (12-34/n! for n < 13, bounded between the valugs, /n! and ¥u, /n! for
n < 120. The two horizontal dotted lines are at heiglt839769 and 8269933, which are
liM,— 00 Vo, (0)/n! for o = 132 ando = 123 respectively, given by Theorem 2.1. From this
plot it seems conceivable that ljm o, &/, (12-34/n! = 0, although we have not succeeded in
proving this.

Note that the lower bound, together with the fact théf) > ¢* — 1 (which follows from the
definition), shows thatt12-34(z) > ¢5@ > ¢ ~1, which means that, (12-34 > B,, that is, the
number of 12-34-avoiding permutations is asymptotically larger than the Bell numbers.

Proof. Let = be a permutation that avoids 12-34. This means that it has no two ascents such
that the second one starts at a higher value than where the first one ends. We can=arite
Boai Biaz BoazB3 - - -, wherea; and the element preceding it form the first ascent pfi; and

the element preceding it form the first ascent suchdbat a1, az and the element preceding it
form the first ascent such thag < a2, and so on. By definitionBy is a non-empty decreasing
word whose last element is less thay and eachB; with i > 1 can be written uniquely as a
sequenceB; = w; ow; 1Ww;,2- - - W; ,, for somer; > 1 (r; can be 0 ifw; ¢ is nonempty) with the
following properties:

(i) eachw; ; is a decreasing word,

(i) for j > 1, w; ; is nonempty and its first element is bigger than
(i) the last element of each; ; is less than;,
(iv) the last element oB; is less tharn; ;1.
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These properties ensure thatavoids 12-34 (since n8; has an ascent abowg), and that the
decomposition is unique.

Ideally we would like to use this decomposition to find a generating function for the numbers
o, (12-34. Unfortunately, the structure of the decomposition is a bit too complicated to find an
exact formula. Instead, we will add and remove restrictions to simplify this description, which
allows us to give lower and upper bounds respectively.

To find an upper bound, we will count permutations of the forrae= Boa Biaz B2azBs - - -,
where theB; anda; satisfy the properties above, except for the requirement (iv) that the last
element of eactB; has to be less tham ;. Omitting this requirement we are overcounting
permutations, and thus we get an upper bound. The first step now is to find the EGF for a block
K; of the formgq; B;, whereB; satisfies properties (i), (ii) and (iii) from above.

Let us first assume thai; o is empty, thatisB; = w; 1w; 2- - - w; ,,. We compute the EGF for
K; = a; B; wherer; is fixed, by induction om;. If r; = 0, then we have th&; = a;, so the EGF
iS bo(z) :=z. If r; =1, thenk; = a;w; 1, Wwherew; 1 is a decreasing word starting abayeand
ending below it. The EFG fow; 1 is e*. Now, to incorporate the condition that the largest and
the smallest labels ok; lie in w; 1, we use the double boxed product construction described in
Section 2.2. A double derivative is needed to mark the two special elements. We get that the EGF
for such a block is

z ) z Y

d2
//t(Wet>dtdy=//te’dtdy=(Z—2)ez+z+2=b1(z).

00 00

Let nowr; = 2. The case in which both the largest and the smallest labE} ef a; w; 1w; 2 are
contained inw; 2 corresponds to the EGF

z Yy d2 t
//bﬂt)(We )dtdy. (2)
00

If we write eachw; ; as w+ - separating the elements above and bezk,;:)v(/uﬁr and w;
respectively), then the Iargest elementif can be either inw;" i Or in w Py and the smallest

element ofK; can be either inw; . i1 0r inw:;. P2 Thus, all the p055|b|I|t|es are obtained from the
case counted by the EGF (2) by permutmg the upper and lower parts of thendw; » in the
four possible different ways. It follows that the EGF & whenr; =2 is

z 0y
4//b1(t)e’dtdy:(Z—3)e21+4zez+z+3=b2(z).

In general, ifby_1(z) is the EGF for the case = k — 1, then the EGF for the cage= k is given
by

z Yy
br(z) = k? / / br_1(t)e' di dy.
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It is straightforward to check that the functiohg(z) defined in the statement of the proposition
satisfy this recurrence.

The case wher®; o is nonempty can be treated similarly. We h@fe= wo ; w; 1w; 2wy, .
If r; =0, the EGF for; wo ; is co(z) := ¢* — 1 — z (since the block has at least 2 elements). If
ri = 1, then a block of the form;wg ; w; 1 can be obtained from the case where the largest and
the smallest element are iy 1 by permutingwo; andw; ; if necessary. This yields the EGF

z )y
2// ) dzld:d—ezz+2(1 )et RN,
co dtze = )¢’ —z =5 =),

00

In general, for nonempty; o, if ck—1(z) is the EGF for the case = k — 1, then the EGF for the
caser; =k is given by

z Yy
ck(z)=k(k+1)/fck_1(t)e’dtdy.

This is the recurrence satisfied by the functiopg) defined in the statement of the proposition.
The generating function for a set of blocks = a; B; of the form just described is

exp(Zbk(z) + ch(z)) =exp(S(z) +z+e" —1—2z).

k=0 k=0

From such a set there is a unique way to form a sequenBeu>BoasB3- - - whereay > a2 >
az > ---. Finally, we multiply bye?® to take into account the initial decreasing segmgnof the
permutationr = BoaiBiazB2azB3- - -, again relaxing the condition that its last element should
be smaller tham;. This gives the upper bound exp(S(z) + ¢* — 1) = exp(S(z) + e* +z — 1).
Now we use a similar reasoning to obtain a lower bound. We have seeh;thatcounts
blocks of the forma; w; 1w; 2 - - - w; x, where eachw; ; is a decreasing word starting abave
and ending below it. It > 1, using the notatiom; ; = w;w;, to separate the elements that are
bigger thars; from those that are smaller we can move the last part of the block to the beginning
and writeL; := W, @i Wi AW, 2+ wl’k. Similarly, a block of the forma; w; ow; 1w; 2- - - w;  like
the ones counted by (z) with k > 1 can be reordered ds := W @i Wi, 0W;, 1W;, 2+ w:rk. The
EGF that counts sets of pieces of the forms giverLppndL} is

exp( Z bi(z) + Z Ck (z)> = exp(S(2)).

k>1 k>1

Ordering the pieces of such a set by decreasing order af;tlitbe sequence that they form by
juxtaposition is a 12-34-avoiding permutation. Besides, no such permutation is obtained in more
than one way by this construction. However, notice that not every 12-34-avoiding permutation is
produced by this process, hence this construction gives only a lower bound.

The decomposition of 12-34-avoiding permutations given in the proof of Proposition 5.1 can
be generalized to permutations avoiding a pattern of the form.12¢ = 0102 -0} € S iIs a
consecutive pattern, 12-denotes the generalized pattern(@2-+ 2)(o2 + 2) - - - (o} + 2).
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Any permutationt avoiding 12¢ can be uniquely decomposedas- Boaj Biaz B2azBs - - -,
wherea; and the element preceding it form the first ascent pfi; and the element preceding
it form the first ascent such thap < a1, az and the element preceding it form the first ascent
such thatus < a2, and so on. Then, by definitioBg is a non-empty decreasing word whose
last element is less than, and eachB; with i > 1 can be written uniquely as a sequem;e=
w;i,oUiaw; 1Ui pw; 2+ - Uj ,w; ,, for somer; > 1 (r; can be 0 ifw; o is nonempty) with the
following properties:

(i) eachw; ; is a decreasing word all of whose elements are lessdhan

(if) eachU; ; is a nonempty permutation avoiding all of whose elements are greater than
(iiity w; ; is nonempty forj > 1,
(iv) the last element oB; is less thar; ;1.

From this decomposition the following result follows immediately.

Proposition 5.2. If o, T are two consecutive patterns satisfyidg(z) = A;(z), thenA1s.,(z) =
A12(2).

The structure of 2&-avoiding permutations (defined analogously) can be described using
the same ideas, and it is not hard to see that the following result holds as well.

Proposition 5.3. If o is a consecutive pattern, thety2, (z) = A21.5(2).
6. Thepattern 1-23-4

Similarly to what we did for the pattern 12-34, analyzing the structure of permutations avoid-
ing 1-23-4 we can give lower and upper bounds for the numbg($-23-4. Let C®*P(z) :=
Z@ocn(z”/n!) be the EGF for the Catalan numbers.

Proposition 6.1. We have that

Z
1 ,
E/‘ez"bzdy — % < A1.234(z) < C¥P(e* — 1),
0

Writing 3 f§ 2 2dy — =Y I " andC®P(er — 1) = Zu,,fl—"! to denote the coefficients
of the series giving the Iower and the upper bound respectively, then the valJds of! and

Yu, /n! for n < 90 are plotted in Fig. 2, bounding the valuesis,, (1- 23 -4 /n!forn <11.
Note that the lower bound implies that(1-23-4 > B,,, sincee? 2> ¢ 1,

Proof. Let & be a permutation that avoids 1-23-4. lgt> az > a3 > --- > a, be the left-to-
right minima ofr, and letb1 > b2 > b3 > --- > by be its right-to-left maxima (recall that; is

a right-to-left maximum ofr if =; < &; for all j > i). Then, marking the positions of the left-
to-right minima and right-to-left maxima, we can write= ciwicow?2 -« - 45— 1Wy+5—1Cr+s,
wherec; € {a1, a2, ...,a,,b1, b2, ..., b} for all i (in fact the number of;’s could be less than

r + s if some element is simultaneously a left-to-right minimum and a right-to-left maximum).
Note thatc; = a1 andc,+; = b;. Now, the condition thatr avoids 1-23-4 is equivalent to the
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Fig. 2. The first values of/«;,, (1-23-4 /n! between the lower and the upper bound given by Proposition 6.1.

fact that eachw; is a (possibly empty) decreasing word. Indeed, if there was an ascent inside one
of the w;, then together with the closest left-to-right minimum to the lefugfand the closest
right-to-left maximum to the right ofv;, it would form an occurrence of 1-23-4. On the other
hand, it is clear that if allv; are decreasing, then no such occurrence can exist.

We use this decomposition to obtain upper and lower bounds,fdr-23-4. Let us first show
the lower bound. For that we count only a special type of 1-23-4-avoiding permutations, namely
the ones where all the left-to-right minima come before all the right-to-left maxima. Such a
can be written ag = ajwiapw? - - - a,wyb1wy 4 1b2wr 42 - - - Wy4s—1bs, Where for 1< i < r the
elements of the decreasing wondshave values between andb1, and forr <i <r-+s—1the
elements ofw; have values between andb; 1. The EGF for the pamjwiaows - --a,_1w,_1
is ¢¢"~1, since it is an arbitrary 1-23-avoiding permutation (see the example following Proposi-
tion 3.1). Similarly, the EGF for the pauit, . 1how, 42 - - - w,4s_1bs iS alsoe® ~1 (it can be viewed
as a set of blocks of the forma, ;b; 1, each one contributing® — 1, arranged by decreasing
order of theb;’s). The decreasing word, contributes*. Now, to get the EGF for the whole per-
mutationaywiaswz - - - a, wrbrw,+1b2w, 42 - - - wys—1bs We USe the boxed product construction
to require that the biggest element of the blockisnd the smallest one is. The EGF that we
obtain is

Z

y z
d d 1 y
//eet_1<at>e’<at>eet_ldtdy= —/(eze’ _2—1) dy,
00 0

which gives a lower bound for the coefficientsAf-23-4(z).
To find the upper bound, first step is to consider permutations of thefogre;wicows - - -
Cros—1Wrts—1¢r+s Where all thew; are empty. Such permutations, where every element is either

N
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a left-to-right minimum or a right-to-left maximum, are precisely those avoiding 1-2-3, which
are counted by the Catalan numbers. Thus, the EGF for such permutat{efif§(is.

The next step is to insert a decreasing wexdafter eache;. If ¢; is a left-to-right minimum,
we require that the elements of are bigger tham;, so the EGF for the block; w; is e — 1.
We omit the requirement that the elementswpthave to be smaller than the nearest right-to-left
maximum to the right ofv; ; this is why we only get an upper bound. Similarlysjfis a right-to-
left maximum, we require that the elementsuof are smaller thar;, so the EGF for the block
cjw;j is alsoe* — 1. We also omit the requirement that after the last right-to-left maximum there
is no decreasing word. Replacing eaglfior a blockc; w; as just described translates in terms of
generating functions into substitutirg — 1 for the variablez in C®*P(z). This gives the stated
upper bound. O

The upper bound given in the above proposition yields the following corollary.

Coroallary 6.2. We have that

lim

n—oo

(ozn(l-23-4)>l/ n

n!

Proof. The power serie€®*P(z) can be bounded by

Zn
C®P(z) < Z 4 — o
n!
n>0

which converges for alk. Therefore, so doe€®*P(e? — 1), which is an upper bound for
A1-23-4(z). The result follows now from the fact that §°, f,z" is an analytic function in the
whole complex plane, then lim, o, &/ f, = 0 (see [12, Chapter 4] for a discussion)a

If o =o0102---0r_2 € S;_2 is a consecutive pattern, letdl-% denote the generalized pattern
1-(o1+ V(o2 + 1) - (0x—2 + 1)-k. The decomposition of 1-23-4-avoiding permutations given
in the proof of the above proposition can be generalized to permutations avoiding any pattern of
the form le-k.

Any permutations that avoids 1s-k can be uniquely decomposed as= ciwicowy- - -
cm—1Wm—1cm, Where thec; are all the left-to-right minima and right-to-left maxima of and
eachw; is a permutation that avoids, all of whose elements are bigger than the closest left-to-
right minimum to its left and smaller than the closest right-to-left maximum to its right.

Using exactly the same reasoning as in the proof of Proposition 6.1, we obtain the following
lower and upper bounds for the numbeyfg1-0-k).

Proposition 6.3. Leto € S;_» be a consecutive pattern, and let -k be defined as above. Then,

Z u Zz
/ / e2J6 Ae WAy gy dy < Aroa(z) < CEXF’< / Ay (1) dt).
00 0
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Coroallary 6.4. With the same definitions as in the above proposition,

lim <M>l/”= lim (an(0)>1/n.
n—00 n! n—>00 n!

Proof. The upper and lower bounds fdn ., (z) given in Proposition 6.3 are analytic functions
of A, (z), since essentially they only involve exponentials and integrals. Therefege; (z) and
A (z) have the same radius of convergence, hence the limits above coincide.

Finally, the following proposition is an immediate consequence of the structuresef-1-
avoiding permutations discussed above. In particular, it impliesAhat 4(z) = A1-32-4(z).

Proposition 6.5. If o, T are two consecutive patterns &)_» satisfyingA, (z) = A;(z), then
Aok (2) = A10(2).

7. Other patterns

In Section 6 we have proved that(1-23-4 >>> B, and thatw, (1-23-4 « ¢"n! for any con-
stantc > 0. For the pattern 12-34, we showed in Section 5 that the analogue to the first statement
holds as well, and the second one seems to be true from numerical computations. It remains as
an open problem to describe precisely the asymptotic behavigy(ef) for these two patterns,
and for several remaining generalized patterns of length 4.

In Fig. 3 we have plotted the initial values (connected by lines) of the sequefegs)/n!
for other cases that appear to have some interest. The two dotted lines at the bottom of the graph
correspond to the sequenc&c, /n! and /B,,/n!, which are known to tend to 0 asgoes to

1

0.9+

0.8

0.7

0.6

0.5

Fig. 3. The first values of/«;, (o) /n! for several generalized pattersis
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infinity. The two dashed lines that start at the same point (arou84il) and tend to a constant

correspond to the sequencés, (132)/n! and /«a, (123 /n!, for which their limits are known
by Theorem 2.1 to be.0839769 and 8269933 respectively. Among the lines starting at 1, the
two dotted ones correspond to the patterns 1-23-4 (the lower line) and 12-34 (the upper line)
discussed in the previous sections.

Of the two solid lines, the one below corresponds to the pattern 3-14-2. This pattern has
a special interest because all of its subpatterns of length 3 are among those in part (ii) of
Proposition 4.4. Since it does not contain any of the patterns in part (i), we cannot say that
a,(3-14-2 > B,, for all n. In fact, comparing the slopes in Fig. 3 it seems quite plausible that
o, (3-14-2 grows more slowly tham,,, and proving this is an interesting open question. The
other solid line in the plot corresponds to the pattern 13-24, for which we do not know the
asymptotic behavior either.

This paper is the first attempt to study the asymptotic behavior of the numaperswhereo
is an arbitrary generalized pattern. Despite the fact that we have been unable to provide a precise
description of this behavior in most cases, we hope that our work shows the intricateness of the
problem and the amount of questions that it opens. The main goal of further research in this
direction would be to give a complete classification of all generalized patterns according to the
asymptotic behavior af, (o) asn goes to infinity.

Another interesting open problem is to find the value of,lim, /a, (c)/n! for patternso
in Case 2, for which this limit is known to be a constant. The analogous problem for patterns
in Case 1, namely finding lim, » /o, (o) for classical patterns, is a current direction of
research as it remains open for most patterns as well (see [4,6]).
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