

Products of Cycles

Richard P. Stanley

M.I.T.

Products of Cycles – p.

A simple question

\mathfrak{S}_n : permutations of $1, 2, \ldots, n$

A simple question

\mathfrak{S}_n : permutations of $1, 2, \ldots, n$

Let $n \ge 2$. Choose $w \in \mathfrak{S}_n$ (uniform distribution). What is the probability $\sigma_2(n)$ that 1, 2 are in the same cycle of w?

The "fundamental bijection"

Write *w* as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

The "fundamental bijection"

Write *w* as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining $\widehat{\boldsymbol{w}} \in \mathfrak{S}_n$ (one-line form):

68427315.

The "fundamental bijection"

Write *w* as a product of disjoint cycles, least element of each cycle first, decreasing order of least elements:

(6, 8)(4)(2, 7, 3)(1, 5).

Remove parentheses, obtaining $\widehat{\boldsymbol{w}} \in \mathfrak{S}_n$ (one-line form):

68427315.

The map $f: \mathfrak{S}_n \to \mathfrak{S}_n$, $f(w) = \hat{w}$, is a bijection (Foata).

Answer to question

$$w = (6,8)(4)(2,7,3)(1,5)$$

 $\widehat{w} = 68427315$

Answer to question

$$w = (6,8)(4)(2,7,3)(1,5)$$

 $\widehat{w} = 68427315$

Note. 1 and 2 are in the same cycle of $w \Leftrightarrow 1$ precedes 2 in \widehat{w} .

Answer to question

$$w = (6,8)(4)(2,7,3)(1,5)$$

 $\widehat{w} = 68427315$

Note. 1 and 2 are in the same cycle of $w \Leftrightarrow 1$ precedes 2 in \widehat{w} .

 \Rightarrow Theorem. $\sigma_2(n) = 1/2$

Let $\alpha = (\alpha_1, \dots, \alpha_j)$ be a composition of k, i.e., $\alpha_i \ge 1$, $\sum \alpha_i = k$.

Let $n \ge k$. Define $w \in \mathfrak{S}_n$ to be α -separated if $1, 2, \ldots, \alpha_1$ are in the same cycle C_1 of w, $\alpha_1 + 1, \alpha_1 + 2, \ldots, \alpha_1 + \alpha_2$ are in the same cycle $C_2 \ne C_1$ of w, etc.

Let $\alpha = (\alpha_1, \dots, \alpha_j)$ be a composition of k, i.e., $\alpha_i \ge 1$, $\sum \alpha_i = k$.

Let $n \ge k$. Define $w \in \mathfrak{S}_n$ to be α -separated if $1, 2, \ldots, \alpha_1$ are in the same cycle C_1 of w, $\alpha_1 + 1, \alpha_1 + 2, \ldots, \alpha_1 + \alpha_2$ are in the same cycle $C_2 \ne C_1$ of w, etc.

Example. w = (1, 2, 10)(3, 12, 7)(4, 6, 5, 9)(8, 11) is (2, 1, 2)-separated.

Generalization of $\sigma_2(n) = 1/2$

Let $\sigma_{\alpha}(n)$ be the probability that a random permutation $w \in \mathfrak{S}_n$ is α -separated, $\alpha = (\alpha_1, \dots, \alpha_j), \sum \alpha_i = k.$

Generalization of $\sigma_2(n) = 1/2$

Let $\sigma_{\alpha}(n)$ be the probability that a random permutation $w \in \mathfrak{S}_n$ is α -separated, $\alpha = (\alpha_1, \dots, \alpha_j), \sum \alpha_i = k.$

Similar argument gives:

Theorem.

$$\sigma_{\alpha}(n) = \frac{(\alpha_1 - 1)! \cdots (\alpha_j - 1)!}{k!}.$$

Conjecture of M. Bóna

Conjecture (Bóna). Let u, v be random *n*-cycles in \mathfrak{S}_n , *n* odd. The probability $\pi_2(n)$ that uv is (2)-separated (i.e., 1 and 2 appear in the same cycle of uv) is 1/2. Conjecture (Bóna). Let u, v be random *n*-cycles in \mathfrak{S}_n , *n* odd. The probability $\pi_2(n)$ that uv is (2)-separated (i.e., 1 and 2 appear in the same cycle of uv) is 1/2.

Corollary. Probability that uv is (1, 1)-separated:

$$\pi_{(1,1)}(n) = 1 - \frac{1}{2} = \frac{1}{2}$$

n = 3 and even n

Example (n = 3).

(1,2,3)(1,3,2) = (1)(2)(3) : (1,1) -separated (1,3,2)(1,2,3) = (1)(2)(3) : (1,1) -separated (1,2,3)(1,2,3) = (1,3,2) : (2) -separated (1,3,2)(1,3,2) = (1,2,3) : (2) -separated

Example (n = 3).

(1,2,3)(1,3,2) = (1)(2)(3) : (1,1) -separated (1,3,2)(1,2,3) = (1)(2)(3) : (1,1) -separated (1,2,3)(1,2,3) = (1,3,2) : (2) -separated (1,3,2)(1,3,2) = (1,2,3) : (2) -separated

What about *n* even?

Example (n = 3).

(1,2,3)(1,3,2) = (1)(2)(3) : (1,1) -separated (1,3,2)(1,2,3) = (1)(2)(3) : (1,1) -separated (1,2,3)(1,2,3) = (1,3,2) : (2) -separated (1,3,2)(1,3,2) = (1,2,3) : (2) -separated

What about *n* even?

Probability $\pi_2(n)$ that uv is (2)-separated:

	1			8	
$\pi_2(n)$	0	7/18	9/20	33/70	13/27

Theorem on (2)-separation

Theorem. We have

$$\pi_2(n) = \begin{cases} \frac{1}{2}, n \text{ odd} \\ \frac{1}{2} - \frac{2}{(n-1)(n+2)}, n \text{ even.} \end{cases}$$

Products of Cycles – p.

Let $w \in \mathfrak{S}_n$ have cycle type $\lambda \vdash n$, i.e.,

 $\lambda = (\lambda_1, \lambda_2, \dots), \ \lambda_1 \ge \lambda_2 \ge \dots \ge 0, \ \sum \lambda_i = n,$

cycle lengths $\lambda_i > 0$.

Let $w \in \mathfrak{S}_n$ have cycle type $\lambda \vdash n$, i.e.,

 $\lambda = (\lambda_1, \lambda_2, \dots), \ \lambda_1 \ge \lambda_2 \ge \dots \ge 0, \ \sum \lambda_i = n,$

cycle lengths $\lambda_i > 0$.

type((1,3)(2,9,5,4)(7)(6,8)) = (4,2,2,1)

Given type $(w) = \lambda$, let q_{λ} be the probability that w is 2-separated.

Given type $(w) = \lambda$, let q_{λ} be the probability that w is 2-separated.

Easy:

$$q_{\lambda} = \frac{\sum \binom{\lambda_i}{2}}{\binom{n}{2}} = \frac{\sum \lambda_i (\lambda_i - 1)}{n(n-1)}.$$

$$q_{\lambda}$$

Given type $(w) = \lambda$, let q_{λ} be the probability that w is 2-separated.

Easy:

$$q_{\lambda} = \frac{\sum \binom{\lambda_i}{2}}{\binom{n}{2}} = \frac{\sum \lambda_i (\lambda_i - 1)}{n(n-1)}.$$

E.g., $q_{(1,1,\dots,1)} = 0$.

Let a_{λ} be the number of pairs (u, v) of *n*-cycles in \mathfrak{S}_n for which uv has type λ (a connection coefficient).

a_{λ}

Let a_{λ} be the number of pairs (u, v) of *n*-cycles in \mathfrak{S}_n for which uv has type λ (a connection coefficient).

E.g., $a_{(1,1,1)} = a_3 = 2$, $a_{(2,1)} = 0$.

$$a_{\lambda}$$

Let a_{λ} be the number of pairs (u, v) of *n*-cycles in \mathfrak{S}_n for which uv has type λ (a connection coefficient).

E.g.,
$$a_{(1,1,1)} = a_3 = 2$$
, $a_{(2,1)} = 0$.

Easy:
$$\pi_2(n) = \frac{1}{(n-1)!^2} \sum_{\lambda \vdash n} a_\lambda q_\lambda$$
.

Let
$$n!/z_{\lambda} = \#\{w \in \mathfrak{S}_n : \operatorname{type}(w) = \lambda\}$$
. E.g.,

$$\frac{n!}{z_{(1,1,\dots,1)}} = 1, \quad \frac{n!}{z_{(n)}} = (n-1)!.$$

Lemma (Boccara, 1980).

$$a_{\lambda} = \frac{n!(n-1)!}{z_{\lambda}} \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

A "formula" for $\pi_2(n)$

$$\pi_2(n) = \frac{1}{(n-1)!^2} \sum_{\lambda \vdash n} \frac{n!}{z_\lambda} \left(\sum_i \frac{\lambda_i(\lambda_i - 1)}{n(n-1)} \right)$$
$$\cdot (n-1)! \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx$$
$$= \frac{1}{n-1} \sum_{\lambda \vdash n} z_\lambda^{-1} \left(\sum_i \lambda_i (\lambda_i - 1) \right)$$
$$\cdot \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

Products of Cycles – p. 1

The exponential formula

How to extract information?

The exponential formula

How to extract information?

Answer: generating functions.

The exponential formula

How to extract information?

Answer: generating functions.

Let $p_m(x) = x_1^m + x_2^m + \cdots$,

$$\boldsymbol{p}_{\boldsymbol{\lambda}}(\boldsymbol{x}) = p_{\lambda_1}(\boldsymbol{x})p_{\lambda_2}(\boldsymbol{x})\cdots$$

"Exponential formula, permutation version"

$$\exp\sum_{m\geq 1}\frac{1}{m}p_m(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$$

The "bad" factor

 $\exp\sum_{m\geq 1}\frac{1}{m}p_m(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$

The "bad" factor

$$\exp\sum_{m\geq 1}\frac{1}{m}p_m(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$$

Compare

$$\pi_2(n) = \frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1} \left(\sum_i \lambda_i (\lambda_i - 1) \right)$$
$$\cdot \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

The "bad" factor

$$\exp\sum_{m\geq 1}\frac{1}{m}p_m(x) = \sum_{\lambda} z_{\lambda}^{-1}p_{\lambda}(x).$$

Compare

$$\pi_2(n) = \frac{1}{n-1} \sum_{\lambda \vdash n} z_{\lambda}^{-1} \left(\sum_i \lambda_i (\lambda_i - 1) \right)$$

 $\cdot \int_0^1 \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$

Bad: $\sum \lambda_i (\lambda_i - 1)$

A trick

Straightforward: Let $\ell(\lambda)$ = number of parts.

$$2^{-\ell(\lambda)+1} \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a \partial b} \right) p_{\lambda}(a,b)|_{a=b=1} = \sum \lambda_i (\lambda_i - 1).$$

A trick

Straightforward: Let $\ell(\lambda)$ = number of parts.

$$2^{-\ell(\lambda)+1} \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a \partial b} \right) p_{\lambda}(a,b)|_{a=b=1} = \sum \lambda_i (\lambda_i - 1).$$

Exponential formula gives:

$$\sum (n-1)\pi_2(n)t^n = 2\int_0^1 \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a\partial b}\right)$$

$$p\left[\sum_{k\geq 1}\frac{1}{k}\left(\frac{a^k+b^k}{2}\right)(x^k-(x-1)^k)t^k\right]\right|_{a=b=1}dx.$$

Miraculous integral

Get:

$$\sum (n-1)\pi_2(n)t^n = \int_0^1 \frac{t^2(1-2x-2tx+2tx^2)}{(1-t(x-1))(1-tx)^3} dx$$
$$= \frac{1}{t^2}\log(1-t^2) + \frac{3}{2} + \frac{-\frac{1}{2}+t}{(1-t)^2}$$

Miraculous integral

Get:

$$\sum (n-1)\pi_2(n)t^n = \int_0^1 \frac{t^2(1-2x-2tx+2tx^2)}{(1-t(x-1))(1-tx)^3} dx$$
$$= \frac{1}{t^2} \log(1-t^2) + \frac{3}{2} + \frac{-\frac{1}{2}+t}{(1-t)^2}$$
(coefficient of t^n)/(n-1):

$$\pi_2(n) = \begin{cases} \frac{1}{2}, & n \text{ odd} \\ \frac{1}{2} - \frac{2}{(n-1)(n+2)}, & n \text{ even.} \end{cases}$$

Miraculous integral

Get:

$$\sum (n-1)\pi_2(n)t^n = \int_0^1 \frac{t^2(1-2x-2tx+2tx^2)}{(1-t(x-1))(1-tx)^3} dx$$
$$= \frac{1}{t^2} \log(1-t^2) + \frac{3}{2} + \frac{-\frac{1}{2}+t}{(1-t)^2}$$

(coefficient of t^n)/(n-1):

$$\pi_2(n) = \begin{cases} \frac{1}{2}, & n \text{ odd} \\ \frac{1}{2} - \frac{2}{(n-1)(n+2)}, & n \text{ even.} \end{cases}$$

Combinatorial proof open, even for n odd.

Generalizations, with R. Du (杜若霞)

 $\pi_{\alpha}(n)$ = probability that uv is α -separated for random *n*-cycles u, v

Generalizations, with R. Du (杜若霞)

 $\pi_{\alpha}(n)$ = probability that uv is α -separated for random *n*-cycles u, v

Some simple relations hold, e.g.,

$$\pi_3(n) = \pi_4(n) + \pi_{3,1}(n).$$

Generalizations, with R. Du (杜若霞)

 $\pi_{\alpha}(n)$ = probability that uv is α -separated for random *n*-cycles u, v

Some simple relations hold, e.g.,

$$\pi_3(n) = \pi_4(n) + \pi_{3,1}(n).$$

First step: generalize

$$2^{-\ell(\lambda)+1} \left(\frac{\partial^2}{\partial a^2} - \frac{\partial^2}{\partial a \partial b} \right) p_{\lambda}(a,b)|_{a=b=1} = \sum \lambda_i (\lambda_i - 1).$$

The case $\alpha = (3)$

 $3^{-\ell(\lambda)+1} \left(\frac{\partial^3}{\partial a^3} - 3 \frac{\partial^3}{\partial a^2 \partial b} + 2 \frac{\partial^3}{\partial a \partial b \partial c} \right) p_{\lambda}(a, b, c)|_{a=b=c=1}$

 $= \sum \lambda_i (\lambda_i - 1) (\lambda_i - 2)$

The case $\alpha = (3)$

$$3^{-\ell(\lambda)+1} \left(\frac{\partial^3}{\partial a^3} - 3\frac{\partial^3}{\partial a^2 \partial b} + 2\frac{\partial^3}{\partial a \partial b \partial c} \right) p_{\lambda}(a, b, c)|_{a=b=c=1}$$
$$= \sum \lambda_i (\lambda_i - 1)(\lambda_i - 2)$$

Theorem.

$$\pi_3(n) = \begin{cases} \frac{1}{3} + \frac{1}{(n-2)(n+3)}, & n \text{ odd} \\ \frac{1}{3} - \frac{3}{(n-1)(n+2)}, & n \text{ even} \end{cases}$$

 $\pi_{(1^k)}(n)$

Theorem. Let $n \ge k \ge 2$. Then

$$\pi_{(1^k)}(n) = \begin{cases} \frac{1}{k!}, & n-k \text{ o} \\ \frac{1}{k!} + \frac{2}{(k-2)!(n-k+1)(n+k)}, & n-k \text{ e} \end{cases}$$

 $\pi_{(1^k)}(n)$

Theorem. Let $n \ge k \ge 2$. Then

$$\pi_{(1^k)}(n) = \begin{cases} \frac{1}{k!}, & n-k \mathbf{0} \\ \frac{1}{k!} + \frac{2}{(k-2)!(n-k+1)(n+k)}, & n-k \mathbf{e} \end{cases}$$

Combinatorial proof, especially for n - k odd?

Recall: $\sigma_{\alpha}(n) = \text{probability that a random permutation } w \in \mathfrak{S}_n \text{ is } \alpha \text{-separated} = (\alpha_1 - 1)! \cdots (\alpha_j - 1)! / k!.$

Recall: $\sigma_{\alpha}(n) = \text{probability that a random permutation } w \in \mathfrak{S}_n \text{ is } \alpha \text{-separated} = (\alpha_1 - 1)! \cdots (\alpha_j - 1)! / k!.$

Theorem. Fix $m \ge 0$, and let α be a composition of k. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$\pi_{\alpha}(n) = \begin{cases} R_{\alpha}(n), \ n \text{ even} \\ S_{\alpha}(n), \ n \text{ odd.} \end{cases}$$

Recall: $\sigma_{\alpha}(n) = \text{probability that a random permutation } w \in \mathfrak{S}_n \text{ is } \alpha \text{-separated} = (\alpha_1 - 1)! \cdots (\alpha_j - 1)! / k!.$

Theorem. Fix $m \ge 0$, and let α be a composition of k. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$\pi_{\alpha}(n) = \begin{cases} R_{\alpha}(n), \ n \text{ even} \\ S_{\alpha}(n), \ n \text{ odd.} \end{cases}$$

Moreover, $\pi_{\alpha}(n) = \sigma_{\alpha}(n) + O(1/n)$.

Not the whole story

$$\pi_{(2,2,2)} = \begin{cases} \frac{1}{720} - \frac{n^2 + n - 32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{720} - \frac{n^2 + n - 26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

Not the whole story

$$\pi_{(2,2,2)} = \begin{cases} \frac{1}{720} - \frac{n^2 + n - 32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{720} - \frac{n^2 + n - 26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

$$\pi_{(4,2)} = \begin{cases} \frac{1}{120} - \frac{n^4 + 2n^3 - 38n^2 - 39n + 234}{5(n-1)(n+2)(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{120} - \frac{3n^2 + 3n - 58}{10(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

Not the whole story

$$\pi_{(2,2,2)} = \begin{cases} \frac{1}{720} - \frac{n^2 + n - 32}{20(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{720} - \frac{n^2 + n - 26}{20(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

$$\pi_{(4,2)} = \begin{cases} \frac{1}{120} - \frac{n^4 + 2n^3 - 38n^2 - 39n + 234}{5(n-1)(n+2)(n-3)(n+4)(n-5)(n+6)}, & n \text{ even} \\ \frac{1}{120} - \frac{3n^2 + 3n - 58}{10(n-2)(n+3)(n-4)(n+5)}, & n \text{ odd} \end{cases}$$

Obvious conjecture. Is there an explicit formula or generating function?

Let $\lambda \vdash n$, $0 \leq j < n$. Let $a_{\lambda,j}$ be the number of pairs $(u, v) \in \mathfrak{S}_n \times \mathfrak{S}_n$ for which u is an n-cycle, v is an (n - j)-cycle, and uv has type λ .

Let $\lambda \vdash n$, $0 \leq j < n$. Let $a_{\lambda,j}$ be the number of pairs $(u, v) \in \mathfrak{S}_n \times \mathfrak{S}_n$ for which u is an n-cycle, v is an (n - j)-cycle, and uv has type λ .

Theorem (Boccara).

$$a_{\lambda,j} = \frac{n!(n-j-1)!}{z_{\lambda}\,j!} \int_0^1 \frac{d^j}{dx^j} \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

Let $\lambda \vdash n$, $0 \leq j < n$. Let $a_{\lambda,j}$ be the number of pairs $(u, v) \in \mathfrak{S}_n \times \mathfrak{S}_n$ for which u is an n-cycle, v is an (n - j)-cycle, and uv has type λ .

Theorem (Boccara).

$$a_{\lambda,j} = \frac{n!(n-j-1)!}{z_{\lambda}\,j!} \int_0^1 \frac{d^j}{dx^j} \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

Easy case:

Let $\lambda \vdash n$, $0 \leq j < n$. Let $a_{\lambda,j}$ be the number of pairs $(u, v) \in \mathfrak{S}_n \times \mathfrak{S}_n$ for which u is an n-cycle, v is an (n - j)-cycle, and uv has type λ .

Theorem (Boccara).

$$a_{\lambda,j} = \frac{n!(n-j-1)!}{z_{\lambda}\,j!} \int_0^1 \frac{d^j}{dx^j} \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

Easy case: j = 1

$$\begin{aligned} \alpha_{\lambda,1} &= \frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{dx} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx \\ &= \begin{cases} \frac{2n!(n-2)!}{z_{\lambda}}, & \lambda \text{ odd type} \\ 0, & \lambda \text{ even type.} \end{cases} \end{aligned}$$

$$\begin{aligned} \alpha_{\lambda,1} &= \frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{dx} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx \\ &= \begin{cases} \frac{2n!(n-2)!}{z_{\lambda}}, & \lambda \text{ odd type} \\ & 0, & \lambda \text{ even type.} \end{cases} \end{aligned}$$

In other words, if u is an n-cycle and v is an (n-1)-cycle, then uv is equidistributed on odd permutations.

$$\begin{aligned} \alpha_{\lambda,1} &= \frac{n!(n-2)!}{z_{\lambda}} \int_{0}^{1} \frac{d}{dx} \prod_{i} \left(x^{\lambda_{i}} - (x-1)^{\lambda_{i}} \right) dx \\ &= \begin{cases} \frac{2n!(n-2)!}{z_{\lambda}}, & \lambda \text{ odd type} \\ & 0, & \lambda \text{ even type.} \end{cases} \end{aligned}$$

In other words, if u is an n-cycle and v is an (n-1)-cycle, then uv is equidistributed on odd permutations.

Bijective proof known (A. Machì, 1992).

Let $u \in \mathfrak{S}_n$ be a random *n*-cycle and $v \in \mathfrak{S}_n$ a random (n - j)-cycle. Let $\pi_{\alpha}(n, j)$ be the probability that uv is α -separated.

Theorem.

$$\pi_{\alpha}(n,1) = \frac{(\alpha_1 - 1)! \cdots (\alpha_{\ell} - 1)!}{(j-2)!} \times \left(\frac{1}{j(j-1)} + (-1)^{n-j} \frac{1}{n(n-1)}\right)$$

Recall (Boccara):

$$a_{\lambda,j} = \frac{n!(n-j-1)!}{z_{\lambda}\,j!} \int_0^1 \frac{d^j}{dx^j} \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

Recall (Boccara):

$$a_{\lambda,j} = \frac{n!(n-j-1)!}{z_{\lambda}j!} \int_0^1 \frac{d^j}{dx^j} \prod_i \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx.$$

$$= c(n,j) \frac{d^{j-1}}{dx^{j-1}} \prod_{i} \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx \Big|_{0}^{1}$$

$$a_{\lambda,j} = c(n,j) \left. \frac{d^{j-1}}{dx^{j-1}} \prod_{i} \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx \right|_0^1$$

Taylor series

$$a_{\lambda,j} = c(n,j) \left. \frac{d^{j-1}}{dx^{j-1}} \prod_{i} \left(x^{\lambda_i} - (x-1)^{\lambda_i} \right) dx \right|_0^1$$

Can treat all $j \ge 1$ at one time using

$$\sum_{j\geq 0} \frac{d^j}{dx^j} f(a) \frac{x^j}{j!} = f(x+a).$$

Theorem. Fix $m \ge 0$, and let α be a composition of k. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$\pi_{\alpha}(n,j) = \begin{cases} R_{\alpha}(n), \ n \text{ even} \\ S_{\alpha}(n), \ n \text{ odd.} \end{cases}$$

Theorem. Fix $m \ge 0$, and let α be a composition of k. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$\pi_{\alpha}(n,j) = \begin{cases} R_{\alpha}(n), \ n \text{ even} \\ S_{\alpha}(n), \ n \text{ odd.} \end{cases}$$

Moreover, $\pi_{\alpha}(n,j) = \sigma_{\alpha}(n,j) + O(1/n)$.

Theorem. Fix $m \ge 0$, and let α be a composition of k. Then there exist rational functions $R_{\alpha}(n)$ and $S_{\alpha}(n)$ of n such that for n sufficiently large,

$$\pi_{\alpha}(n,j) = \begin{cases} R_{\alpha}(n), \ n \text{ even} \\ S_{\alpha}(n), \ n \text{ odd.} \end{cases}$$

Moreover, $\pi_{\alpha}(n,j) = \sigma_{\alpha}(n,j) + O(1/n)$.

Probably $O(1/n^2)$.

The case $\alpha = (1, 1)$

Theorem.

$$\pi_{(1,1)}(n,j) = \frac{1}{2} + \begin{cases} \frac{j}{(n-j+1)(n-1)}, & n-j \text{ odd} \\ \frac{2(n-j+1)-j(n-j)}{(n-j+1)(n-j+2)(n-1)}, & n-j \text{ odd} \end{cases}$$

The case $\alpha = (1, 1)$

Theorem.

$$\pi_{(1,1)}(n,j) = \frac{1}{2} + \begin{cases} \frac{j}{(n-j+1)(n-1)}, & n-j \text{ odd} \\ \frac{2(n-j+1)-j(n-j)}{(n-j+1)(n-j+2)(n-1)}, & n-j \text{ odd} \end{cases}$$

Note the case j = 0 and n odd: $\pi_{(1,1)}(n) = 1/2$ (Bóna's conjecture).

Open problems

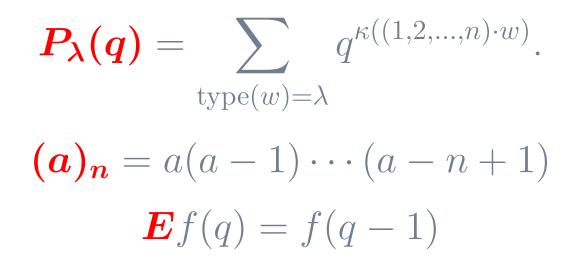
Many additional open problems remain, e.g.:

- Combinatorial proofs
- Nice denominators
- Product of (n-1)-cycle and (n-1)-cycle, for instance

 $P_n + \frac{1}{2} =$ probability that uv is (2)-separated, where u, v are (n-1)-cycles in \mathfrak{S}_n

II. Number of cycles

$\kappa(w)$: number of cycles of w



Products of Cycles – p. 3

Let

$$\boldsymbol{g_{\lambda}(t)} = \frac{1}{1-t} \prod_{j=1}^{\ell} (1-t^{\lambda_j}).$$

Theorem. $P_{\lambda}(q) = z_{\lambda}^{-1}g_{\lambda}(E)(q+n-1)_n$

Let

$$\boldsymbol{g_{\lambda}(t)} = \frac{1}{1-t} \prod_{j=1}^{\ell} (1-t^{\lambda_j}).$$

Theorem. $P_{\lambda}(q) = z_{\lambda}^{-1}g_{\lambda}(E)(q+n-1)_n$

Proof based on symmetric functions. Equivalent to a result of **D. Zagier** (1995).

An example

$$\lambda = (5, 2, 2, 1), \ z_{\lambda} = 40$$

$P_{5221}(q) = 360q^7 + 13860q^5 + 59220q^3 + 17280q$

An example

$$\lambda = (5, 2, 2, 1), \ z_{\lambda} = 40$$

 $P_{5221}(q) = 360q^7 + 13860q^5 + 59220q^3 + 17280q$
approximate zeros of $P_{5221}(q)$:

 $\pm 5.80i, \pm 2.13i, \pm 0.561i, 0$

Lemma. Let g(t) be a complex polynomial of degree exactly d, such that every zero of g(t) lies on the circle |z| = 1. Suppose that the multiplicity of 1 as a root of g(t) is $m \ge 0$. Let $P(q) = g(E)(q + n - 1)_n$.

(a) If $d \le n - 1$, then

$$P(q) = (q + n - d - 1)_{n-d} Q(q),$$

where Q(q) is a polynomial of degree d - mfor which every zero has real part (d - n + 1)/2.

Lemma (continued)

(b) If $d \ge n - 1$, then P(q) is a polynomial of degree n - m for which every zero has real part (d - n + 1)/2.

$\ell(\lambda)$: number of parts of λ

Corollary. The polynomial $P_{\lambda}(q)$ has degree $n - \ell(\lambda) + 1$, and every zero of $P_{\lambda}(q)$ has real part *0*.

Parity

Simple parity argument gives $P_{\lambda}(q) = (-1)^n P_{\lambda}(-q)$. Thus

$$P_{\lambda}(q) = \begin{cases} R_{\lambda}(q^2), & n \text{ even} \\ qR_{\lambda}(q^2), & n \text{ odd}, \end{cases}$$

for some polynomial $R_{\lambda}(q)$.

Parity

Simple parity argument gives $P_{\lambda}(q) = (-1)^n P_{\lambda}(-q)$. Thus

$$P_{\lambda}(q) = \begin{cases} R_{\lambda}(q^2), & n \text{ even} \\ qR_{\lambda}(q^2), & n \text{ odd}, \end{cases}$$

for some polynomial $R_{\lambda}(q)$.

Reformulation of previous corollary: $R_{\lambda}(q)$ has (nonpositive) real zeros.

Parity

Simple parity argument gives $P_{\lambda}(q) = (-1)^n P_{\lambda}(-q)$. Thus

$$P_{\lambda}(q) = \begin{cases} R_{\lambda}(q^2), & n \text{ even} \\ qR_{\lambda}(q^2), & n \text{ odd}, \end{cases}$$

for some polynomial $R_{\lambda}(q)$.

Reformulation of previous corollary: $R_{\lambda}(q)$ has (nonpositive) real zeros.

 \Rightarrow The coefficients of $R_{\lambda}(q)$ are log-concave with no external zeros, and hence unimodal.

The case $\lambda = (n)$

$$P_{(n)}(q) = \frac{1}{n(n+1)}((q+n)_{n+1} - (q)_{n+1}).$$

c(n, k): number of $w \in \mathfrak{S}_n$ with k cycles (signless Stirling number of the first kind)

Corollary. The number of *n*-cycles $w \in \mathfrak{S}_n$ for which $w \cdot (1, 2, ..., n)$ has exactly k cycles is 0 if n - k is odd, and is otherwise equal to $c(n + 1, k) / {n+1 \choose 2}$.

The case $\lambda = (n)$

$$P_{(n)}(q) = \frac{1}{n(n+1)}((q+n)_{n+1} - (q)_{n+1}).$$

c(n, k): number of $w \in \mathfrak{S}_n$ with k cycles (signless Stirling number of the first kind)

Corollary. The number of *n*-cycles $w \in \mathfrak{S}_n$ for which $w \cdot (1, 2, ..., n)$ has exactly k cycles is 0 if n - k is odd, and is otherwise equal to $c(n + 1, k) / {n+1 \choose 2}$.

Combinatorial proof by V. Féray and E. A. Vassilieva.

A generalization?

Let
$$\lambda, \mu \vdash n$$
.

$$\boldsymbol{P}_{\boldsymbol{\lambda},\boldsymbol{\mu}}(\boldsymbol{q}) = \sum_{\boldsymbol{\rho}(w)=\boldsymbol{\lambda}} q^{\kappa(w_{\boldsymbol{\mu}}\cdot w)},$$

where $\boldsymbol{w}_{\boldsymbol{\mu}}$ is a fixed permutation of cycle type μ . Does $P_{\lambda,\mu}(q)$ have purely imaginary zeros?

A generalization?

Let
$$\lambda, \mu \vdash n$$
.

$$\boldsymbol{P}_{\boldsymbol{\lambda},\boldsymbol{\mu}}(\boldsymbol{q}) = \sum_{\boldsymbol{\rho}(w) = \boldsymbol{\lambda}} q^{\kappa(w_{\boldsymbol{\mu}} \cdot w)},$$

where w_{μ} is a fixed permutation of cycle type μ .

Does $P_{\lambda,\mu}(q)$ have purely imaginary zeros?

Alas, $P_{332,332}(q) = q^8 + 35q^6 + 424q^4 + 660q^2$, four of whose zeros are approximately

 $\pm 1.11366 \pm 4.22292i.$

