Shuffles of Permutations

Camillia Smith Barnes

Department of Mathematical Sciences
Sweet Briar College
cbarnes@sbc.edu
Permutation Patterns * Dartmouth College * 11 August 2010

Outline

(9) Background

- Definitions
- Problem: How Many Distinct Shuffles?

2) Distinct Shuffles of Permutations

- Motivation \& Special Cases
- Towards Enumeration Theorem
(3) Goals
- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

Outline

(1) Background

- Definitions
- Problem: How Many Distinct Shuffles?

2) Distinct Shuffles of Permutations

- Motivation \& Special Cases
- Toward's Enumeration Theorem
(3) Goals
- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

Words, Letters, Length, \& Supports

- a word is a string of symbols e.g. 12342
a letter is a symbol used in a word
e.g. 3
- the lenath of a word is \# of letters
e.g. length of 12342 is 5
- the support of a word is the set of letters in word
e.g. $\operatorname{supp}(12342)=\{1,2,3,4\}$

Words, Letters, Length, \& Supports

- a word is a string of symbols e.g. 12342
- a letter is a symbol used in a word e.g. 3
the length of a word is \# of letters e.g. length of 12342 is 5
- the support of a word is the set of letters in word e.g. $\operatorname{supp}(12342)=\{1,2,3,4\}$

Words, Letters, Length, \& Supports

- a word is a string of symbols e.g. 12342
- a letter is a symbol used in a word e.g. 3
- the length of a word is \# of letters e.g. length of 12342 is 5
- the support of a word is the set of letters in word e.g. $\operatorname{supp}(12342)=\{1,2,3,4\}$

Words, Letters, Length, \& Supports

- a word is a string of symbols e.g. 12342
- a letter is a symbol used in a word e.g. 3
- the length of a word is \# of letters
e.g. length of 12342 is 5
- the support of a word is the set of letters in word
e.g. $\operatorname{supp}(12342)=\{1,2,3,4\}$

Intuitive Definition of Shuffle

- a shuffle of the words 123 and 456 is obtained by interspersing the letters of these words
- the letters of each original word must stay in order
- for example, 142563

Intuitive Definition of Shuffle

- a shuffle of the words 123 and 456 is obtained by interspersing the letters of these words
- the letters of each original word must stay in order
- for example, 142563

Intuitive Definition of Shuffle

- a shuffle of the words 123 and 456 is obtained by interspersing the letters of these words
- the letters of each original word must stay in order
- for example, 142563

Formal Definition of Shuffle

Given two words $u=a_{1} a_{2} \ldots a_{m}$ and $v=b_{1} b_{2} \ldots b_{n}$,

- concatenate u and v :

$$
c_{1} c_{2} \ldots c_{m+n}=a_{1} a_{2} \ldots a_{m} b_{1} b_{2} \ldots b_{n}
$$

- then permute entries to obtain a shuffle of u with v :

$$
c_{\rho(1)} C_{\rho(2)} \ldots c_{\rho(m+n)}
$$

- where ρ is a permutation on $m+n$ elements satisfying order-preserving conditions

Formal Definition of Shuffle

Given two words $u=a_{1} a_{2} \ldots a_{m}$ and $v=b_{1} b_{2} \ldots b_{n}$,

- concatenate u and v :

$$
c_{1} c_{2} \ldots c_{m+n}=a_{1} a_{2} \ldots a_{m} b_{1} b_{2} \ldots b_{n}
$$

- then permute entries to obtain a shuffle of u with v :

$$
c_{\rho(1)} c_{\rho(2)} \ldots c_{\rho(m+n)}
$$

- where ρ is a permutation on $m+n$ elements satisfying order-preserving conditions

Formal Definition of Shuffle

Given two words $u=a_{1} a_{2} \ldots a_{m}$ and $v=b_{1} b_{2} \ldots b_{n}$,

- concatenate u and v :

$$
c_{1} c_{2} \ldots c_{m+n}=a_{1} a_{2} \ldots a_{m} b_{1} b_{2} \ldots b_{n}
$$

- then permute entries to obtain a shuffle of u with v :

$$
c_{\rho(1)} c_{\rho(2)} \ldots c_{\rho(m+n)}
$$

- where ρ is a permutation on $m+n$ elements satisfying order-preserving conditions

Formal Definition of Shuffle

Given two words $u=a_{1} a_{2} \ldots a_{m}$ and $v=b_{1} b_{2} \ldots b_{n}$,

- concatenate u and v :

$$
c_{1} c_{2} \ldots c_{m+n}=a_{1} a_{2} \ldots a_{m} b_{1} b_{2} \ldots b_{n}
$$

- then permute entries to obtain a shuffle of u with v :

$$
c_{\rho(1)} c_{\rho(2)} \ldots c_{\rho(m+n)}
$$

- where ρ is a permutation on $m+n$ elements satisfying order-preserving conditions
- $\rho^{-1}(1)<\rho^{-1}(2)<\cdots<\rho^{-1}(m)$
- $\rho^{-1}(m+1)<\rho^{-1}(m+2)<\cdots<\rho^{-1}(m+n)$

Formal Definition of Shuffle

Given two words $u=a_{1} a_{2} \ldots a_{m}$ and $v=b_{1} b_{2} \ldots b_{n}$,

- concatenate u and v :

$$
c_{1} c_{2} \ldots c_{m+n}=a_{1} a_{2} \ldots a_{m} b_{1} b_{2} \ldots b_{n}
$$

- then permute entries to obtain a shuffle of u with v :

$$
c_{\rho(1)} c_{\rho(2)} \ldots c_{\rho(m+n)}
$$

- where ρ is a permutation on $m+n$ elements satisfying order-preserving conditions
- $\rho^{-1}(1)<\rho^{-1}(2)<\cdots<\rho^{-1}(m)$
- $\rho^{-1}(m+1)<\rho^{-1}(m+2)<\cdots<\rho^{-1}(m+n)$

Example: Shuffles of 123 with 456

All shuffles of the words 123 and 456:

Example: Shuffles of 123 with 456

All shuffles of the words 123 and 456:

123456	142536	412356	415623
124356	142563	412536	451236
124536	145236	412563	451263
124563	145263	415236	451623
142356	145623	415263	456123

Example: Shuffles of 123 with 456

All shuffles of the words 123 and 456:

123456	142536	412356	415623
124356	142563	412536	451236
124536	145236	412563	451263
124563	145263	415236	451623
142356	145623	415263	456123

- Notation: $\mathfrak{s h}(123,456)=\{$ shuffles of 123 with 456$\}$

Outline

(1) Background

- Definitions
- Problem: How Many Distinct Shuffles?

2. Distinct Shuffles of Permutations

- Motivation \& Special Cases
- Towards Enumeration Theorem

3) Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

Example: Counting Shuffles of 123 with 456

- None of entries in word 123 appear in word 456, so

$$
\# \text { of distinct shuffles }=\# \mathfrak{s h}(123,456)=\binom{6}{3}=20
$$

- In fact, if words u and v have disjoint supports, then

$$
\# \mathfrak{s h}(u, v)=\binom{\text { length of } u+\text { length of } v}{\text { length of } u}
$$

Example: Counting Shuffles of 123 with 456

- None of entries in word 123 appear in word 456, so

$$
\# \text { of distinct shuffles }=\# s \mathfrak{s h}(123,456)=\binom{6}{3}=20
$$

- In fact, if words u and v have disjoint supports, then

$$
\# \mathfrak{s h}(u, v)=\binom{\text { length of } u+\text { length of } v}{\text { length of } u}
$$

Example with Non-Disjoint Supports: Permuations

All distinct shuffles of permutation words 123 and 312:

123312	132312	131232	312132	311223
123132	132132	131223	312123	
123123	132123	312312	311232	

Example with Non-Disjoint Supports: Permuations

All distinct shuffles of permutation words 123 and 312:

123312	132312	131232	312132	311223
123132	132132	131223	312123	
123123	132123	312312	311232	

- Entries that could come from either word in black
- Shuffles with black entries have multiplicity > 1
- eg 311223 could be $311223,311223,311223$, or 311223

Example with Non-Disjoint Supports: Permuations

All distinct shuffles of permutation words 123 and 312:

123312	132312	131232	312132	311223
123132	132132	131223	312123	
123123	132123	312312	$\mathbf{3 1 1 2 3 2}$	

- Entries that could come from either word in black
- Shuffles with black entries have multiplicity > 1
- eg 311223 could be $311223,311223,311223$, or 311223

Example with Non-Disjoint Supports: Permuations

All distinct shuffles of permutation words 123 and 312:

123312	132312	131232	312132	311223
123132	132132	131223	312123	
123123	132123	312312	311232	

- Entries that could come from either word in black
- Shuffles with black entries have multiplicity > 1
- eg 311223 could be 311223, 311223, 311223, or 311223

Outline

Background
 - Definitions
 - Problem: How Many Distinct Shuffles?

2) Distinct Shuffles of Permutations

- Motivation \& Special Cases
- Towards Enumeration Theorem

3) Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

Shuffles of Identity Permutation with Itself

All distinct shuffles of 123 with itself:
123123
121323
121233
112323
112233

Shuffles of Identity Permutation with Itself

All distinct shuffles of 123 with itself:
123123
121323
121233
112323
112233

- $\# \mathfrak{s h}(123,123)=5$

Why count shuffles of permutations?

Fun Fact:

Proof: Construct bijection:
$\mathfrak{s h}\left(\mathrm{id}_{n}, \mathrm{id}_{n}\right) \longrightarrow\{$ ballot seque $n c e s$ of length $2 n\}$

Why count shuffles of permutations?

Fun Fact:

$$
\# \mathfrak{s h}\left(\mathrm{id}_{n}, \mathrm{id}_{n}\right)=\frac{1}{n+1}\binom{2 n}{n}=C_{n} \quad\left(n^{t h}\right. \text { Catalan \#) }
$$

Proof: Construct bijection:
 $\mathfrak{s h}\left(\mathrm{id}_{n}, \mathrm{id}_{n}\right) \longrightarrow\{$ ballot sequences of length $2 n\}$

Why count shuffles of permutations?

Fun Fact:

$$
\# \mathfrak{s h}\left(\mathrm{id}_{n}, \mathrm{id}_{n}\right)=\frac{1}{n+1}\binom{2 n}{n}=C_{n} \quad\left(n^{\text {th }}\right. \text { Catalan \#) }
$$

Proof: Construct bijection: $\mathfrak{s h}\left(\mathrm{id}_{n}, \mathrm{id}_{n}\right) \longrightarrow\{$ ballot sequences of length $2 n\}$

Bijection Between Shuffles \& Ballot Sequences

- ballot sequence has
- all partial sums nonnegative
- Suhstitute +1 for $1^{\text {st }}$ occurrence of 1 through n,
substitute -1 for $2^{\text {nd }}$ occurrence
- eg 121323
- \#\{ballot sequences of length $2 n\}=C_{n}$

Bijection Between Shuffles \& Ballot Sequences

- ballot sequence has
- $n+1$'s
- all partial sums nonnegative
- Substitute +1 for $1^{\text {st }}$ occurrence of 1 through n,
substitute -1 for $2^{\text {nd }}$ occurrence
- eg $121323 \longmapsto$
- \#\{ballot sequences of length $2 n\}=C_{n}$

Bijection Between Shuffles \& Ballot Sequences

- ballot sequence has
- $n+1$'s
- $n-1$'s
- all partial sums nonnegative
- Substitute +1 for $1^{\text {st }}$ occurrence of 1 through n,
substitute -1 for $2^{\text {nd }}$ occurrence
- eg 121323
- $\#\{$ ballot sequences of length $2 n\}=C_{n}$

Bijection Between Shuffles \& Ballot Sequences

- ballot sequence has
- $n+1$'s
- $n-1$'s
- all partial sums nonnegative
- Substitute +1 for $1^{\text {st }}$ occurrence of 1 through n,
substitute -1 for $2^{\text {nd }}$ occurrence
- eg 121323
- $\#\{$ ballot sequences of length $2 n\}=C_{n}$

Bijection Between Shuffles \& Ballot Sequences

- ballot sequence has
- $n+1$'s
- $n-1$'s
- all partial sums nonnegative
- Substitute +1 for $1^{\text {st }}$ occurrence of 1 through n, substitute -1 for $2^{\text {nd }}$ occurrence
- eg 121323
- $\#\{$ ballot sequences of length $2 n\}=C_{n}$

Bijection Between Shuffles \& Ballot Sequences

- ballot sequence has
- $n+1$'s
- $n-1$'s
- all partial sums nonnegative
- Substitute +1 for $1^{\text {st }}$ occurrence of 1 through n, substitute -1 for $2^{\text {nd }}$ occurrence
- eg $121323 \longmapsto++-+--$
- $\#\{$ ballot sequences of length $2 n\}=C_{n}$

Bijection Between Shuffles \& Ballot Sequences

- ballot sequence has
- $n+1$'s
- $n-1$'s
- all partial sums nonnegative
- Substitute +1 for $1^{\text {st }}$ occurrence of 1 through n, substitute -1 for $2^{\text {nd }}$ occurrence
- eg $121323 \longmapsto++-+--$
- $\#\{$ ballot sequences of length $2 n\}=C_{n}$

Example: Shuffles of Identity with Reverse

The distinct shuffles of the words 123 and 321 are:

Example: Shuffles of Identity with Reverse

The distinct shuffles of the words 123 and 321 are:

123321	132321	132213	312321	321213
123231	132123	312231	312123	321123
123213	132231	312213	321231	

Example: Shuffles of Identity with Reverse

The distinct shuffles of the words 123 and 321 are:

123321	132321	132213	312321	321213
123231	132123	312231	312123	$32 \mathbf{1 1 2 3}$
123213	132231	312213	321231	

- Shuffles with bolded entries occur exactly twice
- Take total number of shuffles (counted with multiplicities) \& subtract number of duplicates

Example: Shuffles of Identity with Reverse

The distinct shuffles of the words 123 and 321 are:

123321	132321	132213	312321	321213
123231	132123	312231	312123	$32 \mathbf{1 1 2 3}$
123213	132231	312213	321231	

- Shuffles with bolded entries occur exactly twice
- Take total number of shuffles (counted with multiplicities) \& subtract number of duplicates

Counting Shuffles of Identity with Reverse

Shuffles of the words 123 and 321 of multiplicity 2 are:

123321	312231
132231	312213
132213	321123

Counting Shuffles of Identity with Reverse

Shuffles of the words 123 and 321 of multiplicity 2 are:

```
123321
132231
132213
```

```
312231
312213
321123
```

- Count duplicates by constructing bijection: $\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+^{n-1},-{ }^{n-1}\right)$
- Notation: use rev ${ }_{n}$ instead of ω_{0} to avoid double subscript as n varies

Counting Shuffles of Identity with Reverse

Shuffles of the words 123 and 321 of multiplicity 2 are:

```
123321
132231
132213
```

312231
312213
321123

- Count duplicates by constructing bijection: $\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+{ }^{n-1},-{ }^{n-1}\right)$
- Notation: use rev ${ }_{n}$ instead of ω_{0} to avoid double subscript as n varies

Bijection:

$\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+^{n-1},-^{n-1}\right)$

- Excise double entries
- Replace entries from id with +
- Replace entries from rev ${ }_{n}$ with
- Examples:

- Can compute $\# s h(123,321)=\binom{6}{3}-\binom{4}{2}=14$
- In general, $\# s h\left(\mathrm{id}_{m}, \mathrm{rev}_{n}\right)=\binom{m+n}{m}-\binom{m+n-2}{m-1}$

Bijection:

$\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+^{n-1},-^{n-1}\right)$

- Excise double entries
- Replace entries from id $_{n}$ with +
- Replace entries from rev V_{n} with
- Examples:

- Can compute $\# s h(123,321)=\binom{6}{3}-\binom{4}{2}=14$
- In general, $\# s h\left(\mathrm{id}_{m}, \mathrm{rev}_{n}\right)=\binom{m+n}{m}-\binom{m+n-2}{m-1}$

Bijection:

$\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+^{n-1},-^{n-1}\right)$

- Excise double entries
- Replace entries from id $_{n}$ with +
- Replace entries from rev n with -
- Examples:

- Can compute $\# \mathfrak{s h}(123,321)=\binom{6}{3}-\binom{4}{2}=14$
- In general, $\# \mathfrak{s h}\left(\right.$ id $\left._{m}, \operatorname{rev}_{n}\right)=\binom{m+n}{m}-\binom{m+n-2}{m-1}$

Bijection:

$\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+^{n-1},-^{n-1}\right)$

- Excise double entries
- Replace entries from id ${ }_{n}$ with +
- Replace entries from rev n with -
- Examples:

123321	\longrightarrow	1221		\longrightarrow
1321	\longrightarrow	++--		
132213	\longrightarrow	1313		
13			+-+-+	

- Can compute $\# s \mathfrak{s h}(123,321)=\binom{6}{3}-\binom{4}{2}=14$
- In general, $\# s h\left(\mathrm{id}_{m}, \mathrm{rev}_{n}\right)=\binom{m+n}{m}-\binom{m+n-2}{m-1}$

Bijection:

$\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+^{n-1},-^{n-1}\right)$

- Excise double entries
- Replace entries from id ${ }_{n}$ with +
- Replace entries from rev n with -
- Examples:

- Can compute $\# \mathfrak{s h}(123,321)=\binom{6}{3}-\binom{4}{2}=14$
- In general, $\# s h\left(\right.$ id $_{m}$, rev $\left._{n}\right)=\binom{m+n}{m}-\binom{m+n-2}{m-1}$

Bijection:

$\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{n}, \operatorname{rev}_{n}\right) \mid \mu(w)=2\right\} \longrightarrow \mathfrak{s h}\left(+^{n-1},-^{n-1}\right)$

- Excise double entries
- Replace entries from id ${ }_{n}$ with +
- Replace entries from rev $_{n}$ with -
- Examples:

123321	\longrightarrow	1221		\longrightarrow
132231	\longrightarrow	1331	\longrightarrow	++--
132213	\longrightarrow	1313		
			+-+-	

- Can compute $\# \mathfrak{s h}(123,321)=\binom{6}{3}-\binom{4}{2}=14$
- In general, $\# \mathfrak{s h}\left(\mathrm{id}_{m}, \mathrm{rev}_{n}\right)=\binom{m+n}{m}-\binom{m+n-2}{m-1}$

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

2) Distinct Shuffles of Permutations

- Motivation \& Special Cases
- Towards Enumeration Theorem
(3) Goals
- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

Multiplicities of Shuffles

- WLOG: Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a power of 2
- Reason: If a shuffle has multiplicity >1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{s h}(123,123)$:
- Call such a contiguous block of consecutive letters
a consecutive identity subword (or idword)

Multiplicities of Shuffles

- WLOG: Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a power of 2
- Reason: If a shuffle has multiplicity >1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{s h}(123,123)$:
- Call such a contiguous block of consecutive letters
a consecutive identity subword (or idword)

Multiplicities of Shuffles

- WLOG: Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a power of 2
- Reason: If a shuffle has multiplicity >1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{s h}(123,123)$:
- Call such a contiguous block of consecutive letters a consecutive identity subword (or idword)

Multiplicities of Shuffles

- WLOG: Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a power of 2
- Reason: If a shuffle has multiplicity >1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{s h}(123,123)$:
- each 12 block could come from either copy of 123
- each 3 could come from either copy of 123
- Call such a contiquous block of consecutive letters a consecutive identity subword (or idword)

Multiplicities of Shuffles

- WLOG: Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a power of 2
- Reason: If a shuffle has multiplicity >1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{s h}(123,123)$:
- each 12 block could come from either copy of 123
- each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a consecutive identity subword (or idword)

Multiplicities of Shuffles

- WLOG: Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a power of 2
- Reason: If a shuffle has multiplicity >1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{s h}(123,123)$:
- each 12 block could come from either copy of 123
- each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a consecutive identity subword (or idword)

Multiplicities of Shuffles

- WLOG: Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a power of 2
- Reason: If a shuffle has multiplicity >1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{s h}(123,123)$:
- each 12 block could come from either copy of 123
- each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a consecutive identity subword (or idword)

Examples: Idwords

- Example: $312123 \in \mathfrak{s h}(123,312)$ has idword 12 "locally shuffled with itself" (or local-shuffled)
- Example: $311223 \in \mathfrak{s h}(123,312)$ has idwords 1 and 2 local-shuffled

Examples: Idwords

- Example: $312123 \in \mathfrak{s h}(123,312)$ has idword 12 "locally shuffled with itself" (or local-shuffled)
- multiplicity $\mu(312123)=2$
- Example: $311223 \in 5 \mathfrak{s h}(123,312)$ has idwords 1 and 2 local-shuffled

Examples: Idwords

- Example: $312123 \in \mathfrak{s h}(123,312)$ has idword 12 "locally shuffled with itself" (or local-shuffled)
- multiplicity $\mu(312123)=2$
- Example: $311223 \in \mathfrak{s h}(123,312)$ has idwords 1 and 2 local-shuffled
- multiplicity
- could say 311223 has idword 12 local-shuffled
- but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

Examples: Idwords

- Example: $312123 \in \mathfrak{s h}(123,312)$ has idword 12 "locally shuffled with itself" (or local-shuffled)
- multiplicity $\mu(312123)=2$
- Example: $311223 \in \mathfrak{s h}(123,312)$ has idwords 1 and 2 local-shuffled
- multiplicity $\mu(311223)=4$
- could say 311223 has idword 12 local-shuffled
- but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

Examples: Idwords

- Example: $312123 \in \mathfrak{s h}(123,312)$ has idword 12 "locally shuffled with itself" (or local-shuffled)
- multiplicity $\mu(312123)=2$
- Example: $311223 \in \mathfrak{s h}(123,312)$ has idwords 1 and 2 local-shuffled
- multiplicity $\mu(311223)=4$
- could say 311223 has idword 12 local-shuffled
- but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

Examples: Idwords

- Example: $312123 \in \mathfrak{s h}(123,312)$ has idword 12 "locally shuffled with itself" (or local-shuffled)
- multiplicity $\mu(312123)=2$
- Example: $311223 \in \mathfrak{s h}(123,312)$ has idwords 1 and 2 local-shuffled
- multiplicity $\mu(311223)=4$
- could say 311223 has idword 12 local-shuffled
- but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

Sketched Proof of Claim: Multiplicities are Powers of 2

- For a given shuffle w, can construct an automorphism group of permutations acting on letters of w so that w still "looks" the same
automorphism group for shuffle $w \in \mathfrak{s h}(u, v)$ is subgroup of \mathfrak{S}_{m+n} where $u \in \mathfrak{S}_{m}, v \in \mathfrak{S}_{n}$

Sketched Proof of Claim: Multiplicities are Powers of 2

- For a given shuffle w, can construct an automorphism group of permutations acting on letters of w so that w still "looks" the same
- automorphism group for shuffle $w \in \mathfrak{s h}(u, v)$ is subgroup of \mathfrak{S}_{m+n} where $u \in \mathfrak{S}_{m}, v \in \mathfrak{S}_{n}$

Examples: Shuffle Automorphism Groups

- Example: $312123 \in \mathfrak{s h}(123,312)$ has automorphism group $\langle(24)(35)\rangle$
- Example: $311223 \in \mathfrak{s h}(123,312)$ has automorphism group $\langle(23)$, (45)

Examples: Shuffle Automorphism Groups

- Example: $312123 \in \mathfrak{s h}(123,312)$ has automorphism group $\langle(24)(35)\rangle$
- $\langle(24)(35)\rangle$ order $2 \Longrightarrow \mu(312123)=2$ in $\mathfrak{s h}(123,312)$
- Example: $311223 \in \operatorname{sh}(123,312)$ has automorphism group $\langle(23),(45)\rangle$

Examples: Shuffle Automorphism Groups

- Example: $312123 \in \mathfrak{s h}(123,312)$ has automorphism group $\langle(24)(35)\rangle$
- $\langle(24)(35)\rangle$ order $2 \Longrightarrow \mu(312123)=2$ in $\mathfrak{s h}(123,312)$
- Example: $311223 \in \mathfrak{s h}(123,312)$ has automorphism group $\langle(23),(45)\rangle$
- $\langle(24),(35)\rangle$ order $4 \Longrightarrow \mu(311223)=4$ in $\mathfrak{s h}(123,312)$

Examples: Shuffle Automorphism Groups

- Example: $312123 \in \mathfrak{s h}(123,312)$ has automorphism group $\langle(24)(35)\rangle$
- $\langle(24)(35)\rangle$ order $2 \Longrightarrow \mu(312123)=2$ in $\mathfrak{s h}(123,312)$
- Example: $311223 \in \mathfrak{s h}(123,312)$ has automorphism group $\langle(23),(45)\rangle$
- $\langle(24),(35)\rangle$ order $4 \Longrightarrow \mu(311223)=4$ in $\mathfrak{s h}(123,312)$

Sketched Proof of Claim, Continued

- permutation shuffle automorphism groups always generated by disjoint permutations of order 2
- each automorphism group has order 2^{k} for some integer $k \geq 0$
- order of automorphism group is multiplicity of shuffle

Sketched Proof of Claim, Continued

- permutation shuffle automorphism groups always generated by disjoint permutations of order 2
- each automorphism group has order 2^{k} for some integer $k \geq 0$
- order of automorphism group is multiplicity of shuffle

Sketched Proof of Claim, Continued

- permutation shuffle automorphism groups always generated by disjoint permutations of order 2
- each automorphism group has order 2^{k} for some integer $k \geq 0$
- order of automorphism group is multiplicity of shuffle

Overview of Strategy

- Take total number of shuffles with multiplicity, subtract duplicates
- Essentially an application of Principle of Inclusion-Exclusion
- i.e. take an alternating sum of set cardinalities that subtracts the correct number of repeated shuffles from the binomial coefficient

Overview of Strategy

- Take total number of shuffles with multiplicity, subtract duplicates
- Essentially an application of Principle of Inclusion-Exclusion
- i.e. take an alternating sum of set cardinalities that subtracts the correct number of repeated shuffles from the binomial coefficient

Overview of Strategy

- Take total number of shuffles with multiplicity, subtract duplicates
- Essentially an application of Principle of Inclusion-Exclusion
- i.e. take an alternating sum of set cardinalities that subtracts the correct number of repeated shuffles from the binomial coefficient

Using Inclusion-Exclusion

- Let $T_{j}^{\sigma}=$ \#shuffles of σ with id $_{m}$, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is $w=11623434565277 \in \mathfrak{s h}^{\left(\mathrm{id}_{7}, 1634527\right)}$ counted in $T_{2}^{1634527} ?$

Using Inclusion-Exclusion

- Let $T_{j}^{\sigma}=$ \#shuffles of σ with id ${ }_{m}$, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is $w=11623434565277 \in \mathfrak{s h}\left(\right.$ id $\left._{7}, 1634527\right)$ counted in $T_{2}^{1634527} ?$
- choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2}=3$ choices
- remaining local-shuffled idword can be interpreted $2^{3-2}=2$ ways
- W is counted $\binom{3}{2} 2^{3-2}=6$ times in $T_{2}^{4034527}$

Using Inclusion-Exclusion

- Let $T_{j}^{\sigma}=$ \#shuffles of σ with id $_{m}$, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
$w=11623434565277 \in \mathfrak{s h}\left(\right.$ id $\left._{7}, 1634527\right)$ counted in $T_{2}^{1634527} ?$
- w has 3 local-shuffled idwords:

11623434565277

- choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2}=3$ choices
- remaining local-shuffled idword can be interpreted $2^{3-2}=2$ ways
- w is counted $\binom{3}{2} 2^{3-2}=6$ times in $T_{2}^{1634527}$

Using Inclusion-Exclusion

- Let $T_{j}^{\sigma}=$ \#shuffles of σ with id $_{m}$, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
$w=11623434565277 \in \mathfrak{s h}\left(\right.$ id $\left._{7}, 1634527\right)$ counted in $T_{2}^{1634527} ?$
- w has 3 local-shuffled idwords:

11623434565277

- choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2}=3$ choices
- remaining local-shuffled idword can be interpreted $2^{3-2}=2$ ways
- w is counted $\binom{3}{2} 2^{3-2}=6$ times in $T_{2}^{1634527}$

Using Inclusion-Exclusion

- Let $T_{j}^{\sigma}=$ \#shuffles of σ with id $_{m}$, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
$w=11623434565277 \in \mathfrak{s h}$ (id ${ }_{7}, 1634527$) counted in $T_{2}^{1634527} ?$
- w has 3 local-shuffled idwords:

11623434565277

- choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2}=3$ choices
- remaining local-shuffled idword can be interpreted $2^{3-2}=2$ ways

Using Inclusion-Exclusion

- Let $T_{j}^{\sigma}=$ \#shuffles of σ with id $_{m}$, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
$w=11623434565277 \in \mathfrak{s h}$ (id ${ }_{7}, 1634527$) counted in $T_{2}^{1634527} ?$
- w has 3 local-shuffled idwords:

11623434565277

- choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2}=3$ choices
- remaining local-shuffled idword can be interpreted $2^{3-2}=2$ ways
- w is counted $\binom{3}{2} 2^{3-2}=6$ times in $T_{2}^{1634527}$

Using Inclusion-Exclusion, Continued

- In general, can show that

$$
T_{j}^{\sigma}=\sum_{k=j}^{m}\binom{k}{j} 2^{k-j} N_{k}^{\sigma}
$$

where $N_{k}^{\sigma}=\#\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{m}, \sigma\right) \mid \mu(w)=2^{k}\right\}$

- Hence, thanks to binomial theorem \& changing order of
summation,

Using Inclusion-Exclusion, Continued

- In general, can show that

$$
\begin{array}{r}
\qquad T_{j}^{\sigma}=\sum_{k=j}^{m}\binom{k}{j} 2^{k-j} N_{k}^{\sigma} \\
\text { where } N_{k}^{\sigma}=\#\left\{w \in \mathfrak{s h}\left(\mathrm{id}_{m}, \sigma\right) \mid \mu(w)=2^{k}\right\}
\end{array}
$$

- Hence, thanks to binomial theorem \& changing order of summation,

$$
\# s \mathfrak{s h}\left(\mathrm{id}_{m}, \sigma\right)=\sum_{j=0}^{m}(-1)^{j} T_{j}^{\sigma}
$$

Example: Shuffles of 123 with 312

- For example,

$$
\# s \mathfrak{s h}\left(\mathrm{id}_{3}, 312\right)=T_{0}^{312}-T_{1}^{312}+T_{2}^{312}-T_{3}^{312}
$$

- We know $T_{0}^{312}=\binom{6}{3}=20$

Example: Shuffles of 123 with 312

- For example,

$$
\# s \mathfrak{s h}\left(\mathrm{id}_{3}, 312\right)=T_{0}^{312}-T_{1}^{312}+T_{2}^{312}-T_{3}^{312}
$$

- We know $T_{0}^{312}=\binom{6}{3}=20$

Counting Shuffles of 123 with 312

- Notation: * denotes concatenation, [] denotes empty word

- Fix unique indecomposable shuffle of 12 with itself: $\mathfrak{s h}([], 3) * 1212 * \mathfrak{s h}(3,[])$, get $\binom{1}{0} \cdot C_{1} \cdot\binom{1}{1}=1$

Counting Shuffles of 123 with 312

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}(23,2)$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{3}{2}=3$

- Fix unique indecomposable shuffle of 12 with itself: $\mathfrak{s h}([], 3) * 1212 * \mathfrak{s h}(3,[])$, get $\binom{1}{0} \cdot C_{1} \cdot\binom{1}{1}=1$

Counting Shuffles of 123 with 312

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}(23,2)$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{3}{2}=3$
- Fix double 2 's: $\mathfrak{s h}(1,31) * 22 * \mathfrak{s h}(3,[])$, get $\binom{3}{1} \cdot C_{0} \cdot\binom{1}{1}=3$
- Fix double 3 's: $\mathfrak{s h}(12,[]) * 33 * \mathfrak{s h}([], 12)$, get $\binom{2}{2} \cdot C_{c}$

Counting Shuffles of 123 with 312

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}(23,2)$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{3}{2}=3$
- Fix double 2 's: $\mathfrak{s h}(1,31) * 22 * \mathfrak{s h}(3,[])$, get $\binom{3}{1} \cdot C_{0} \cdot\binom{1}{1}=3$
- Fix double 3's: $\mathfrak{s h}(12,[]) * 33 * s h([], 12)$, get $\binom{2}{2} \cdot C_{0} \cdot\binom{2}{0}=1$
- Fix unique indecomposable shuffle of 12 with itself:

Counting Shuffles of 123 with 312

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}(23,2)$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{3}{2}=3$
- Fix double 2 's: $\mathfrak{s h}(1,31) * 22 * \mathfrak{s h}(3,[])$, get $\binom{3}{1} \cdot C_{0} \cdot\binom{1}{1}=3$
- Fix double 3's: $\mathfrak{s h}(12,[]) * 33 * 5 \mathfrak{s h}([], 12)$, get $\binom{2}{2} \cdot C_{0} \cdot\binom{2}{0}=1$
- Fix unique indecomposable shuffle of 12 with itself:

$$
\mathfrak{s h}([], 3) * 1212 * \mathfrak{s h}(3,[]), \text { get }\binom{1}{0} \cdot C_{1} \cdot\binom{1}{1}=1
$$

Counting Shuffles of 123 with 312

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}(23,2)$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{3}{2}=3$
- Fix double 2 's: $\mathfrak{s h}(1,31) * 22 * \mathfrak{s h}(3,[])$, get $\binom{3}{1} \cdot C_{0} \cdot\binom{1}{1}=3$
- Fix double 3's: $\mathfrak{s h}(12,[]) * 33 * s h([], 12)$, get $\binom{2}{2} \cdot C_{0} \cdot\binom{2}{0}=1$
- Fix unique indecomposable shuffle of 12 with itself:

$$
\mathfrak{s h}([], 3) * 1212 * \mathfrak{s h}(3,[]), \text { get }\binom{1}{0} \cdot C_{1} \cdot\binom{1}{1}=1
$$

- $T_{1}^{312}=3+3+1+1=8$

Counting Shuffles of 123 with 312, continued

- Fix double 1's and double 2's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}([],[]) * 22 * \mathfrak{s h}(3,[])$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{0}{0} \cdot C_{0} \cdot\binom{1}{1}=1$
- Hence

Counting Shuffles of 123 with 312, continued

- Fix double 1's and double 2's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}([],[]) * 22 * \mathfrak{s h}(3,[])$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{0}{0} \cdot C_{0} \cdot\binom{1}{1}=1$
- $T_{2}^{312}=1$
- \#3-set of idwords in 312 that can be simultaneously local-shuffled
- Hence

Counting Shuffles of 123 with 312 , continued

- Fix double 1's and double 2's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}([],[]) * 22 * \mathfrak{s h}(3,[])$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{0}{0} \cdot C_{0} \cdot\binom{1}{1}=1$
- $T_{2}^{312}=1$
- $\nexists 3$-set of idwords in 312 that can be simultaneously local-shuffled
- Hence

Counting Shuffles of 123 with 312 , continued

- Fix double 1's and double 2's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}([],[]) * 22 * \mathfrak{s h}(3,[])$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{0}{0} \cdot C_{0} \cdot\binom{1}{1}=1$
- $T_{2}^{312}=1$
- \#3-set of idwords in 312 that can be simultaneously local-shuffled
- $T_{3}^{312}=0$
- Hence

Counting Shuffles of 123 with 312 , continued

- Fix double 1's and double 2's: $\mathfrak{s h}([], 3) * 11 * \mathfrak{s h}([],[]) * 22 * \mathfrak{s h}(3,[])$, get $\binom{1}{0} \cdot C_{0} \cdot\binom{0}{0} \cdot C_{0} \cdot\binom{1}{1}=1$
- $T_{2}^{312}=1$
- $\nexists 3$-set of idwords in 312 that can be simultaneously local-shuffled
- $T_{3}^{312}=0$
- Hence

$$
\begin{aligned}
\# \mathfrak{s h}\left(\mathrm{id}_{3}, 312\right) & =T_{0}^{312}-T_{1}^{312}+T_{2}^{312}-T_{3}^{312} \\
& =20-8+1-0 \\
& =13
\end{aligned}
$$

Overview of Enumeration Theorem

- Have theorem enumerating distinct shuffles of any two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

Overview of Enumeration Theorem

- Have theorem enumerating distinct shuffles of any two permutations
- Theorem provides complex but "computationally good" formula enumerating distinct shuffles of any two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

Overview of Enumeration Theorem

- Have theorem enumerating distinct shuffles of any two permutations
- Theorem provides complex but "computationally good" formula enumerating distinct shuffles of any two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

Overview of Enumeration Theorem

- Have theorem enumerating distinct shuffles of any two permutations
- Theorem provides complex but "computationally good" formula enumerating distinct shuffles of any two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

Examples of Maple Computations

```
\([>\) CountShuffles([1, 2, 3], \([3,2,1])\)
    14
\(>\) CountShuffles([1, 2, 3], [3, 1, 2])
    13
\(>\) CountShuffles([1, 3, 2], [2, 5, 3, 1, 4])
    43
\(>\) CountShuffles([1, 2, 3, 4, 5, 6], \([4,5,6,1,2,3])\)
    792
\(>\) CountShuffles([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], \([7,8,9,10\),
    \(11,12,13,1,2,3,4,5,6])\)
    10104590
```

 (18)
 (19)
 (21)
 (22)

Outline

Background
 - Definitions
 - Problem: How Many Distinct Shuffles?

Distinct Shuffles of Permutations
 - Motivation \& Special Cases
 - Towards Enumeration Theorem

3 Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\operatorname{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat orderina fails for $n=4.5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\mathrm{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat ordering fails for $n=4,5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\mathrm{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat ordering fails for $n=4,5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\mathrm{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat ordering fails for $n=4,5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\mathrm{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat ordering fails for $n=4,5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
- $s(3412)=54$ whereas $s(4312)=52$
- $s(4312)=52$ whereas $s(4321)=50$
- $s(2431)=46$ whereas $s(4231)=44$

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\mathrm{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat ordering fails for $n=4,5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
- $s(3412)=54$ whereas $s(4312)=52$
- $s(4312)=52$ whereas $s(4321)=50$
- $s(2431)=46$ whereas $s(4231)=44$

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\mathrm{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat ordering fails for $n=4,5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
- $s(3412)=54$ whereas $s(4312)=52$
- $s(4312)=52$ whereas $s(4321)=50$
- $s(2431)=46$ whereas $s(4231)=44$

A "Quasi" Bruhat Ordering?

- Notation: for $\sigma \in \mathfrak{S}_{n}$, set $s(\sigma)=\# \mathfrak{s h}\left(\mathrm{id}_{n}, \sigma\right)$
- Would like to find partial ordering on \mathfrak{S}_{n} such that $s(\sigma)$ is monotone increasing
- Bruhat ordering fails for $n=4,5,6$, likely to fail for $n>6$
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
- $s(3412)=54$ whereas $s(4312)=52$
- $s(4312)=52$ whereas $s(4321)=50$
- $s(2431)=46$ whereas $s(4231)=44$

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

Distinct Shuffles of Permutations

- Motivation \& Special Cases
- Towards Enumeration Theorem

3 Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

Find Minimal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ minimal for n ?
- For $1 \leq n \leq 6, \min _{\sigma \in \mathcal{S}_{n}} S(\sigma)=C_{n}$ (achieved by $\sigma=\mathrm{id}_{n}$)
- Conjecture: For all $n, \min _{\sigma \in \mathfrak{G}_{n}} s(\sigma)=C_{n}$, and minimum is achieved by $\sigma=\mathrm{id}_{n}$
- Can show that i_{n} gives a "local" minimum: each adjacent 2 transposition has twice as many shuffles

Find Minimal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ minimal for n ?
- For $1 \leq n \leq 6, \min _{\sigma \in \mathfrak{S}_{n}} s(\sigma)=C_{n}$ (achieved by $\sigma=\mathrm{id}_{n}$)
- Conjecture: For all $n, \min _{\sigma \in \mathfrak{S}_{n}} s(\sigma)=C_{n}$, and minimum is achieved by $\sigma=\mathrm{id}_{n}$
- Can show that id ${ }_{n}$ gives a "local" minimum: each adjacent transposition has twice as many shuffles

Find Minimal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ minimal for n ?
- For $1 \leq n \leq 6, \min _{\sigma \in \mathfrak{S}_{n}} s(\sigma)=C_{n}$ (achieved by $\sigma=\operatorname{id}_{n}$)
- Conjecture: For all $n, \min _{\sigma \in \mathfrak{S}_{n}} s(\sigma)=C_{n}$, and minimum is achieved by $\sigma=$ id $_{n}$
- Can show that i_{n} gives a "local" minimum: each adjacent transposition has twice as many shuffles

Find Minimal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ minimal for n ?
- For $1 \leq n \leq 6, \min _{\sigma \in \mathfrak{S}_{n}} s(\sigma)=C_{n}$ (achieved by $\sigma=\operatorname{id}_{n}$)
- Conjecture: For all $n, \min _{\sigma \in \mathfrak{S}_{n}} s(\sigma)=C_{n}$, and minimum is achieved by $\sigma=i d_{n}$
- Can show that i_{n} gives a "local" minimum: each adjacent $_{\text {- }}$ transposition has twice as many shuffles

Find Maximal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ maximal for n ?
- For $n=4,5,6, s(\sigma)$ achieves maximum when $\sigma=3412,34512$, 456123, respectively
- Does pattern hold for $n>6$?
- Conjecture: For $n \geq 4$, maximal $s(\sigma)$ for $\sigma \in \mathbb{S}_{n}$ achieved by $i_{\left[\frac{n}{2}\right\rceil} \ominus \mathrm{id}_{\left\lfloor\frac{n}{2}\right\rfloor}$ (or equivalently, id ${ }_{\left\lfloor\frac{n}{2}\right\rfloor} \ominus \mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil}$)

Find Maximal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ maximal for n ?
- For $n=4,5,6, s(\sigma)$ achieves maximum when $\sigma=3412,34512$, 456123, respectively
- Note that $3412=12$ - 12
- $34512=123$ - 12
- $456123=123$ - 123
- Does pattern hold for $n>6$?
- Conjecture: For $n \geq 4$, maximal $s(\sigma)$ for $\sigma \in \mathscr{S}_{n}$ achieved by $\mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil} \ominus \mathrm{id}_{\left\lfloor\frac{n}{2}\right\rfloor}$ (or equivalently, id $\left.{ }_{\left\lfloor\frac{n}{2}\right\rfloor} \ominus \mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil}\right)$

Find Maximal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ maximal for n ?
- For $n=4,5,6, s(\sigma)$ achieves maximum when $\sigma=3412,34512$, 456123, respectively
- Note that $3412=12 \ominus 12$
- $456123=123 \ominus 123$
- Does pattern hold for $n>6$?
- Conjecture: For $n \geq 4$, maximal $s(\sigma)$ for $\sigma \in \Im_{n}$ achieved by (or equivalently, id $\left\lfloor_{\left\lfloor\frac{n}{2}\right\rfloor} \ominus \mathrm{id}_{\left[\frac{n}{2}\right\rceil}\right.$)

Find Maximal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ maximal for n ?
- For $n=4,5,6, s(\sigma)$ achieves maximum when $\sigma=3412,34512$, 456123, respectively
- Note that $3412=12 \ominus 12$
- $34512=123 \ominus 12$
- $456123=123$ Ө 123
- Does pattern hold for $n>6$?
- Conjecture: For $n>4$, maximal $s(\sigma)$ for $\sigma \in S_{n}$ achieved by $\mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil} \ominus \mathrm{id}_{\left\lfloor\frac{n}{2}\right\rfloor}\left(\right.$ or equivalently, id $\left.{ }_{\left\lfloor\frac{n}{2}\right\rfloor} \ominus \mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil}\right)$

Find Maximal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ maximal for n ?
- For $n=4,5,6, s(\sigma)$ achieves maximum when $\sigma=3412,34512$, 456123, respectively
- Note that $3412=12 \ominus 12$
- $34512=123 \ominus 12$
- $456123=123 \ominus 123$
- Does pattern hold for $n>6$?
- Conjecture: For $n \geq 4$, maximal $s(\sigma)$ for $\sigma \in \mathscr{S}_{n}$ achieved by (or equivalently, id $\left\lfloor\frac{n}{2}\right\rfloor \bigcirc \mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil}$)

Find Maximal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ maximal for n ?
- For $n=4,5,6, s(\sigma)$ achieves maximum when $\sigma=3412,34512$, 456123, respectively
- Note that $3412=12 \ominus 12$
- $34512=123 \ominus 12$
- $456123=123 \ominus 123$
- Does pattern hold for $n>6$?
- Conjecture: For $n \geq 4$, maximal $s(\sigma)$ for $\sigma \in \Im_{n}$ achieved by $\mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil} \oslash \mathrm{id}_{\left\lfloor\frac{n}{2}\right\rfloor}$ (or equivalently, id ${ }_{\left\lfloor\frac{n}{2}\right\rfloor} \ominus \mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil}$)

Find Maximal Permutation(s) for Shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_{n}$ is $s(\sigma)$ maximal for n ?
- For $n=4,5,6, s(\sigma)$ achieves maximum when $\sigma=3412,34512$, 456123, respectively
- Note that $3412=12 \ominus 12$
- $34512=123 \ominus 12$
- $456123=123 \ominus 123$
- Does pattern hold for $n>6$?
- Conjecture: For $n \geq 4$, maximal $s(\sigma)$ for $\sigma \in \mathfrak{S}_{n}$ achieved by $\mathrm{id}_{\left[\frac{n}{2}\right\rceil} \ominus \mathrm{id}_{\left\lfloor\frac{n}{2}\right\rfloor}$ (or equivalently, id $\left.{ }_{\left\lfloor\frac{n}{2}\right\rfloor} \ominus \mathrm{id}_{\left\lceil\frac{n}{2}\right\rceil}\right)$

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

2. Distinct Shuffles of Permutations

- Motivation \& Special Cases
- Towards Enumeration Theorem

(3) Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal \& Maximal Permutations for Shuffles
- Further Generalizations

Shuffles of Multiset Permutations \& k-Shuffles

- Enumerate distinct shuffles of multiset permutations eg compute $\# \mathfrak{s h}(12322,33214)$
- Enumerate distinct k-shuffles of permutations eg compute \#sh(132, 231, 1324)

Shuffles of Multiset Permutations \& k-Shuffles

- Enumerate distinct shuffles of multiset permutations eg compute \#sh(12322, 33214)
- Enumerate distinct k-shuffles of permutations eg compute $\# \mathfrak{s h}(132,231,1324)$

Acknowledgments

TYHAONUK!

Special thanks to:

Acknowledgments

TYHAONUK!

Special thanks to:

- my dissertation advisor, Richard Stanley
- the organizers of PP2010

Acknowledgments

TYHAONUK!

Special thanks to:

- my dissertation advisor, Richard Stanley
- the organizers of PP2010

Selected References

W.F. Doran IV,

Shuffling lattices,
J. Combinatorial Theory Ser. A 66 (2002), 1-26.
R. Ehrenborg,

On posets and Hopf algebras,
Adv. Math. 119 (1996), 1-25.
C. Greene,

Posets of shuffles,
J. Combinatorial Theory Ser. A 47 (1988), 191-206.
P. Hersh,

Two generalizations of posets of shuffles,
J. Combinatorial Theory Ser. A 97 (2002), 1-26.
D.E. Knuth,

The Art of Computer Programming 3, Addison-Wesley, 1973.
D.E. Knuth,

The Art of Computer Programming 2, 3rd ed., Addison-Wesley, 1998.
R. Simion \& R.P. Stanley,

Flag-symmetry of the poset of shuffles and a local action of the symmetric group, Discrete Math. 204 (1999), 369-396.
R.P. Stanley,

Enumerative Combinatorics 1, Cambridge Univ. Press, 1997.
R.P. Stanley,

Enumerative Combinatorics 2, Cambridge Univ. Press, 1999.

Statement of Enumeration Theorem

Theorem

Let $\sigma \in S_{n}$ and assume $m \leq n$. Then
$\# \mathfrak{s h}\left(\mathrm{id}_{m}, \sigma\right)$

$$
=\sum_{k=0}^{\left\lfloor\frac{m}{2}\right\rfloor} \sum_{\mathbf{a}=\left\{0=a_{0}<a_{1}<\cdots<a_{2 k}<a_{2 k+1}=m+1\right\}}(-1)^{h(\mathbf{a})} \prod_{r=0}^{k} \operatorname{det} Z_{a_{2 r}, a_{2 r+1}}^{\sigma} \prod_{s=1}^{k} \operatorname{det} Y_{a_{2 s-1}, a_{2 s}}^{\sigma},
$$

where

$$
h(\mathbf{a})=m-\sum_{t=1}^{k}\left(a_{2 t}-a_{2 t-1}\right),
$$

(continued on next slide...)

Statement of Enumeration Theorem, Continued

Theorem (continued)
and we define the matrices

$$
Z_{c, d}^{\sigma}=\left[z_{i, j}^{\sigma}\right]_{c \leq i \leq d-1, c+1 \leq j \leq d},
$$

with

$$
z_{i, j}^{\sigma}= \begin{cases}0, & i>j \\
1, & i=j \\
0, & 0<i<j<m+1 \text { and } \sigma^{-1}(i)>\sigma^{-1}(j) \\
\binom{j-i-1+\sigma^{-1}(j)-\sigma^{-1}(i)-1}{j-i-1}, & 0<i<j<m+1 \text { and } \sigma^{-1}(i)<\sigma^{-1}(j) \\
\left(j-1+\sigma^{-1}(j)-1\right), & i=0, j<m+1 \\
\left(\begin{array}{l}
j-1 \\
\binom{m-n-\sigma^{-1}(i)}{m-i},
\end{array}\right. \\
\binom{m+n}{m}, & j=m+1, i>0 \\
, & i=0, j=m+1,\end{cases}
$$

(continued on next slide...)

Statement of Enumeration Theorem, Continued

Theorem (continued)
and the matrices

$$
Y_{e, f}^{\sigma}=\left[y_{i, j}^{\sigma}\right]_{e \leq i, j \leq f-1},
$$

with

$$
y_{i, j}^{\sigma}= \begin{cases}0, & i-j>1 \text { or } \sigma^{-1}(i+1) \neq \sigma^{-1}(i)+1 \\ -1, & i-j=1 \text { and } \sigma^{-1}(i+1)=\sigma^{-1}(i)+1 \\ C_{j-i}, & i \leq j \text { and } \sigma^{-1}(i+1)=\sigma^{-1}(i)+1\end{cases}
$$

and where

$$
C_{j-i}=\frac{1}{j-i+1}\binom{2(j-i)}{j-i}, \text { the }(j-i)^{\text {th }} \text { Catalan number. }
$$

Using Inclusion-Exclusion: More Details

- Recall $T_{j}^{\sigma}=\sum_{k=j}^{m}\binom{k}{j} 2^{k-j} N_{k}^{\sigma}$ where $N_{k}^{\sigma}=\#\left\{w \in \mathfrak{s h}\left(\operatorname{idd}_{m}, \sigma\right) \mid \mu(w)=2^{k}\right\}$
- So

$$
\begin{aligned}
\# s h\left(\mathrm{id}_{n}, \sigma\right) & =\sum_{k=0}^{m} N_{k}^{\sigma} \\
& =\sum_{k=0}^{m} N_{k}^{\sigma}(2-1)^{k} \\
& =\sum_{k=0}^{m} N_{k}^{\sigma} \sum_{j=0}^{k}\binom{k}{j} 2^{k-j}(-1)^{j} \\
& =\sum_{j=0}^{m}(-1)^{j} \sum_{k=j}^{m}\binom{k}{j} 2^{k-j} N_{k}^{\sigma} \\
& =\sum_{j=0}^{m}(-1)^{j} T_{j}^{\sigma}
\end{aligned}
$$

