Permutation Patterns in Algebraic Geometry

Henning Arnór Úlfarsson

Combinatorics Group, School of Computer Science, Reykjavik University
August 10, 2010

Table of Contents

(1) Definitions

- ... from Combinatorics
- ... from Geometry
(2) Patterns determine geometry
- Three geometric properties of varieties
- Description in terms of patterns
(3) Open problems

We start with some definitions.

Permutations and patterns

A permutation in \mathfrak{S}_{n} is a bijection $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$. We will use one-line notation for permutations, for example, $\pi=32415$ is the permutation in \mathfrak{S}_{5} that sends

$$
\begin{aligned}
1 & \mapsto 3 \\
2 & \mapsto 2 \\
3 & \mapsto 4 \\
4 & \mapsto 1 \\
5 & \mapsto 5 .
\end{aligned}
$$

Permutations and patterns

A permutation in \mathfrak{S}_{n} is a bijection $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$. We will use one-line notation for permutations, for example, $\pi=32415$ is the permutation in \mathfrak{S}_{5} that sends

$$
\begin{aligned}
1 & \mapsto 3 \\
2 & \mapsto 2 \\
3 & \mapsto 4 \\
4 & \mapsto 1 \\
5 & \mapsto 5 .
\end{aligned}
$$

Patterns are also permutations but we are interested in how they occur in other permutations...

Patterns inside permutations

Given a pattern p we say that it occurs in a permutation π if π contains a subsequence that is order-equivalent to p. If p does not occur in π we say that π avoids the pattern p. Let $\mathfrak{S}_{n}(p)$ denote the set of permutations in \mathfrak{S}_{n} that avoid the pattern p.

Example

The permutation $\pi=32415$ has two occurrences of the pattern

It avoids the pattern

Vincular patterns

Babson and Steingrímsson (2000) defined generalized patterns, or vincular patterns, where conditions are placed on the locations of the occurrence.

Example

The permutation $\pi=32415$ has one occurrence of the pattern

$$
\underline{12} 3=\frac{\square \cdot}{\square}: 32415
$$

It avoids the pattern

Motivation for vincular patterns

- They simplify descriptions given in terms of more complicated patterns - we'll see this later when we look at factorial Schubert varieties.

Motivation for vincular patterns

- They simplify descriptions given in terms of more complicated patterns - we'll see this later when we look at factorial Schubert varieties.
- Many interesting sequences of integers come up when we count the permutations avoiding a pattern p. For example if p is any classical pattern of length 3 then

$$
\left|\mathfrak{S}_{n}(p)\right|=n \text {-th Catalan number }=\frac{1}{n+1}\binom{2 n}{n}
$$

However Claesson showed in 2001 that

$$
\left|\mathfrak{S}_{n}(1 \underline{23})\right|=n \text {-th Bell number. }
$$

Bivincular patterns

Bousquet-Mélou, Claesson, Dukes, and Kitaev (2010) defined bivincular patterns as vincular patterns with extra restrictions on the values in an occurrence.

Example

The permutation $\pi=32415$ has one occurrence of the pattern

This is not an occurrence of $\overline{123}$. But it is an occurrence of

Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns - we'll see this later when we look at Gorenstein Schubert varieties.

Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns - we'll see this later when we look at Gorenstein Schubert varieties.
- More interesting sequences of integers.

Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns - we'll see this later when we look at Gorenstein Schubert varieties.
- More interesting sequences of integers.
- New Wilf-equivalence: For example the patterns

are equivalent.

Motivation for bivincular patterns

- They simplify descriptions given in terms of more complicated patterns - we'll see this later when we look at Gorenstein Schubert varieties.
- More interesting sequences of integers.
- New Wilf-equivalence: For example the patterns

are equivalent.

(Complete) flags

We will only consider complete flags in \mathbb{C}^{m} so we will simply refer to them as flags. A flag is a sequence of vector-subspaces of \mathbb{C}^{m}

$$
E_{\mathbf{0}}=\left(E_{1} \subset E_{2} \subset \cdots \subset E_{m}=\mathbb{C}^{m}\right),
$$

with the property that $\operatorname{dim} E_{i}=i$. The set of all such flags is called the (complete) flag manifold, and denoted by $F \ell\left(\mathbb{C}^{m}\right)$.

(Complete) flags

We will only consider complete flags in \mathbb{C}^{m} so we will simply refer to them as flags. A flag is a sequence of vector-subspaces of \mathbb{C}^{m}

$$
E_{\mathbf{0}}=\left(E_{1} \subset E_{2} \subset \cdots \subset E_{m}=\mathbb{C}^{m}\right),
$$

with the property that $\operatorname{dim} E_{i}=i$. The set of all such flags is called the (complete) flag manifold, and denoted by $F \ell\left(\mathbb{C}^{m}\right)$. We want to consider special subsets of this flag manifold ...

Schubert cells in $F \ell\left(\mathbb{C}^{m}\right)$

If we choose a basis $f_{1}, f_{2}, \ldots, f_{m}$, for \mathbb{C}^{m} then we can fix a reference flag

$$
F_{\bullet}=\left(F_{1} \subset F_{2} \subset \cdots \subset F_{m}\right)
$$

such that F_{i} is spanned by the first i basis vectors.

Schubert cells in $F \ell\left(\mathbb{C}^{m}\right)$

If we choose a basis $f_{1}, f_{2}, \ldots, f_{m}$, for \mathbb{C}^{m} then we can fix a reference flag

$$
F_{\bullet}=\left(F_{1} \subset F_{2} \subset \cdots \subset F_{m}\right)
$$

such that F_{i} is spanned by the first i basis vectors. Using this reference flag and a permutation π in \mathfrak{S}_{m} we can define the Schubert cell $X_{\pi}^{\circ} \subseteq F \ell\left(\mathbb{C}^{m}\right)$ which contains the flags $E_{\text {• }}$ such that

Schubert cells in $F \ell\left(\mathbb{C}^{m}\right)$

If we choose a basis $f_{1}, f_{2}, \ldots, f_{m}$, for \mathbb{C}^{m} then we can fix a reference flag

$$
F_{\bullet}=\left(F_{1} \subset F_{2} \subset \cdots \subset F_{m}\right)
$$

such that F_{i} is spanned by the first i basis vectors. Using this reference flag and a permutation π in \mathfrak{S}_{m} we can define the Schubert cell $X_{\pi}^{\circ} \subseteq F \ell\left(\mathbb{C}^{m}\right)$ which contains the flags $E_{\text {• }}$ such that

$$
\operatorname{dim}\left(E_{p} \cap F_{q}\right)=\#\{i \leq p \mid \pi(i) \leq q\}
$$

for $1 \leq p, q \leq m$.

Schubert cells in $F \ell\left(\mathbb{C}^{m}\right)$

If we choose a basis $f_{1}, f_{2}, \ldots, f_{m}$, for \mathbb{C}^{m} then we can fix a reference flag

$$
F_{\bullet}=\left(F_{1} \subset F_{2} \subset \cdots \subset F_{m}\right)
$$

such that F_{i} is spanned by the first i basis vectors. Using this reference flag and a permutation π in \mathfrak{S}_{m} we can define the Schubert cell $X_{\pi}^{\circ} \subseteq F \ell\left(\mathbb{C}^{m}\right)$ which contains the flags $E_{\text {• }}$ such that

$$
\operatorname{dim}\left(E_{p} \cap F_{q}\right)=\#\{i \leq p \mid \pi(i) \leq q\}
$$

for $1 \leq p, q \leq m$. Let's look at an example.

A Schubert cell in $F \ell\left(\mathbb{C}^{3}\right)$

Let $\pi=231$. The conditions for the Schubert cell X_{231}°

$$
\operatorname{dim}\left(E_{p} \cap F_{q}\right)=\#\{i \leq p \mid \pi(i) \leq q\}
$$

become

A Schubert cell in $F \ell\left(\mathbb{C}^{3}\right)$

Let $\pi=231$. The conditions for the Schubert cell X_{231}°

$$
\operatorname{dim}\left(E_{p} \cap F_{q}\right)=\#\{i \leq p \mid \pi(i) \leq q\}
$$

become

	$p=1$	$p=2$	$p=3$	
$q=1$	0	0	1	
$q=2$	1	1	2	
$q=3$	1	2	3	

A Schubert cell in $F \ell\left(\mathbb{C}^{3}\right)$

Let $\pi=231$. The conditions for the Schubert cell X_{231}°

$$
\operatorname{dim}\left(E_{p} \cap F_{q}\right)=\#\{i \leq p \mid \pi(i) \leq q\}
$$

become

	$p=1$	$p=2$	$p=3$	
$q=1$	0	0	1	E_{1}, E_{2} intersect F_{1} in a point
$q=2$	1	1	2	
$q=3$	1	2	3	

A Schubert cell in $F \ell\left(\mathbb{C}^{3}\right)$

Let $\pi=231$. The conditions for the Schubert cell X_{231}°

$$
\operatorname{dim}\left(E_{p} \cap F_{q}\right)=\#\{i \leq p \mid \pi(i) \leq q\}
$$

become

	$p=1$	$p=2$	$p=3$	
$q=1$	0	0	1	E_{1}, E_{2} intersect F_{1} in a point
$q=2$	1	1	2	$E_{1} \subset F_{2}, E_{2} \cap F_{2}=E_{1}$
$q=3$	1	2	3	

Schubert varieties in $F \ell\left(\mathbb{C}^{m}\right)$

Given a Schubert cell X_{π}° we define the Schubert variety as the closure

$$
X_{\pi}=\overline{X_{\pi}^{\circ}}
$$

in the Zariski topology.

We will now show how pattern avoidance can be used to describe geometric properties of Schubert varieties.

Smooth, factorial and Gorenstein varieties

Pictorial definition of smoothness: the tangent space at every point has the right dimension.

Figure: Compare the single tangent direction in subfigure 1(a) with the two tangent directions in subfigure 1(b).

Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

X is	if
smooth	
factorial	
Gorenstein	

Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

X is	if
smooth	the local rings are regular
factorial	
Gorenstein	

Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

X is	if
smooth	the local rings are regular
factorial	the local rings are unique factorization domains
Gorenstein	

Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

X is	if
smooth	the local rings are regular
factorial	the local rings are unique factorization domains
Gorenstein	the local rings are Gorenstein

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	the local rings are regular
factorial	the local rings are unique factorization domains
Gorenstein	the local rings are Gorenstein

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	the local rings are unique factorization domains
Gorenstein	the local rings are Gorenstein

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	the local rings are unique factorization domains
Gorenstein	the local rings are Gorenstein

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern.

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids $21 \overline{3} 54$ and 1324
Gorenstein	the local rings are Gorenstein

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern.

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids $21 \overline{354}$ and 1324
Gorenstein	the local rings are Gorenstein

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010).

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids 2143 and 1324
Gorenstein	the local rings are Gorenstein

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010).

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids 2143 and 1324
Gorenstein	the local rings are Gorenstein

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010). Woo and Yong (2006) defined a new type of pattern avoidance, called avoidance with Bruhat restrictions and used it to give a description of Gorenstein Schubert varieties.

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids 2143 and 1324
Gorenstein	π avoids ... with Bruhat restrictions ...

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010). Woo and Yong (2006) defined a new type of pattern avoidance, called avoidance with Bruhat restrictions and used it to give a description of Gorenstein Schubert varieties.

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990) showed that smoothness of Schubert varieties can be determined by pattern avoidance in the defining permutations:

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids 2143 and 1324
Gorenstein	Description in terms of (bi)vincular patterns?

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong and Woo (2005) and described factorial Schubert varieties in terms of a barred pattern. This description can be simplified using vincular patterns (U 2010). Woo and Yong (2006) defined a new type of pattern avoidance, called avoidance with Bruhat restrictions and used it to give a description of Gorenstein Schubert varieties.

Gorenstein Schubert varieties in terms of bivincular patterns

The short answer to the question is "yes". The long answer should include that it is much more complicated than I had originally hoped.

Gorenstein Schubert varieties in terms of bivincular patterns

The short answer to the question is "yes". The long answer should include that it is much more complicated than I had originally hoped.

- The first condition of factoriality, avoiding $2 \underline{143}$, is weakened to

Gorenstein Schubert varieties in terms of bivincular patterns

The short answer to the question is "yes". The long answer should include that it is much more complicated than I had originally hoped.

- The first condition of factoriality, avoiding $2 \underline{143}$, is weakened to

- The second condition of factoriality, avoiding 1324, is weakened to the avoidance of two infinite families of bivincular patterns, which we now describe.

The associated partition of a permutation

Here we will only consider permutations with a unique descent, as this allows us to avoid a minor technical detail.

The associated partition of a permutation

Here we will only consider permutations with a unique descent, as this allows us to avoid a minor technical detail.
Given such a permutation π, with a descent at d, we construct its associated partition $\lambda(\pi)$ as the partition inside a bounding box with dimensions $d \times(n-d)$, whose lower border is the lattice path that starts at the lower left corner of the box and whose i-th step is vertical if i is weakly to the left of the position d, and horizontal otherwise.

Example

The permutation

$$
\pi=134892567 \mid 10
$$

has a unique descent at $d=5$.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Example

The permutation

$$
\pi=13489 \downarrow 2567 \mid 10
$$

has a unique descent at $d=5$.

Figure: A bounding box with dimensions 5×5.

Inner corners of the partition

Yong and Woo (2006) showed that if π is Gorenstein then all the inner corners of the partition have to lie on the same diagonal.

Inner corners of the partition

Yong and Woo (2006) showed that if π is Gorenstein then all the inner corners of the partition have to lie on the same diagonal.

Figure: Inner corners of $\pi=13489 \downarrow 2567 \mid 10$.

Inner corners of the partition

Yong and Woo (2006) showed that if π is Gorenstein then all the inner corners of the partition have to lie on the same diagonal.

Figure: Inner corners of $\pi=13489 \downarrow 2567 \mid 10$.

Outer corners of the partition

If we want to translate this condition into pattern avoidance then it is actually better to consider the outer corners of the partition.

Outer corners of the partition

If we want to translate this condition into pattern avoidance then it is actually better to consider the outer corners of the partition.

Figure: Outer corners of $\pi=13489 \downarrow 2567 \mid 10$.

Outer corners of the partition

If we want to translate this condition into pattern avoidance then it is actually better to consider the outer corners of the partition.

Figure: Outer corners of $\pi=13489 \downarrow 2567 \mid 10$.

Depth and width of outer corners

We see that all the inner corners lie on the same diagonal if and only each outer corner has the same depth and width.

Figure: $\pi=13589 \downarrow 2467 \mid 10$.

Detecting too wide outer corners

Let's go back to the permutation $\pi=13489 \downarrow 2567 \mid 10$, and consider the outer corner that is too wide

Detecting too wide outer corners

Let's go back to the permutation $\pi=13489 \downarrow 2567 \mid 10$, and consider the outer corner that is too wide

This outer corner comes from the subsequence $13489 \downarrow 2567 \mid 10$.

Detecting too wide outer corners cont.

The shape of this outer corner can be detected with the bivincular pattern

Detecting too wide outer corners cont.

The shape of this outer corner can be detected with the bivincular pattern

In general, we can detect too wide outer corners with the patterns

$$
\begin{aligned}
& \frac{12345}{14235}, \frac{1 \overline{234567}}{1562347}, \frac{1 \overline{23456789}}{167823459}, \ldots, \frac{1 \overline{2 \cdots \cdots \cdots}}{1 \ell+1 \cdots 2 \cdots \ell k}, \ldots .
\end{aligned}
$$

Detecting too wide outer corners cont.

The shape of this outer corner can be detected with the bivincular pattern

In general, we can detect too wide outer corners with the patterns

$$
\begin{aligned}
& \frac{12345}{14235}, \frac{12 \overline{234567}}{1562347}, \frac{1 \overline{23456789}}{167823459}, \ldots, \frac{1 \overline{1 \cdots+1 \cdots 2 \cdots k}}{1 \ell+\cdots}, \ldots
\end{aligned}
$$

and too deep outer corners with the patterns

$$
\begin{aligned}
& \overline{12345} \\
& 13425
\end{aligned}, \overline{123456} 7, \overline{12356237}, \overline{1567823899} 9, \overline{12 \cdots \cdots \cdots} k, \ldots
$$

Summary

The Schubert variety

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids $2 \underline{143}$ and 1324
Gorenstein	π avoids $\frac{12 \overline{34} 4}{315} 2$ and $\frac{12 \overline{23} 45}{24 \underline{15} 3}, \ldots$

Summary

The Schubert variety

X_{π} is	if
smooth	π avoids 2143 and 1324
factorial	π avoids $2 \underline{143}$ and 1324
Gorenstein	π avoids $\frac{12 \overline{34} 5}{3} \underline{2} 2$ and $\frac{1 \overline{23} 45}{24} \underline{153}, \ldots$

... and the two infinite corner families - remember that this is modulo a technical detail I have omitted.

Benefits from the bivincular description

- The description is in terms of patterns only and one doesn't need to construct the associated partition.

Benefits from the bivincular description

- The description is in terms of patterns only and one doesn't need to construct the associated partition.
- It is very easy to see on the pattern level that smooth implies factorial implies Gorenstein.

We end with some open problems.

Other smoothness properties

- A variety is a local complete intersection if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I'm working with Woo on giving a pattern description.

Other smoothness properties

- A variety is a local complete intersection if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I'm working with Woo on giving a pattern description.
- Recall that weakening smoothness to factoriality meant adding an underline in one of the patterns. It would be interesting to know what geometric property is described by the addition of more underlines and overlines.

Other smoothness properties

- A variety is a local complete intersection if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I'm working with Woo on giving a pattern description.
- Recall that weakening smoothness to factoriality meant adding an underline in one of the patterns. It would be interesting to know what geometric property is described by the addition of more underlines and overlines.
- The Schubert varieties we looked at were algebraic subsets of the complete flag variety $F \ell\left(\mathbb{C}^{m}\right)$, that is, type A, what about other types?

Other smoothness properties

- A variety is a local complete intersection if it can be described by the expected number of equations. This condition is in between factoriality and Gorensteinness and I'm working with Woo on giving a pattern description.
- Recall that weakening smoothness to factoriality meant adding an underline in one of the patterns. It would be interesting to know what geometric property is described by the addition of more underlines and overlines.
- The Schubert varieties we looked at were algebraic subsets of the complete flag variety $F \ell\left(\mathbb{C}^{m}\right)$, that is, type A, what about other types?
- Where do the mesh patterns patterns fit into this story?

The end! Questions?

