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A simple question

Sn: permutations of 1, 2, . . . , n

Let n ≥ 2. Choose w ∈ Sn (uniform distribution).
What is the probability σ2(n) that 1, 2 are in the
same cycle of w?
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The “fundamental bijection”

Write w as a product of disjoint cycles, least
element of each cycle first, decreasing order of
least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining ŵ ∈ Sn

(one-line form):

68427315.

The map f : Sn → Sn, f(w) = ŵ, is a bijection
(Foata).
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Answer to question

w = (6, 8)(4)(2, 7, 3)(1, 5)

ŵ = 68427315

Note. 1 and 2 are in the same cycle of w
⇔ 1 precedes 2 in ŵ.

⇒ Theorem. σ2(n) = 1/2
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α-separation

Let α = (α1, . . . , αj) be a composition of k, i.e.,
αi ≥ 1,

∑
αi = k.

Let n ≥ k. Define w ∈ Sn to be α-separated if
1, 2, . . . , α1 are in the same cycle C1 of w,
α1 + 1, α1 + 2, . . . , α1 + α2 are in the same cycle
C2 6= C1 of w, etc.

Example. w = (1,2, 10)(3, 12, 7)(4, 6,5, 9)(8, 11)
is (2, 1, 2)-separated.
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Generalization of σ2(n) = 1/2

Let σα(n) be the probability that a random
permutation w ∈ Sn is α-separated,
α = (α1, . . . , αj),

∑
αi = k.

Similar argument gives:

Theorem.

σα(n) =
(α1 − 1)! · · · (αj − 1)!

k!
.
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Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random n-cycles
in Sn, n odd. The probability π2(n) that uv is
(2)-separated (i.e., 1 and 2 appear in the same
cycle of uv) is 1/2.

Corollary. Probability that uv is (1, 1)-separated:

π(1,1)(n) = 1 −
1

2
=

1

2
.
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n = 3 and even n

Example (n = 3).

(1, 2, 3)(1, 3, 2) = (1)(2)(3) : (1, 1) − separated
(1, 3, 2)(1, 2, 3) = (1)(2)(3) : (1, 1) − separated
(1, 2, 3)(1, 2, 3) = (1, 3, 2) : (2) − separated
(1, 3, 2)(1, 3, 2) = (1, 2, 3) : (2) − separated

What about n even?

Probability π2(n) that uv is (2)-separated:

n 2 4 6 8 10
π2(n) 0 7/18 9/20 33/70 13/27
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Theorem on (2)-separation

Theorem. We have

π2(n) =





1
2 , n odd

1
2 −

2
(n−1)(n+2) , n even.
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Sketch of proof

Let w ∈ Sn have cycle type λ ` n, i.e.,

λ = (λ1, λ2, . . . ), λ1 ≥ λ2 ≥ · · · ≥ 0,
∑

λi = n,

cycle lengths λi > 0.

type((1, 3)(2, 9, 5, 4)(7)(6, 8)) = (4, 2, 2, 1)
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qλ

Given type(w) = λ, let qλ be the probability that
w is 2-separated.

Easy:

qλ =

∑(
λi

2

)
(
n
2

) =

∑
λi(λi − 1)

n(n − 1)
.

E.g., q(1,1,...,1) = 0.
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aλ

Let aλ be the number of pairs (u, v) of n-cycles in
Sn for which uv has type λ (a connection
coefficient).

E.g., a(1,1,1) = a3 = 2, a(2,1) = 0.

Easy: π2(n) = 1
(n−1)!2

∑
λ`n aλqλ.
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The key lemma

Let n!/zλ = #{w ∈ Sn : type(w) = λ}. E.g.,

n!

z(1,1,...,1)
= 1,

n!

z(n)
= (n − 1)!.

Lemma (Boccara, 1980).

aλ =
n!(n − 1)!

zλ

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.
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A “formula” for π2(n)

π2(n) =
1

(n − 1)!2

∑

λ`n

n!

zλ

(
∑

i

λi(λi − 1)

n(n − 1)

)

·(n − 1)!

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx

=
1

n − 1

∑

λ`n

z−1
λ

(
∑

i

λi(λi − 1)

)

·

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.
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The exponential formula

How to extract information?

Answer: generating functions.

Let pm(x) = xm
1 + xm

2 + · · · ,

pλ(x) = pλ1
(x)pλ2

(x) · · · .

“Exponential formula, permutation version”

exp
∑

m≥1

1

m
pm(x) =

∑

λ

z−1
λ pλ(x).
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The “bad” factor

exp
∑

m≥1

1

m
pm(x) =

∑

λ

z−1
λ pλ(x).

Compare

π2(n) =
1

n − 1

∑

λ`n

z−1
λ

(
∑

i

λi(λi − 1)

)

·

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.

Bad:
∑

λi(λi − 1)

Products of Cycles – p. 16



The “bad” factor

exp
∑

m≥1

1

m
pm(x) =

∑

λ

z−1
λ pλ(x).

Compare

π2(n) =
1

n − 1

∑

λ`n

z−1
λ

(
∑

i

λi(λi − 1)

)

·

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.

Bad:
∑

λi(λi − 1)

Products of Cycles – p. 16



The “bad” factor

exp
∑

m≥1

1

m
pm(x) =

∑

λ

z−1
λ pλ(x).

Compare

π2(n) =
1

n − 1

∑

λ`n

z−1
λ

(
∑

i

λi(λi − 1)

)

·

∫ 1

0

∏

i

(
xλi − (x − 1)λi

)
dx.

Bad:
∑

λi(λi − 1)

Products of Cycles – p. 16



A trick

Straightforward: Let `(λ) = number of parts.

2−`(λ)+1

(
∂2

∂a2
−

∂2

∂a∂b

)
pλ(a, b)|a=b=1 =

∑
λi(λi−1).

Exponential formula gives:

∑
(n − 1)π2(n)tn = 2

∫ 1

0

(
∂2

∂a2
−

∂2

∂a∂b

)

exp

[
∑

k≥1

1

k

(
ak + bk

2

)
(xk − (x − 1)k)tk

]∣∣∣∣∣
a=b=1

dx.
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Miraculous integral

Get:

∑
(n − 1)π2(n)tn =

∫ 1

0

t2(1 − 2x − 2tx + 2tx2)

(1 − t(x − 1))(1 − tx)3
dx

=
1

t2
log(1 − t2) +

3

2
+

−1
2 + t

(1 − t)2

(coefficient of tn)/(n − 1):

π2(n) =

{
1
2 , n odd

1
2 −

2
(n−1)(n+2) , n even.

Combinatorial proof open, even for n odd.
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Generalizations, with R. Du ( )

πα(n) = probability that uv is α-separated for
random n-cycles u, v

Some simple relations hold, e.g.,

π3(n) = π4(n) + π3,1(n).

First step: generalize

2−`(λ)+1

(
∂2

∂a2
−

∂2

∂a∂b

)
pλ(a, b)|a=b=1 =

∑
λi(λi−1).
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The case α = (3)

3−`(λ)+1

(
∂3

∂a3
− 3

∂3

∂a2∂b
+ 2

∂3

∂a∂b∂c

)
pλ(a, b, c)|a=b=c=1

=
∑

λi(λi − 1)(λi − 2)

Theorem.

π3(n) =





1
3 + 1

(n−2)(n+3) , n odd

1
3 −

3
(n−1)(n+2) , n even
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π(1k)(n)

Theorem. Let n ≥ k ≥ 2. Then

π(1k)(n) =





1

k!
, n − k odd

1

k!
+

2

(k − 2)!(n − k + 1)(n + k)
, n − k even

Combinatorial proof, especially for n − k odd?
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A general result

Recall: σα(n) = probability that a random
permutation w ∈ Sn is α-separated
= (α1 − 1)! · · · (αj − 1)!/k!.

Theorem. Fix m ≥ 0, and let α be a composition
of k. Then there exist rational functions Rα(n)
and Sα(n) of n such that for n sufficiently large,

πα(n) =

{
Rα(n), n even
Sα(n), n odd.

Moreover, πα(n) = σα(n) + O(1/n).
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Not the whole story

π(2,2,2) =





1
720 −

n2+n−32
20(n−3)(n+4)(n−5)(n+6) , n even

1
720 −

n2+n−26
20(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =





1
120 −

n4+2n3−38n2−39n+234
5(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1
120 −

3n2+3n−58
10(n−2)(n+3)(n−4)(n+5) , n odd

Obvious conjecture. Is there an explicit formula
or generating function?

Products of Cycles – p. 23



Not the whole story

π(2,2,2) =





1
720 −

n2+n−32
20(n−3)(n+4)(n−5)(n+6) , n even

1
720 −

n2+n−26
20(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =





1
120 −

n4+2n3−38n2−39n+234
5(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1
120 −

3n2+3n−58
10(n−2)(n+3)(n−4)(n+5) , n odd

Obvious conjecture. Is there an explicit formula
or generating function?

Products of Cycles – p. 23



Not the whole story

π(2,2,2) =





1
720 −

n2+n−32
20(n−3)(n+4)(n−5)(n+6) , n even

1
720 −

n2+n−26
20(n−2)(n+3)(n−4)(n+5) , n odd

π(4,2) =





1
120 −

n4+2n3−38n2−39n+234
5(n−1)(n+2)(n−3)(n+4)(n−5)(n+6) , n even

1
120 −

3n2+3n−58
10(n−2)(n+3)(n−4)(n+5) , n odd

Obvious conjecture. Is there an explicit formula
or generating function?

Products of Cycles – p. 23



n-cycle times (n − j)-cycle

Let λ ` n, 0 ≤ j < n. Let aλ,j be the number of
pairs (u, v) ∈ Sn × Sn for which u is an n-cycle, v
is an (n − j)-cycle, and uv has type λ.

Theorem (Boccara).

aλ,j =
n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

∏

i

(
xλi − (x − 1)λi

)
dx.

Easy case: j = 1
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Let λ ` n, 0 ≤ j < n. Let aλ,j be the number of
pairs (u, v) ∈ Sn × Sn for which u is an n-cycle, v
is an (n − j)-cycle, and uv has type λ.
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The case j = 1

αλ,1 =
n!(n − 2)!

zλ

∫ 1

0

d

dx

∏

i

(
xλi − (x − 1)λi

)
dx

=

{
2n!(n−2)!

zλ
, λ odd type

0, λ even type.

In other words, if u is an n-cycle and v is an
(n − 1)-cycle, then uv is equidistributed on odd
permutations.

Bijective proof known (A. Machì, 1992).
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Explicit formula

Let u ∈ Sn be a random n-cycle and v ∈ Sn a
random (n − j)-cycle. Let πα(n, j) be the
probability that uv is α-separated.

Theorem.

πα(n, 1) =
(α1 − 1)! · · · (α` − 1)!

(j − 2)!

×

(
1

j(j − 1)
+ (−1)n−j 1

n(n − 1)

)
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General j

Recall (Boccara):

aλ,j =
n!(n − j − 1)!

zλ j!

∫ 1

0

dj

dxj

∏

i

(
xλi − (x − 1)λi

)
dx.

= c(n, j)
dj−1

dxj−1

∏

i

(
xλi − (x − 1)λi

)
dx

∣∣∣∣∣

1

0
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Taylor series

aλ,j = c(n, j)
dj−1

dxj−1

∏

i

(
xλi − (x − 1)λi

)
dx

∣∣∣∣∣

1

0

Can treat all j ≥ 1 at one time using

∑

j≥0

dj

dxj
f(a)

xj

j!
= f(x + a).
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Some results

Theorem. Fix m ≥ 0, and let α be a composition
of k. Then there exist rational functions Rα(n)
and Sα(n) of n such that for n sufficiently large,

πα(n, j) =

{
Rα(n), n even
Sα(n), n odd.

Moreover, πα(n, j) = σα(n, j) + O(1/n).

Probably O(1/n2).
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The case α = (1, 1)

Theorem.

π(1,1)(n, j) =
1

2
+





j
(n−j+1)(n−1) , n − j odd

2(n−j+1)−j(n−j)
(n−j+1)(n−j+2)(n−1) , n − j odd

Note the case j = 0 and n odd: π(1,1)(n) = 1/2

(Bóna’s conjecture).
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Open problems

Many additional open problems remain, e.g.:

Combinatorial proofs

Nice denominators

Product of (n − 1)-cycle and (n − 1)-cycle, for
instance
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Some data

Pn + 1
2 = probability that uv is (2)-separated,

where u, v are (n − 1)-cycles in Sn

n 3 4 5 6 7
Pn 1/6 -1/8 1/25 -19/432 19/980
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II. Number of cycles

κ(w) : number of cycles of w

Pλ(q) =
∑

type(w)=λ

qκ((1,2,...,n)·w).

(a)n = a(a − 1) · · · (a − n + 1)

Ef(q) = f(q − 1)
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Formula for Pλ(q)

Let

gλ(t) =
1

1 − t

∏̀

j=1

(1 − tλj).

Theorem. Pλ(q) = z−1
λ gλ(E)(q + n − 1)n

Proof based on symmetric functions. Equivalent
to a result of D. Zagier (1995).
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An example

λ = (5, 2, 2, 1), zλ = 40

P5221(q) = 360q7 + 13860q5 + 59220q3 + 17280q

approximate zeros of P5221(q):

±5.80i, ±2.13i, ±0.561i, 0
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A lemma on zeros

Lemma. Let g(t) be a complex polynomial of
degree exactly d, such that every zero of g(t) lies
on the circle |z| = 1. Suppose that the multiplicity
of 1 as a root of g(t) is m ≥ 0. Let
P (q) = g(E)(q + n − 1)n.

(a) If d ≤ n − 1, then

P (q) = (q + n − d − 1)n−d Q(q),

where Q(q) is a polynomial of degree d − m
for which every zero has real part
(d − n + 1)/2.
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Lemma (continued)

(b) If d ≥ n − 1, then P (q) is a polynomial of
degree n − m for which every zero has real
part (d − n + 1)/2.
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An application to Pλ(q)

`(λ) : number of parts of λ

Corollary. The polynomial Pλ(q) has degree
n− `(λ) + 1, and every zero of Pλ(q) has real part
0.

Products of Cycles – p. 38



Parity

Simple parity argument gives
Pλ(q) = (−1)nPλ(−q). Thus

Pλ(q) =

{
Rλ(q

2), n even

qRλ(q
2), n odd,

for some polynomial Rλ(q).

Reformulation of previous corollary: Rλ(q) has
(nonpositive) real zeros.

⇒ The coefficients of Rλ(q) are log-concave with
no external zeros, and hence unimodal.
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The case λ = (n)

P(n)(q) =
1

n(n + 1)
((q + n)n+1 − (q)n+1).

c(n, k): number of w ∈ Sn with k cycles
(signless Stirling number of the first kind)

Corollary. The number of n-cycles w ∈ Sn for
which w · (1, 2, . . . , n) has exactly k cycles is 0 if
n − k is odd, and is otherwise equal to
c(n + 1, k)/

(
n+1

2

)
.

Combinatorial proof by V. Féray and E. A.
Vassilieva.
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A generalization?

Let λ, µ ` n.

Pλ,µ(q) =
∑

ρ(w)=λ

qκ(wµ·w),

where wµ is a fixed permutation of cycle type µ.

Does Pλ,µ(q) have purely imaginary zeros?

Alas, P332,332(q) = q8 + 35q6 + 424q4 + 660q2, four
of whose zeros are approximately

±1.11366 ± 4.22292i.
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