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We start with some definitions.
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. . . from Combinatorics

Permutations and patterns

A permutation in Sn is a bijection π : {1, . . . , n} → {1, . . . , n}.
We will use one-line notation for permutations, for example,
π = 32415 is the permutation in S5 that sends

1 7→ 3

2 7→ 2

3 7→ 4

4 7→ 1

5 7→ 5.

Patterns are also permutations but we are interested in how they
occur in other permutations . . .
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Patterns inside permutations

Given a pattern p we say that it occurs in a permutation π if π
contains a subsequence that is order-equivalent to p. If p does not
occur in π we say that π avoids the pattern p. Let Sn(p) denote
the set of permutations in Sn that avoid the pattern p.

Example

The permutation π = 32415 has two occurrences of the pattern

123 = : 32415, 32415

It avoids the pattern

132 = .
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. . . from Combinatorics

Vincular patterns

Babson and Steingŕımsson (2000) defined generalized patterns,
or vincular patterns, where conditions are placed on the locations
of the occurrence.

Example

The permutation π = 32415 has one occurrence of the pattern

123 = : 32415

It avoids the pattern

123 = .
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. . . from Combinatorics

Motivation for vincular patterns

They simplify descriptions given in terms of more complicated
patterns – we’ll see this later when we look at factorial
Schubert varieties.

Many interesting sequences of integers come up when we
count the permutations avoiding a pattern p. For example if p
is any classical pattern of length 3 then

|Sn(p)| = n-th Catalan number =
1

n + 1

(
2n

n

)
.

However Claesson showed in 2001 that

|Sn(123)| = n-th Bell number.
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. . . from Combinatorics

Bivincular patterns

Bousquet-Mélou, Claesson, Dukes, and Kitaev (2010) defined
bivincular patterns as vincular patterns with extra restrictions on
the values in an occurrence.

Example

The permutation π = 32415 has one occurrence of the pattern

1
1

2
2

3
3 = : 32415

This is not an occurrence of 1
1

2
2

3
3 . But it is an occurrence of

1
1

2
2

3
3 = : 32415
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. . . from Combinatorics

Motivation for bivincular patterns

They simplify descriptions given in terms of more complicated
patterns – we’ll see this later when we look at Gorenstein
Schubert varieties.

More interesting sequences of integers.

New Wilf-equivalence: For example the patterns

are equivalent.
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. . . from Combinatorics

Motivation for bivincular patterns

They simplify descriptions given in terms of more complicated
patterns – we’ll see this later when we look at Gorenstein
Schubert varieties.

More interesting sequences of integers.

New Wilf-equivalence: For example the patterns

1
6

2
5

3
4

4
1

5
8

6
7

7
2

8
3 =

are equivalent.
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. . . from Geometry

(Complete) flags

We will only consider complete flags in Cm so we will simply refer
to them as flags. A flag is a sequence of vector-subspaces of Cm

E• = (E1 ⊂ E2 ⊂ · · · ⊂ Em = Cm),

with the property that dimEi = i . The set of all such flags is
called the (complete) flag manifold, and denoted by F `(Cm).

We want to consider special subsets of this flag manifold . . .
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. . . from Geometry

Schubert cells in F `(Cm)

If we choose a basis f1, f2, . . . , fm, for Cm then we can fix a
reference flag

F• = (F1 ⊂ F2 ⊂ · · · ⊂ Fm)

such that Fi is spanned by the first i basis vectors.

Using this
reference flag and a permutation π in Sm we can define the
Schubert cell X ◦

π ⊆ F `(Cm) which contains the flags E• such that

dim(Ep ∩ Fq) = #{i ≤ p |π(i) ≤ q},

for 1 ≤ p, q ≤ m. Let’s look at an example.
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. . . from Geometry

A Schubert cell in F `(C3)

Let π = 231.The conditions for the Schubert cell X ◦
231

dim(Ep ∩ Fq) = #{i ≤ p |π(i) ≤ q},

become

p = 1 p = 2 p = 3

q = 1 0 0 1

E1, E2 intersect F1 in a point

q = 2 1 1 2

E1 ⊂ F2, E2 ∩ F2 = E1

q = 3 1 2 3
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. . . from Geometry

Schubert varieties in F `(Cm)

Given a Schubert cell X ◦
π we define the Schubert variety as the

closure
Xπ = X ◦

π ,

in the Zariski topology.
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We will now show how pattern avoidance can be used to describe
geometric properties of Schubert varieties.
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Three geometric properties of varieties

Smooth, factorial and Gorenstein varieties

Pictorial definition of smoothness: the tangent space at every
point has the right dimension.

(a) y − x2 = 0. (b) y 2 − x2 − x3 = 0.

Figure: Compare the single tangent direction in subfigure 1(a) with the
two tangent directions in subfigure 1(b).
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Three geometric properties of varieties

Smooth, factorial and Gorenstein varieties

Algebraic definitions: a variety:

X is if

smooth

the local rings are regular

factorial

the local rings are unique factorization domains

Gorenstein

the local rings are Gorenstein
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Description in terms of patterns

Smooth, factorial and Gorenstein Schubert varieties

Ryan (1987), Wolper (1989), Lakshmibai and Sandhya (1990)
showed that smoothness of Schubert varieties can be determined
by pattern avoidance in the defining permutations:

Xπ is if

smooth

factorial

Gorenstein

Bousquet-Mélou and Butler (2007) proved a conjecture by Yong
and Woo (2005) and described factorial Schubert varieties in terms
of a barred pattern. This description can be simplified using
vincular patterns (U 2010). Woo and Yong (2006) defined a new
type of pattern avoidance, called avoidance with Bruhat
restrictions and used it to give a description of Gorenstein
Schubert varieties.
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Smooth, factorial and Gorenstein Schubert varieties
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Description in terms of patterns

Gorenstein Schubert varieties in terms of bivincular
patterns

The short answer to the question is “yes”. The long answer should
include that it is much more complicated than I had originally
hoped.

The first condition of factoriality, avoiding 2143, is weakened
to

avoiding 1
3

2
1

3
5

4
2

5
4 = and 1

2
2
4

3
1

4
5

5
3 = .

The second condition of factoriality, avoiding 1324, is
weakened to the avoidance of two infinite families of
bivincular patterns, which we now describe.
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Description in terms of patterns

The associated partition of a permutation

Here we will only consider permutations with a unique descent, as
this allows us to avoid a minor technical detail.

Given such a permutation π, with a descent at d , we construct its
associated partition λ(π) as the partition inside a bounding box
with dimensions d × (n− d), whose lower border is the lattice path
that starts at the lower left corner of the box and whose i-th step
is vertical if i is weakly to the left of the position d , and horizontal
otherwise.
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Example

The permutation
π = 134892567|10

has a unique descent at d = 5.

Figure: A bounding box with dimensions 5× 5.
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Description in terms of patterns

Inner corners of the partition

Yong and Woo (2006) showed that if π is Gorenstein then all the
inner corners of the partition have to lie on the same diagonal.

Figure: Inner corners of π = 13489 ↓ 2567|10.
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Outer corners of the partition

If we want to translate this condition into pattern avoidance then
it is actually better to consider the outer corners of the partition.

Figure: Outer corners of π = 13489 ↓ 2567|10.



Definitions Patterns determine geometry Open problems

Description in terms of patterns

Outer corners of the partition

If we want to translate this condition into pattern avoidance then
it is actually better to consider the outer corners of the partition.

Figure: Outer corners of π = 13489 ↓ 2567|10.



Definitions Patterns determine geometry Open problems

Description in terms of patterns

Outer corners of the partition

If we want to translate this condition into pattern avoidance then
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Description in terms of patterns

Depth and width of outer corners

We see that all the inner corners lie on the same diagonal if and
only each outer corner has the same depth and width.

Figure: π = 13589 ↓ 2467|10.



Definitions Patterns determine geometry Open problems

Description in terms of patterns

Detecting too wide outer corners

Let’s go back to the permutation π = 13489 ↓ 2567|10, and
consider the outer corner that is too wide

This outer corner comes from the subsequence 13489 ↓ 2567|10.
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Description in terms of patterns

Detecting too wide outer corners cont.

The shape of this outer corner can be detected with the bivincular
pattern

1
1

2
5

3
6

4
2

5
3

6
4

7
7 = .

In general, we can detect too wide outer corners with the patterns

1
1

2
4

3
2

4
3

5
5 ,

1
1

2
5

3
6

4
2

5
3

6
4

7
7 ,

1
1

2
6

3
7

4
8
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Summary

The Schubert variety

Xπ is if

smooth π avoids 2143 and 1324

factorial π avoids 2143 and 1324

Gorenstein π avoids 1
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. . . and the two infinite corner families — remember that this is
modulo a technical detail I have omitted.
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Description in terms of patterns

Benefits from the bivincular description

The description is in terms of patterns only and one doesn’t
need to construct the associated partition.

It is very easy to see on the pattern level that smooth implies
factorial implies Gorenstein.
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We end with some open problems.
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Other smoothness properties

A variety is a local complete intersection if it can be
described by the expected number of equations. This
condition is in between factoriality and Gorensteinness and I’m
working with Woo on giving a pattern description.

Recall that weakening smoothness to factoriality meant
adding an underline in one of the patterns. It would be
interesting to know what geometric property is described by
the addition of more underlines and overlines.

The Schubert varieties we looked at were algebraic subsets of
the complete flag variety F `(Cm), that is, type A, what about
other types?

Where do the mesh patterns patterns fit into this story?
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The end! Questions?
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