Shuffles of Permutations

Camillia Smith Barnes

Department of Mathematical Sciences Sweet Briar College cbarnes@sbc.edu

Permutation Patterns * Dartmouth College * 11 August 2010

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 1/44

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

2 Distinct Shuffles of Permutations

- Motivation & Special Cases
- Towards Enumeration Theorem

Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal & Maximal Permutations for Shuffles
- Further Generalizations

Outline

- Definitions

- Motivation & Special Cases
- Towards Enumeration Theorem

- Partial Ordering on Symmetric Group for Shuffles
- Minimal & Maximal Permutations for Shuffles
- Eurther Generalizations

• a *word* is a string of symbols e.g. 12342

- a *letter* is a symbol used in a word e.g. 3
- the *length* of a word is # of letters
 e.g. length of 12342 is 5
- the support of a word is the set of letters in word
 e.g. supp(12342) = {1, 2, 3, 4}

- a *word* is a string of symbols e.g. 12342
- a *letter* is a symbol used in a word e.g. 3
- the *length* of a word is # of letters e.g. length of 12342 is 5
- the support of a word is the set of letters in word
 e.g. supp(12342) = {1, 2, 3, 4}

- a *word* is a string of symbols e.g. 12342
- a *letter* is a symbol used in a word e.g. 3
- the *length* of a word is # of letters
 e.g. length of 12342 is 5
- the support of a word is the set of letters in word
 e.g. supp(12342) = {1, 2, 3, 4}

- a *word* is a string of symbols e.g. 12342
- a *letter* is a symbol used in a word e.g. 3
- the *length* of a word is # of letters
 e.g. length of 12342 is 5
- the support of a word is the set of letters in word
 e.g. supp(12342) = {1,2,3,4}

Intuitive Definition of Shuffle

• a *shuffle* of the words 123 and 456 is obtained by interspersing the letters of these words

• the letters of each original word must stay in order

• for example, 142563

Intuitive Definition of Shuffle

- a *shuffle* of the words 123 and 456 is obtained by interspersing the letters of these words
- the letters of each original word must stay in order
- for example, 142563

Intuitive Definition of Shuffle

- a *shuffle* of the words 123 and 456 is obtained by interspersing the letters of these words
- the letters of each original word must stay in order
- for example, 142563

Given two words $u = a_1 a_2 \dots a_m$ and $v = b_1 b_2 \dots b_n$,

• concatenate *u* and *v*:

$$c_1 c_2 \ldots c_{m+n} = a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n$$

• then permute entries to obtain a shuffle of u with v:

 $C_{\rho(1)}C_{\rho(2)}\ldots C_{\rho(m+n)}$

where ρ is a permutation on m + n elements satisfying order-preserving conditions
 ρ⁻¹(1) < ρ⁻¹(2) < ··· < ρ⁻¹(m)
 ρ⁻¹(m+1) < ρ⁻¹(m+2) < ··· < ρ⁻¹(m+n)

PP2010 6/44

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < の

Given two words $u = a_1 a_2 \dots a_m$ and $v = b_1 b_2 \dots b_n$,

oncatenate u and v:

$$c_1 c_2 \ldots c_{m+n} = a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n$$

• then permute entries to obtain a shuffle of u with v:

 $C_{\rho(1)}C_{\rho(2)}\cdots C_{\rho(m+n)}$

where ρ is a permutation on m + n elements satisfying order-preserving conditions
 ρ⁻¹(1) < ρ⁻¹(2) < ··· < ρ⁻¹(m)
 ρ⁻¹(m+1) < ρ⁻¹(m+2) < ··· < ρ⁻¹(m+n)

C. S. Barnes (Sweet Briar College)

PP2010 6/44

Given two words $u = a_1 a_2 \dots a_m$ and $v = b_1 b_2 \dots b_n$,

concatenate u and v:

$$c_1 c_2 \ldots c_{m+n} = a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n$$

• then permute entries to obtain a *shuffle* of *u* with *v*:

 $C_{\rho(1)}C_{\rho(2)}\ldots C_{\rho(m+n)}$

where ρ is a permutation on m + n elements satisfying order-preserving conditions
 ρ⁻¹(1) < ρ⁻¹(2) < ··· < ρ⁻¹(m)

• $\rho^{-1}(m+1) < \rho^{-1}(m+2) < \dots < \rho^{-1}(m+n)$

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 6/44

Given two words $u = a_1 a_2 \dots a_m$ and $v = b_1 b_2 \dots b_n$,

concatenate u and v:

$$c_1 c_2 \ldots c_{m+n} = a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n$$

• then permute entries to obtain a shuffle of u with v:

 $C_{\rho(1)}C_{\rho(2)}\ldots C_{\rho(m+n)}$

where ρ is a permutation on m + n elements satisfying order-preserving conditions
 ρ⁻¹(1) < ρ⁻¹(2) < ··· < ρ⁻¹(m)
 ρ⁻¹(m+1) < ρ⁻¹(m+2) < ··· < ρ⁻¹(m+n)

C. S. Barnes (Sweet Briar College)

PP2010 6/44

Given two words $u = a_1 a_2 \dots a_m$ and $v = b_1 b_2 \dots b_n$,

concatenate u and v:

$$c_1 c_2 \ldots c_{m+n} = a_1 a_2 \ldots a_m b_1 b_2 \ldots b_n$$

• then permute entries to obtain a shuffle of u with v:

 $C_{\rho(1)}C_{\rho(2)}\ldots C_{\rho(m+n)}$

where ρ is a permutation on m + n elements satisfying order-preserving conditions
 ρ⁻¹(1) < ρ⁻¹(2) < ··· < ρ⁻¹(m)

•
$$\rho^{-1}(m+1) < \rho^{-1}(m+2) < \dots < \rho^{-1}(m+n)$$

C. S. Barnes (Sweet Briar College)

PP2010 6/44

(ロ) (同) (E) (E) (E) (E) (C)

Definitions

Example: Shuffles of 123 with 456

All shuffles of the words 123 and 456:

Notation: sh(123, 456) = {shuffles of 123 with 456}

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 7/44

Definitions

Example: Shuffles of 123 with 456

All shuffles of the words 123 and 456:

123 456	14253 6	4 <mark>123</mark> 56	4 1 56 23
1243 56	14256 <mark>3</mark>	4 <mark>1253</mark> 6	45 123 6
12453 6	145 <mark>23</mark> 6	4 <mark>12</mark> 563	451263
124563	145 <mark>263</mark>	415236	4516 <mark>23</mark>
14 <mark>23</mark> 56	1456 <mark>23</mark>	415 <mark>263</mark>	4561 <mark>23</mark>

• Notation: sh(123,456) = {shuffles of 123 with 456}

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 7/44

Definitions

Example: Shuffles of 123 with 456

All shuffles of the words 123 and 456:

123 456	14 <mark>253</mark> 6	4 <mark>123</mark> 56	4156 <mark>23</mark>
1243 56	14 <mark>2</mark> 563	4 1253 6	451 <mark>23</mark> 6
12 45 3 6	145 <mark>23</mark> 6	412563	451263
12 456 3	145 <mark>263</mark>	4 1 5 23 6	4516 <mark>23</mark>
14 <mark>23</mark> 56	1456 <mark>23</mark>	4 1 5263	4561 <mark>23</mark>

Notation: sh(123, 456) = {shuffles of 123 with 456}

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 7/44

Outline

- Definitions
- Problem: How Many Distinct Shuffles?
- Distinct Shuffles of Permutations
 - Motivation & Special Cases
 - Towards Enumeration Theorem

Goal

- Partial Ordering on Symmetric Group for Shuffles
- Minimal & Maximal Permutations for Shuffles
- Further Generalizations

Example: Counting Shuffles of 123 with 456

- None of entries in word 123 appear in word 456, so # of distinct shuffles = $\#\mathfrak{sh}(123, 456) = \binom{6}{3} = 20$
- In fact, if words *u* and *v* have disjoint supports, then

 $#\mathfrak{sh}(u, v) = \begin{pmatrix} \text{length of } u + \text{ length of } v \\ \text{length of } u \end{pmatrix}$

C. S. Barnes (Sweet Briar College)

PP2010 9/44

Example: Counting Shuffles of 123 with 456

- None of entries in word 123 appear in word 456, so # of distinct shuffles = $\#\mathfrak{sh}(123, 456) = \binom{6}{3} = 20$
- In fact, if words u and v have disjoint supports, then

$$#\mathfrak{sh}(u, v) = \begin{pmatrix} \text{length of } u + \text{ length of } v \\ \text{length of } u \end{pmatrix}$$

C. S. Barnes (Sweet Briar College)

PP2010 9/44

All *distinct* shuffles of permutation words 123 and 312:

1233 12	13 <mark>23</mark> 12	131 <mark>23</mark> 2	3 1213 2	311223
123132	13 <mark>213</mark> 2	131 223	31212 3	
12 3123	13212 <mark>3</mark>	3 <mark>123</mark> 12	3 1123 2	

Entries that could come from either word in black

Shuffles with black entries have multiplicity > 1

 eg 311223 could be 311223, 311223, 311223, or 311223

All *distinct* shuffles of permutation words 123 and 312:

1233 12	13 <mark>23</mark> 12	131 <mark>23</mark> 2	3 <mark>12</mark> 132	311223
12 31 3 2	132132	131 223	312123	
123123	13212 <mark>3</mark>	3 <mark>123</mark> 12	3 1123 2	

Entries that could come from either word in black

Shuffles with black entries have multiplicity > 1

 eg 311223 could be 311223, 311223, 311223, or 311223

PP2010 10/44

All *distinct* shuffles of permutation words 123 and 312:

1233 12	13 <mark>23</mark> 12	131 <mark>23</mark> 2	3 <mark>12</mark> 132	311223
12 31 3 2	132132	131 223	31212 3	
12 312 3	13212 <mark>3</mark>	3 <mark>123</mark> 12	3 11<u>23</u>2	

- Entries that could come from either word in black
- Shuffles with black entries have multiplicity > 1
- eg 311223 could be 311223, 3

PP2010 10/44

All *distinct* shuffles of permutation words 123 and 312:

1233 12	13 <mark>23</mark> 12	131 <mark>23</mark> 2	3 <mark>12</mark> 132	311223
12 31 3 2	132132	131 223	31212 3	
123123	13212 <mark>3</mark>	3 <mark>123</mark> 12	3 11<u>23</u>2	

- Entries that could come from either word in black
- Shuffles with black entries have multiplicity > 1

 eg 311223 could be 311223, 311223, 311223, or 311223

PP2010 10/44

(ロ) (同) (E) (E) (E) (E) (C)

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

Distinct Shuffles of Permutations

- Motivation & Special Cases
- Towards Enumeration Theorem

Goals

2

- Partial Ordering on Symmetric Group for Shuffles
- Minimal & Maximal Permutations for Shuffles
- Further Generalizations

Shuffles of Identity Permutation with Itself

All *distinct* shuffles of 123 with itself:

• #sh(123, 123) = 5

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 12/44

Shuffles of Identity Permutation with Itself

All *distinct* shuffles of 123 with itself:

• #sh(123, 123) = 5

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 12/44

Why count shuffles of permutations?

Fun Fact:

$$\#\mathfrak{sh}(\mathrm{id}_n,\mathrm{id}_n) = \frac{1}{n+1} \binom{2n}{n} = C_n \qquad (n^{th} \operatorname{Catalan} \#)$$

Proof: Construct bijection: $\mathfrak{sh}(\mathrm{id}_n, \mathrm{id}_n) \longrightarrow \{ \text{ballot sequences of length } 2n \}$

C. S. Barnes (Sweet Briar College)

PP2010 13/44

Motivation & Special Cases

Why count shuffles of permutations?

Fun Fact:

$$#\mathfrak{sh}(\mathrm{id}_n,\mathrm{id}_n) = \frac{1}{n+1} \binom{2n}{n} = C_n \qquad (n^{th} \text{ Catalan } #)$$

Proof: Construct bijection: $\mathfrak{sh}(\mathsf{id}_n, \mathsf{id}_n) \longrightarrow \{ \mathsf{ballot sequences of length } 2n \}$

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 13/44

Motivation & Special Cases

Why count shuffles of permutations?

Fun Fact:

$$#\mathfrak{sh}(\mathrm{id}_n,\mathrm{id}_n) = \frac{1}{n+1} \binom{2n}{n} = C_n \qquad (n^{th} \operatorname{Catalan} #)$$

Proof: Construct bijection: $\mathfrak{sh}(\mathrm{id}_n, \mathrm{id}_n) \longrightarrow \{ \text{ballot sequences of length } 2n \}$

C. S. Barnes (Sweet Briar College)

PP2010 13/44

ballot sequence has

- *n* +1's
- *n* −1's
- all partial sums nonnegative
- Substitute +1 for 1st occurrence of 1 through *n*, substitute -1 for 2nd occurrence
- eg 121323 → ++-+--
- #{ballot sequences of length 2n} = C_n

PP2010 14/44

ballot sequence has

- n+1's
- *n* —1's
- all partial sums nonnegative
- Substitute +1 for 1st occurrence of 1 through *n*, substitute -1 for 2nd occurrence
- eg 121323 → ++-+--
- #{ballot sequences of length 2n} = C_n

PP2010 14/44

ballot sequence has

- n+1's
- n −1's
- all partial sums nonnegative
- Substitute +1 for 1st occurrence of 1 through *n*, substitute -1 for 2nd occurrence
- eg 121323 → ++-+--
- #{ballot sequences of length 2n} = C_n

PP2010 14/44

ballot sequence has

- n+1's
- n −1's
- all partial sums nonnegative
- Substitute +1 for 1st occurrence of 1 through *n*, substitute -1 for 2nd occurrence
- eg 121323 → ++-+--
- #{ballot sequences of length 2n} = C_n

PP2010 14/44

- ballot sequence has
 - n+1's
 - *n* −1's
 - all partial sums nonnegative
- Substitute +1 for 1st occurrence of 1 through *n*, substitute -1 for 2nd occurrence
- eg 121323 → ++-+--
- #{ballot sequences of length 2n} = C_n

PP2010 14/44

Bijection Between Shuffles & Ballot Sequences

- ballot sequence has
 - n+1's
 - *n* −1's
 - all partial sums nonnegative
- Substitute +1 for 1st occurrence of 1 through *n*, substitute -1 for 2nd occurrence
- eg 121323 → ++-+--
- #{ballot sequences of length 2n} = C_n

PP2010 14 / 44

Bijection Between Shuffles & Ballot Sequences

- ballot sequence has
 - n+1's
 - *n* −1's
 - all partial sums nonnegative
- Substitute +1 for 1st occurrence of 1 through *n*, substitute -1 for 2nd occurrence
- eg 121323 → ++-+--
- #{ballot sequences of length 2n} = C_n

PP2010 14/44

The *distinct* shuffles of the words 123 and 321 are:

1233 21		1 3 22 1 3	
		3 1223 1	32 1123
	1 3 223 1	3 122 1 <mark>3</mark>	

- Shuffles with bolded entries occur exactly twice
- Take total number of shuffles (counted with multiplicities) & subtract number of duplicates

PP2010 15/44

The *distinct* shuffles of the words 123 and 321 are:

12332 1	13 <mark>23</mark> 21	13 22 1 <mark>3</mark>	3 <mark>123</mark> 21	321213
12 32 3 1	1321 <mark>23</mark>	312231	3121 <mark>23</mark>	32 1123
12 321 3	<mark>132231</mark>	31221 <mark>3</mark>	32 <mark>123</mark> 1	

- Shuffles with **bolded** entries occur exactly twice
- Take *total* number of shuffles (counted with multiplicities) & subtract number of duplicates

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 15/44

The *distinct* shuffles of the words 123 and 321 are:

12332 1	13 <mark>23</mark> 21	13221 <mark>3</mark>	3 <mark>123</mark> 21	321213
123231	1321 <mark>23</mark>	3 1223 1	3121 <mark>23</mark>	32 1123
12 321 3	13 223 1	3 <mark>122</mark> 13	32 <mark>123</mark> 1	

Shuffles with **bolded** entries occur exactly twice

• Take *total* number of shuffles (counted with multiplicities) & *subtract* number of duplicates

PP2010 15/44

The *distinct* shuffles of the words 123 and 321 are:

12332 1	13 <mark>23</mark> 21	13 22 1 <mark>3</mark>	3 <mark>123</mark> 21	321213
12323 1	1321 <mark>23</mark>	3 1223 1	3121 <mark>23</mark>	32 1123
12 321 3	13 223 1	3 122 1 <mark>3</mark>	32 <mark>123</mark> 1	

- Shuffles with **bolded** entries occur exactly twice
- Take *total* number of shuffles (counted with multiplicities) & *subtract* number of duplicates

Counting Shuffles of Identity with Reverse

Shuffles of the words 123 and 321 of multiplicity 2 are:

1233 21	3 <mark>1223</mark> 1
132231	3 122 1 <mark>3</mark>
13221 <mark>3</mark>	32 1123

• Count duplicates by constructing bijection: $\{w \in \mathfrak{sh}(\mathrm{id}_n, \mathrm{rev}_n) \mid \mu(w) = 2\} \longrightarrow \mathfrak{sh}(+^{n-1}, -^{n-1})$

 Notation: use rev_n instead of ω₀ to avoid double subscript as n varies

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 16/44

Counting Shuffles of Identity with Reverse

Shuffles of the words 123 and 321 of multiplicity 2 are:

123321	3 <mark>1223</mark> 1
132231	3 122 1 <mark>3</mark>
13221 <mark>3</mark>	32 1123

• Count duplicates by constructing bijection: $\{w \in \mathfrak{sh}(\mathrm{id}_n, \mathrm{rev}_n) \mid \mu(w) = 2\} \longrightarrow \mathfrak{sh}(+^{n-1}, -^{n-1})$

 Notation: use rev_n instead of ω₀ to avoid double subscript as n varies

PP2010 16/44

Counting Shuffles of Identity with Reverse

Shuffles of the words 123 and 321 of multiplicity 2 are:

1233 21	3 <mark>1223</mark> 1
132231	3 122 13
13221 <mark>3</mark>	32 1123

- Count duplicates by constructing bijection: $\{w \in \mathfrak{sh}(\mathrm{id}_n, \mathrm{rev}_n) \mid \mu(w) = 2\} \longrightarrow \mathfrak{sh}(+^{n-1}, -^{n-1})$
- Notation: use rev_n instead of ω₀ to avoid double subscript as n varies

(ロ) (同) (E) (E) (E) (E) (C)

Excise double entries

- Replace entries from id_n with +
- Replace entries from rev_n with –
- Examples:

- Can compute $#\mathfrak{sh}(123, 321) = \binom{6}{3} \binom{4}{2} = 14$
- In general, $\#\mathfrak{sh}(\mathrm{id}_m, \mathrm{rev}_n) = \binom{m+n}{m} \binom{m+n-2}{m-1}$

PP2010 17 / 44

- Excise double entries
- Replace entries from id_n with +
- Replace entries from rev_n with –
- Examples:

- Can compute $#\mathfrak{sh}(123, 321) = \binom{6}{3} \binom{4}{2} = 14$
- In general, $\#\mathfrak{sh}(\mathrm{id}_m, \mathrm{rev}_n) = \binom{m+n}{m} \binom{m+n-2}{m-1}$

PP2010 17 / 44

- Excise double entries
- Replace entries from id_n with +
- Replace entries from rev_n with –
- Examples:

- Can compute $\#\mathfrak{sh}(123, 321) = \binom{6}{3} \binom{4}{2} = 14$
- In general, $\#\mathfrak{sh}(\mathrm{id}_m, \mathrm{rev}_n) = \binom{m+n}{m} \binom{m+n-2}{m-1}$

PP2010 17 / 44

- Excise double entries
- Replace entries from id_n with +
- Replace entries from rev_n with -
- Examples:

1233 21	\longrightarrow	1 2 21	\longrightarrow	++
13 223 1	\longrightarrow	<mark>133</mark> 1	\longrightarrow	+-+-
13221 <mark>3</mark>	\longrightarrow	<mark>1313</mark>	\longrightarrow	++

• Can compute $#\mathfrak{sh}(123, 321) = \binom{6}{3} - \binom{4}{2} = 14$ • In general, $#\mathfrak{sh}(\mathrm{id}_m, \mathrm{rev}_n) = \binom{m+n}{m} - \binom{m+n-2}{m-1}$

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 17/44

- Excise double entries
- Replace entries from id_n with +
- Replace entries from rev_n with –
- Examples:

123321	\longrightarrow	1 2 21	\longrightarrow	++
<mark>13223</mark> 1	\longrightarrow	<mark>133</mark> 1	\longrightarrow	+-+-
13221 <mark>3</mark>	\longrightarrow	<mark>1313</mark>	\longrightarrow	++

- Can compute $\#\mathfrak{sh}(123, 321) = \binom{6}{3} \binom{4}{2} = 14$
- In general, $\#\mathfrak{sh}(\mathrm{id}_m, \mathrm{rev}_n) = \binom{m+n}{m} \binom{m+n-2}{m-1}$

- Excise double entries
- Replace entries from id_n with +
- Replace entries from rev_n with –
- Examples:

1 233 21	\longrightarrow	1 2 21	\longrightarrow	++
132231	\longrightarrow	<mark>133</mark> 1	\longrightarrow	+-+-
13221 <mark>3</mark>	\longrightarrow	<mark>1</mark> 31 <mark>3</mark>	\longrightarrow	++

- Can compute $\#\mathfrak{sh}(123, 321) = \binom{6}{3} \binom{4}{2} = 14$
- In general, $\#\mathfrak{sh}(\mathrm{id}_m, \mathrm{rev}_n) = \binom{m+n}{m} \binom{m+n-2}{m-1}$

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

2 Distinct Shuffles of Permutations

- Motivation & Special Cases
- Towards Enumeration Theorem

Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal & Maximal Permutations for Shuffles
- Further Generalizations

(日) (종) (종) (종) (종) (종)

• *WLOG:* Enough to enumerate shuffles of each permutation with identity permutation

- Claim: Multiplicity of shuffle of two permutations always a *power of 2*
- Reason: If a shuffle has multiplicity > 1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{sh}(123, 123)$:
 - each 12 block could come from either copy of 123
 - each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a *consecutive identity subword* (or *idword*)

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Towards Enumeration Theorem

Multiplicities of Shuffles

- *WLOG:* Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a *power of 2*
- Reason: If a shuffle has multiplicity > 1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{sh}(123, 123)$:
 - each 12 block could come from either copy of 123
 - each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a *consecutive identity subword* (or *idword*)

- *WLOG:* Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a *power of 2*
- Reason: If a shuffle has multiplicity > 1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{sh}(123, 123)$:
 - each 12 block could come from either copy of 123
 - each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a *consecutive identity subword* (or *idword*)

PP2010 19/44

(ロ) (同) (E) (E) (E) (E) (C)

- *WLOG:* Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a *power of 2*
- Reason: If a shuffle has multiplicity > 1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{sh}(123, 123)$:
 - each 12 block could come from either copy of 123
 - each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a *consecutive identity subword* (or *idword*)

- *WLOG:* Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a *power of 2*
- Reason: If a shuffle has multiplicity > 1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{sh}(123, 123)$:
 - each 12 block could come from either copy of 123
 - each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a *consecutive identity subword* (or *idword*)

- *WLOG:* Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a *power of 2*
- Reason: If a shuffle has multiplicity > 1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{sh}(123, 123)$:
 - each 12 block could come from either copy of 123
 - each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a *consecutive identity subword* (or *idword*)

Towards Enumeration Theorem

Multiplicities of Shuffles

- *WLOG:* Enough to enumerate shuffles of each permutation with identity permutation
- Claim: Multiplicity of shuffle of two permutations always a *power of 2*
- Reason: If a shuffle has multiplicity > 1, there must be one or more blocks of letters that could come from either permutation
- e.g. for $121233 \in \mathfrak{sh}(123, 123)$:
 - each 12 block could come from either copy of 123
 - each 3 could come from either copy of 123
- Call such a contiguous block of consecutive letters a consecutive identity subword (or idword)

- Example: 312123 ∈ sh(123, 312) has idword 12 "locally shuffled with itself" (or *local-shuffled*)
 - multiplicity $\mu(312123) = 2$
- Example: $311223 \in \mathfrak{sh}(123, 312)$ has idwords 1 and 2 local-shuffled
 - multiplicity $\mu(311223) = 4$
 - could say 311223 has idword 12 local-shuffled
 - but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

PP2010 20 / 44

(日) (종) (종) (종) (종) (종)

- Example: 312123 ∈ sh(123, 312) has idword 12 "locally shuffled with itself" (or *local-shuffled*)
 - multiplicity μ (312123) = 2
- Example: $311223 \in \mathfrak{sh}(123, 312)$ has idwords 1 and 2 local-shuffled
 - multiplicity $\mu(311223) = 4$
 - could say 311223 has idword 12 local-shuffled
 - but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

PP2010 20 / 44

(日) (종) (종) (종) (종) (종)

- Example: 312123 ∈ sh(123, 312) has idword 12 "locally shuffled with itself" (or *local-shuffled*)
 - multiplicity μ (312123) = 2
- Example: 311223 ∈ sh(123, 312) has idwords 1 and 2 local-shuffled
 - multiplicity μ(311223) = 4
 - o could say 311223 has idword 12 local-shuffled
 - but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

- Example: 312123 ∈ sh(123, 312) has idword 12 "locally shuffled with itself" (or *local-shuffled*)
 - multiplicity μ (312123) = 2
- Example: 311223 ∈ sh(123, 312) has idwords 1 and 2 local-shuffled
 - multiplicity $\mu(311223) = 4$
 - could say 311223 has idword 12 local-shuffled
 - but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

PP2010 20 / 44

- Example: 312123 ∈ sh(123, 312) has idword 12 "locally shuffled with itself" (or *local-shuffled*)
 - multiplicity μ (312123) = 2
- Example: 311223 ∈ sh(123, 312) has idwords 1 and 2 local-shuffled
 - multiplicity $\mu(311223) = 4$
 - could say 311223 has idword 12 local-shuffled
 - but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

- Example: 312123 ∈ sh(123, 312) has idword 12 "locally shuffled with itself" (or *local-shuffled*)
 - multiplicity μ (312123) = 2
- Example: 311223 ∈ sh(123, 312) has idwords 1 and 2 local-shuffled
 - multiplicity μ (311223) = 4
 - could say 311223 has idword 12 local-shuffled
 - but need to decompose longer idwords into smallest possible pieces to get maximal number simultaneously local-shuffled

PP2010 20 / 44

Sketched Proof of Claim: Multiplicities are Powers of 2

- For a given shuffle w, can construct an automorphism group of permutations acting on letters of w so that w still "looks" the same
- automorphism group for shuffle $w \in \mathfrak{sh}(u, v)$ is subgroup of \mathfrak{S}_{m+n} where $u \in \mathfrak{S}_m$, $v \in \mathfrak{S}_n$

Sketched Proof of Claim: Multiplicities are Powers of 2

- For a given shuffle w, can construct an automorphism group of permutations acting on letters of w so that w still "looks" the same
- automorphism group for shuffle $w \in \mathfrak{sh}(u, v)$ is subgroup of \mathfrak{S}_{m+n} where $u \in \mathfrak{S}_m$, $v \in \mathfrak{S}_n$

Example: 312123 ∈ sh(123, 312) has automorphism group ⟨(24)(35)⟩

• $\langle (24)(35)
angle$ order 2 $\implies \mu(312123) =$ 2 in $\mathfrak{sh}(123,312)$

Example: 311223 ∈ sh(123, 312) has automorphism group ⟨(23), (45)⟩ a /(24) (25)⟩ order 4 → y(211222) = 4 in ch(122)

• $\langle (24), (35)
angle$ order $4 \implies \mu(311223) = 4$ in $\mathfrak{sh}(123, 312)$

PP2010 22 / 44

Example: 312123 ∈ sh(123, 312) has automorphism group ((24)(35)) ((24)(35)) order 2 ⇒ µ(312123) = 2 in sh(123, 312) Example: 311223 ∈ sh(123, 312) has automorphism group ((23), (45))

PP2010 22 / 44

 Example: 312123 ∈ sh(123, 312) has automorphism group ⟨(24)(35)⟩
 ((24)(35)) order 2 ⇒ μ(312123) = 2 in sh(123, 312)
 Example: 311223 ∈ sh(123, 312) has automorphism group ⟨(23), (45)⟩
 ⟨(24), (35)⟩ order 4 ⇒ μ(311223) = 4 in sh(123, 312)

- Example: $312123 \in \mathfrak{sh}(123, 312)$ has automorphism group $\langle (24)(35) \rangle$
 - ((24)(35)) order 2 $\implies \mu(312123) = 2 \text{ in } \mathfrak{sh}(123, 312)$
- Example: 311223 ∈ sh(123,312) has automorphism group ⟨(23), (45)⟩
 - $\langle (24), (35) \rangle$ order 4 $\implies \mu(311223) = 4$ in $\mathfrak{sh}(123, 312)$

Sketched Proof of Claim, Continued

- permutation shuffle automorphism groups always generated by disjoint permutations of order 2
- each automorphism group has order 2^k for some integer k ≥ 0
- order of automorphism group is multiplicity of shuffle

PP2010 23 / 44

Sketched Proof of Claim, Continued

- permutation shuffle automorphism groups always generated by disjoint permutations of order 2
- each automorphism group has order 2^k for some integer k ≥ 0
- order of automorphism group is multiplicity of shuffle

Sketched Proof of Claim, Continued

- permutation shuffle automorphism groups always generated by disjoint permutations of order 2
- each automorphism group has order 2^k for some integer k ≥ 0
- order of automorphism group is multiplicity of shuffle

(ロ) (同) (E) (E) (E) (E) (C)

Overview of Strategy

Take total number of shuffles with multiplicity, subtract duplicates

- Essentially an application of Principle of Inclusion-Exclusion
- i.e. take an alternating sum of set cardinalities that subtracts the correct number of repeated shuffles from the binomial coefficient

Overview of Strategy

- Take total number of shuffles with multiplicity, subtract duplicates
- Essentially an application of Principle of Inclusion-Exclusion
- i.e. take an alternating sum of set cardinalities that subtracts the correct number of repeated shuffles from the binomial coefficient

Overview of Strategy

- Take total number of shuffles with multiplicity, subtract duplicates
- Essentially an application of Principle of Inclusion-Exclusion
- i.e. take an alternating sum of set cardinalities that subtracts the correct number of repeated shuffles from the binomial coefficient

- Let T^σ_j = #shuffles of σ with id_m, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is $w = 11623434565277 \in \mathfrak{sh}(\mathrm{id}_7, 1634527)$ counted in $T_2^{1634527}$?
 - w has 3 local-shuffled idwords:
 - 11623434565277
 - choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2} = 3$ choices
 - remaining local-shuffled idword can be interpreted 2³⁻² = 2 ways
 - w is counted $\binom{3}{2}2^{3-2} = 6$ times in T_2^{163}

PP2010 25 / 44

- Let T^σ_j = #shuffles of σ with id_m, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is $w = 11623434565277 \in \mathfrak{sh}(\mathrm{id}_7, 1634527)$ counted in $T_2^{1634527}$?
 - w has 3 local-shuffled idwords: 11623434565277
 - choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2} = 3$ choices
 - remaining local-shuffled idword can be interpreted $2^{3-2} = 2$ ways
 - w is counted $\binom{3}{2}2^{3-2} = 6$ times in $T_2^{1634527}$

PP2010 25/44

- Let T^σ_j = #shuffles of σ with id_m, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
 - $w = 11623434565277 \in \mathfrak{sh}(\mathrm{id}_7, 1634527)$ counted in $T_2^{1634527}$?
 - w has 3 local-shuffled idwords: 11623434565277
 - choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2} = 3$ choices
 - remaining local-shuffled idword can be interpreted $2^{3-2} = 2$ ways
 - w is counted $\binom{3}{2}2^{3-2} = 6$ times in $T_2^{1634527}$

PP2010 25/44

- Let T^σ_j = #shuffles of σ with id_m, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
 - $w = 11623434565277 \in \mathfrak{sh}(\mathrm{id}_7, 1634527)$ counted in $T_2^{1634527}$?
 - w has 3 local-shuffled idwords: 11623434565277
 - choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2} = 3$ choices
 - remaining local-shuffled idword can be interpreted 2³⁻² = 2 ways
 w is counted (³₂)2³⁻² = 6 times in T¹⁶³⁴⁵²⁷₂

PP2010 25/44

- Let T^σ_j = #shuffles of σ with id_m, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
 - $w = 11623434565277 \in \mathfrak{sh}(\mathrm{id}_7, 1634527)$ counted in $T_2^{1634527}$?
 - w has 3 local-shuffled idwords: 11623434565277
 - choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2} = 3$ choices
 - remaining local-shuffled idword can be interpreted $2^{3-2} = 2$ ways
 - w is counted $\binom{3}{2}2^{3-2} = 6$ times in T_2^{16}

PP2010 25/44

- Let T^σ_j = #shuffles of σ with id_m, counted with multiplicity, that have j or more local-shuffled idwords
- Example: How many times is
 - $w = 11623434565277 \in \mathfrak{sh}(\mathrm{id}_7, 1634527)$ counted in $T_2^{1634527}$?
 - w has 3 local-shuffled idwords: 11623434565277
 - choose 2 out of 3 of local-shuffled idwords; $\binom{3}{2} = 3$ choices
 - remaining local-shuffled idword can be interpreted $2^{3-2} = 2$ ways
 - w is counted $\binom{3}{2}2^{3-2} = 6$ times in $T_2^{1634527}$

PP2010 25/44

Using Inclusion-Exclusion, Continued

In general, can show that

$$T_j^{\sigma} = \sum_{k=j}^m \binom{k}{j} 2^{k-j} N_k^{\sigma}$$

where $N_k^{\sigma} = #\{w \in \mathfrak{sh}(\mathrm{id}_m, \sigma) \mid \mu(w) = 2^k\}$

Hence, thanks to binomial theorem & changing order of summation,

$$\#\mathfrak{sh}(\mathsf{id}_m,\sigma) = \sum_{j=0}^m (-1)^j T_j^\sigma$$

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 26/44

Using Inclusion-Exclusion, Continued

• In general, can show that

$$T_j^{\sigma} = \sum_{k=j}^m \binom{k}{j} 2^{k-j} N_k^{\sigma}$$

where
$$N_k^{\sigma} = #\{ w \in \mathfrak{sh}(\mathsf{id}_m, \sigma) \mid \mu(w) = 2^k \}$$

Hence, thanks to binomial theorem & changing order of summation,

$$\#\mathfrak{sh}(\mathrm{id}_m,\sigma)=\sum_{j=0}^m(-1)^jT_j^\sigma$$

C. S. Barnes (Sweet Briar College)

PP2010 26/44

Example: Shuffles of 123 with 312

• For example,

$$\#\mathfrak{sh}(\mathsf{id}_3, 312) = T_0^{312} - T_1^{312} + T_2^{312} - T_3^{312}$$

• We know $T_0^{312} = \binom{6}{3} = 20$

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 27/44

Example: Shuffles of 123 with 312

• For example,

$$\#\mathfrak{sh}(\mathsf{id}_3, \mathbf{312}) = T_0^{312} - T_1^{312} + T_2^{312} - T_3^{312}$$

• We know $T_0^{312} = \binom{6}{3} = 20$

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 27/44

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{sh}([], 3) * 11 * \mathfrak{sh}(23, 2)$, get $\binom{1}{0} \cdot C_0 \cdot \binom{3}{2} = 3$
- Fix double 2's: $\mathfrak{sh}(1, 31) * 22 * \mathfrak{sh}(3, []), \text{ get } \binom{3}{1} \cdot C_0 \cdot \binom{1}{1} = 3$
- Fix double 3's: sh(12, []) * 33 * sh([], 12), get (²₂) · C₀ · (²₀) = 1
- Fix unique indecomposable shuffle of 12 with itself: $\mathfrak{sh}([],3) * 1212 * \mathfrak{sh}(3,[]), \text{ get } \binom{1}{0} \cdot C_1 \cdot \binom{1}{1} = 1$
- $T_1^{312} = 3 + 3 + 1 + 1 = 8$

PP2010 28/44

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{sh}([],3) * 11 * \mathfrak{sh}(23,2)$, get $\binom{1}{0} \cdot C_0 \cdot \binom{3}{2} = 3$
- Fix double 2's: sh(1,31) * 22 * sh(3, []), get (³₁) · C₀ · (¹₁) = 3
- Fix double 3's: sh(12, []) * 33 * sh([], 12), get (²₂) · C₀ · (²₀) = 1
- Fix unique indecomposable shuffle of 12 with itself: $\mathfrak{sh}([],3) * 1212 * \mathfrak{sh}(3,[]), \operatorname{get} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot C_1 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$
- $T_1^{312} = 3 + 3 + 1 + 1 = 8$

PP2010 28/44

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{sh}([],3) * 11 * \mathfrak{sh}(23,2)$, get $\binom{1}{0} \cdot C_0 \cdot \binom{3}{2} = 3$
- Fix double 2's: $\mathfrak{sh}(1,31) * 22 * \mathfrak{sh}(3,[])$, get $\binom{3}{1} \cdot C_0 \cdot \binom{1}{1} = 3$
- Fix double 3's: sh(12, []) * 33 * sh([], 12), get (²₂) · C₀ · (²₀) = 1
- Fix unique indecomposable shuffle of 12 with itself: $\mathfrak{sh}([],3) * 1212 * \mathfrak{sh}(3,[]), \text{ get } \binom{1}{0} \cdot C_1 \cdot \binom{1}{1} = 1$
- $T_1^{312} = 3 + 3 + 1 + 1 = 8$

PP2010 28 / 44

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{sh}([],3) * 11 * \mathfrak{sh}(23,2)$, get $\binom{1}{0} \cdot C_0 \cdot \binom{3}{2} = 3$
- Fix double 2's: $\mathfrak{sh}(1,31) * 22 * \mathfrak{sh}(3,[])$, get $\binom{3}{1} \cdot C_0 \cdot \binom{1}{1} = 3$
- Fix double 3's: $\mathfrak{sh}(12, []) * 33 * \mathfrak{sh}([], 12)$, get $\binom{2}{2} \cdot C_0 \cdot \binom{2}{0} = 1$
- Fix unique indecomposable shuffle of 12 with itself: $\mathfrak{sh}([],3) * 1212 * \mathfrak{sh}(3,[]), \operatorname{get} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot C_1 \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$

• $T_1^{312} = 3 + 3 + 1 + 1 = 8$

PP2010 28/44

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{sh}([],3) * 11 * \mathfrak{sh}(23,2)$, get $\binom{1}{0} \cdot C_0 \cdot \binom{3}{2} = 3$
- Fix double 2's: $\mathfrak{sh}(1,31) * 22 * \mathfrak{sh}(3,[])$, get $\binom{3}{1} \cdot C_0 \cdot \binom{1}{1} = 3$
- Fix double 3's: $\mathfrak{sh}(12, []) * 33 * \mathfrak{sh}([], 12)$, get $\binom{2}{2} \cdot C_0 \cdot \binom{2}{0} = 1$
- Fix unique indecomposable shuffle of 12 with itself: sh([],3) * 1212 * sh(3, []), get (¹₀) · C₁ · (¹₁) = 1

 T³¹²₁ = 3 + 3 + 1 + 1 = 8

PP2010 28/44

- Notation: * denotes concatenation, [] denotes empty word
- Fix double 1's: $\mathfrak{sh}([],3) * 11 * \mathfrak{sh}(23,2)$, get $\binom{1}{0} \cdot C_0 \cdot \binom{3}{2} = 3$
- Fix double 2's: $\mathfrak{sh}(1,31) * 22 * \mathfrak{sh}(3,[])$, get $\binom{3}{1} \cdot C_0 \cdot \binom{1}{1} = 3$
- Fix double 3's: sh(12, []) * 33 * sh([], 12), get (²₂) · C₀ · (²₀) = 1
- Fix unique indecomposable shuffle of 12 with itself: $\mathfrak{sh}([],3) * 1212 * \mathfrak{sh}(3,[]), \operatorname{get} \begin{pmatrix} 1\\ 0 \end{pmatrix} \cdot C_1 \cdot \begin{pmatrix} 1\\ 1 \end{pmatrix} = 1$
- $T_1^{312} = 3 + 3 + 1 + 1 = 8$

PP2010 28/44

- Fix double 1's and double 2's: $\mathfrak{sh}([],3) * 11 * \mathfrak{sh}([],[]) * 22 * \mathfrak{sh}(3,[]),$ get $\binom{1}{0} \cdot C_0 \cdot \binom{0}{0} \cdot C_0 \cdot \binom{1}{1} = 1$
- \nexists 3-set of idwords in 312 that can be simultaneously local-shuffled
- Hence

$$#\mathfrak{sh}(\mathsf{id}_3, 312) = T_0^{312} - T_1^{312} + T_2^{312} - T_3^{312}$$
$$= 20 - 8 + 1 - 0$$
$$= 13$$

C. S. Barnes (Sweet Briar College)

PP2010 29/44

- \nexists 3-set of idwords in 312 that can be simultaneously local-shuffled
- Hence

$$#\mathfrak{sh}(\mathsf{id}_3, 312) = T_0^{312} - T_1^{312} + T_2^{312} - T_3^{312}$$
$$= 20 - 8 + 1 - 0$$
$$= 13$$

C. S. Barnes (Sweet Briar College)

PP2010 29 / 44

- Fix double 1's and double 2's: sh([], 3) * 11 * sh([], []) * 22 * sh(3, []), get (¹₀) · C₀ · (⁰₀) · C₀ · (¹₁) = 1
 T₂³¹² = 1
- [‡] 3-set of idwords in 312 that can be simultaneously local-shuffled
 • T₃³¹² = 0
- Hence

$$#\mathfrak{sh}(\mathsf{id}_3, 312) = T_0^{312} - T_1^{312} + T_2^{312} - T_3^{312}$$
$$= 20 - 8 + 1 - 0$$
$$= 13$$

C. S. Barnes (Sweet Briar College)

PP2010 29/44

- Fix double 1's and double 2's: sh([], 3) * 11 * sh([], []) * 22 * sh(3, []), get (¹₀) · C₀ · (⁰₀) · C₀ · (¹₁) = 1
 T₂³¹² = 1
- [‡] 3-set of idwords in 312 that can be simultaneously local-shuffled

 *T*₃³¹² = 0
- Hence

$$#\mathfrak{sh}(\mathsf{id}_3, 312) = T_0^{312} - T_1^{312} + T_2^{312} - T_3^{312}$$
$$= 20 - 8 + 1 - 0$$
$$= 13$$

C. S. Barnes (Sweet Briar College)

PP2010 29/44

- Fix double 1's and double 2's: sh([], 3) * 11 * sh([], []) * 22 * sh(3, []), get (¹₀) · C₀ · (⁰₀) · C₀ · (¹₁) = 1
 T₂³¹² = 1
- [‡] 3-set of idwords in 312 that can be simultaneously local-shuffled

 *T*₃³¹² = 0
- Hence

$$#\mathfrak{sh}(\mathsf{id}_3, 312) = T_0^{312} - T_1^{312} + T_2^{312} - T_3^{312}$$
$$= 20 - 8 + 1 - 0$$
$$= 13$$

C. S. Barnes (Sweet Briar College)

PP2010 29/44

- Have theorem enumerating distinct shuffles of any two permutations
- Theorem provides complex but "computationally good" formula enumerating distinct shuffles of *any* two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

- Have theorem enumerating distinct shuffles of any two permutations
- Theorem provides complex but "computationally good" formula enumerating distinct shuffles of *any* two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

- Have theorem enumerating distinct shuffles of any two permutations
- Theorem provides complex but "computationally good" formula enumerating distinct shuffles of *any* two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

- Have theorem enumerating distinct shuffles of any two permutations
- Theorem provides complex but "computationally good" formula enumerating distinct shuffles of *any* two permutations
- Involves alternating sum of products of determinants
- Entries of determinants depend directly on inversions of (non-identity) permutation

Examples of Maple Computations

$$\begin{bmatrix} > CountShuffles([1, 2, 3], [3, 2, 1]) & 14 & (18) \\ > CountShuffles([1, 2, 3], [3, 1, 2]) & 13 & (19) \\ > CountShuffles([1, 3, 2], [2, 5, 3, 1, 4]) & (19) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6, 1, 2, 3]) & 792 & (21) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6, 1, 2, 3]) & 792 & (21) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6, 1, 2, 3]) & (21) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6, 1, 2, 3]) & (21) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6, 1, 2, 3]) & (21) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6, 1, 2, 3]) & (21) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6, 1, 2, 3]) & (21) \\ > CountShuffles([1, 2, 3, 4, 5, 6], [4, 5, 6], [4, 5, 6]) & (22) \\ \end{cases}$$

C. S. Barnes (Sweet Briar College)

PP2010 31 / 44

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

Distinct Shuffles of Permutations

- Motivation & Special Cases
- Towards Enumeration Theorem

3 Goals

Partial Ordering on Symmetric Group for Shuffles

Goals

- Minimal & Maximal Permutations for Shuffles
- Further Generalizations

• Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$

- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - s(3412) = 54 whereas s(4312) = 52
 - s(4312) = 52 whereas s(4321) = 50
 - *s*(2431) = 46 whereas *s*(4231) = 44

PP2010 33 / 44

- Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$
- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - s(3412) = 54 whereas s(4312) = 52
 - s(4312) = 52 whereas s(4321) = 50
 - *s*(2431) = 46 whereas *s*(4231) = 44

PP2010 33 / 44

- Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$
- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - *s*(3412) = 54 whereas *s*(4312) = 52
 - *s*(4312) = 52 whereas *s*(4321) = 50
 - *s*(2431) = 46 whereas *s*(4231) = 44

PP2010 33 / 44

- Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$
- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - s(3412) = 54 whereas s(4312) = 52
 - s(4312) = 52 whereas s(4321) = 50
 - s(2431) = 46 whereas s(4231) = 44

PP2010 33 / 44

- Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$
- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - *s*(3412) = 54 whereas *s*(4312) = 52
 - s(4312) = 52 whereas s(4321) = 50
 - *s*(2431) = 46 whereas *s*(4231) = 44

PP2010 33 / 44

- Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$
- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - *s*(3412) = 54 whereas *s*(4312) = 52
 - *s*(4312) = 52 whereas *s*(4321) = 50
 - *s*(2431) = 46 whereas *s*(4231) = 44

PP2010 33 / 44

- Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$
- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - *s*(3412) = 54 whereas *s*(4312) = 52
 - *s*(4312) = 52 whereas *s*(4321) = 50
 - *s*(2431) = 46 whereas *s*(4231) = 44

PP2010 33 / 44

- Notation: for $\sigma \in \mathfrak{S}_n$, set $\mathbf{s}(\sigma) = \#\mathfrak{sh}(\mathsf{id}_n, \sigma)$
- Would like to find partial ordering on G_n such that s(σ) is monotone increasing
- Bruhat ordering fails for n = 4, 5, 6, likely to fail for n > 6
- In most cases, $s(\sigma)$ increases as length of σ increases
- Exceptions such as
 - *s*(3412) = 54 whereas *s*(4312) = 52
 - *s*(4312) = 52 whereas *s*(4321) = 50
 - *s*(2431) = 46 whereas *s*(4231) = 44

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

Distinct Shuffles of Permutations

- Motivation & Special Cases
- Towards Enumeration Theorem

Goals

Partial Ordering on Symmetric Group for Shuffles

Goals

- Minimal & Maximal Permutations for Shuffles
- Further Generalizations

• For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ minimal for *n*?

- For $1 \le n \le 6$, $\min_{\sigma \in \mathfrak{S}_n} \mathbf{s}(\sigma) = \mathbf{C}_n$ (achieved by $\sigma = \mathrm{id}_n$)
- Conjecture: For all n, min_{σ∈Gn} s(σ) = C_n, and minimum is achieved by σ = id_n
- Can show that id_n gives a "local" minimum: each adjacent transposition has twice as many shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ minimal for *n*?
- For $1 \le n \le 6$, $\min_{\sigma \in \mathfrak{S}_n} \mathbf{s}(\sigma) = \mathbf{C}_n$ (achieved by $\sigma = \mathrm{id}_n$)
- Conjecture: For all n, min_{σ∈Gn} s(σ) = C_n, and minimum is achieved by σ = id_n
- Can show that id_n gives a "local" minimum: each adjacent transposition has twice as many shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ minimal for *n*?
- For $1 \le n \le 6$, $\min_{\sigma \in \mathfrak{S}_n} \mathbf{s}(\sigma) = \mathbf{C}_n$ (achieved by $\sigma = \mathrm{id}_n$)
- Conjecture: For all n, min_{σ∈Gn} s(σ) = C_n, and minimum is achieved by σ = id_n
- Can show that id_n gives a "local" minimum: each adjacent transposition has twice as many shuffles

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ minimal for *n*?
- For $1 \le n \le 6$, $\min_{\sigma \in \mathfrak{S}_n} \mathbf{s}(\sigma) = \mathbf{C}_n$ (achieved by $\sigma = \mathrm{id}_n$)
- Conjecture: For all n, min_{σ∈Gn} s(σ) = C_n, and minimum is achieved by σ = id_n
- Can show that id_n gives a "local" minimum: each adjacent transposition has twice as many shuffles

• For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ maximal for *n*?

- For n = 4, 5, 6, s(σ) achieves maximum when σ = 3412, 34512, 456123, respectively
 - Note that $3412 = 12 \oplus 12$
 - 34512 = 123 ⊖ 12
 - 456123 = 123 ⊖ 123
- Does pattern hold for *n* > 6?
- *Conjecture:* For $n \ge 4$, maximal $\mathbf{s}(\sigma)$ for $\sigma \in \mathfrak{S}_n$ achieved by $\mathrm{id}_{\lceil \frac{n}{2} \rceil} \ominus \mathrm{id}_{\lfloor \frac{n}{2} \rfloor}$ (or equivalently, $\mathrm{id}_{\lfloor \frac{n}{2} \rfloor} \ominus \mathrm{id}_{\lceil \frac{n}{2} \rceil}$)

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 36/44

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ maximal for *n*?
- For n = 4, 5, 6, s(σ) achieves maximum when σ = 3412, 34512, 456123, respectively
 - Note that $3412 = 12 \ominus 12$
 - o 34512 = 123 ⊖ 12
 - 456123 = 123 ⊖ 123
- Does pattern hold for *n* > 6?
- *Conjecture:* For $n \ge 4$, maximal $\mathbf{s}(\sigma)$ for $\sigma \in \mathfrak{S}_n$ achieved by $\mathrm{id}_{\lceil \frac{n}{2} \rceil} \ominus \mathrm{id}_{\lfloor \frac{n}{2} \rfloor}$ (or equivalently, $\mathrm{id}_{\lfloor \frac{n}{2} \rfloor} \ominus \mathrm{id}_{\lceil \frac{n}{2} \rceil}$)

PP2010 36 / 44

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ maximal for *n*?
- For n = 4, 5, 6, s(σ) achieves maximum when σ = 3412, 34512, 456123, respectively
 - Note that $3412 = 12 \ominus 12$
 - 34512 = 123 ⊖ 12
 - 456123 = 123 ⊖ 123
- Does pattern hold for *n* > 6?
- *Conjecture:* For $n \ge 4$, maximal $\mathbf{s}(\sigma)$ for $\sigma \in \mathfrak{S}_n$ achieved by $\mathrm{id}_{\lceil \frac{n}{2} \rceil} \ominus \mathrm{id}_{\lfloor \frac{n}{2} \rfloor}$ (or equivalently, $\mathrm{id}_{\lfloor \frac{n}{2} \rfloor} \ominus \mathrm{id}_{\lceil \frac{n}{2} \rceil}$)

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 36/44

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ maximal for *n*?
- For n = 4, 5, 6, s(σ) achieves maximum when σ = 3412, 34512, 456123, respectively
 - Note that $3412 = 12 \ominus 12$
 - $34512 = 123 \ominus 12$
 - 456123 = 123 ⊖ 123
- Does pattern hold for *n* > 6?
- *Conjecture:* For $n \ge 4$, maximal $\mathbf{s}(\sigma)$ for $\sigma \in \mathfrak{S}_n$ achieved by $\mathrm{id}_{\lceil \frac{n}{2} \rceil} \ominus \mathrm{id}_{\lfloor \frac{n}{2} \rfloor}$ (or equivalently, $\mathrm{id}_{\lfloor \frac{n}{2} \rfloor} \ominus \mathrm{id}_{\lceil \frac{n}{2} \rceil}$)

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 36/44

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ maximal for *n*?
- For n = 4, 5, 6, s(σ) achieves maximum when σ = 3412, 34512, 456123, respectively
 - Note that $3412 = 12 \ominus 12$
 - $34512 = 123 \ominus 12$
 - $456123 = 123 \ominus 123$
- Does pattern hold for *n* > 6?
- *Conjecture:* For $n \ge 4$, maximal $\mathbf{s}(\sigma)$ for $\sigma \in \mathfrak{S}_n$ achieved by $\mathrm{id}_{\lceil \frac{n}{2} \rceil} \ominus \mathrm{id}_{\lfloor \frac{n}{2} \rfloor}$ (or equivalently, $\mathrm{id}_{\lfloor \frac{n}{2} \rfloor} \ominus \mathrm{id}_{\lceil \frac{n}{2} \rceil}$)

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 36/44

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ maximal for *n*?
- For n = 4, 5, 6, s(σ) achieves maximum when σ = 3412, 34512, 456123, respectively
 - Note that $3412 = 12 \ominus 12$
 - $34512 = 123 \ominus 12$
 - $456123 = 123 \ominus 123$

Does pattern hold for n > 6?

• *Conjecture:* For $n \ge 4$, maximal $\mathbf{s}(\sigma)$ for $\sigma \in \mathfrak{S}_n$ achieved by $\mathrm{id}_{\lceil \frac{n}{2} \rceil} \ominus \mathrm{id}_{\lfloor \frac{n}{2} \rfloor}$ (or equivalently, $\mathrm{id}_{\lfloor \frac{n}{2} \rfloor} \ominus \mathrm{id}_{\lceil \frac{n}{2} \rceil}$)

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 36/44

- For which permutation(s) $\sigma \in \mathfrak{S}_n$ is $s(\sigma)$ maximal for *n*?
- For n = 4, 5, 6, $s(\sigma)$ achieves maximum when $\sigma = 3412, 34512, 456123$, respectively
 - Note that $3412 = 12 \ominus 12$
 - $34512 = 123 \ominus 12$
 - $456123 = 123 \ominus 123$
- Does pattern hold for n > 6?
- *Conjecture:* For $n \ge 4$, maximal $\mathbf{s}(\sigma)$ for $\sigma \in \mathfrak{S}_n$ achieved by $\mathrm{id}_{\lceil \frac{n}{2} \rceil} \ominus \mathrm{id}_{\lfloor \frac{n}{2} \rfloor}$ (or equivalently, $\mathrm{id}_{\lfloor \frac{n}{2} \rfloor} \ominus \mathrm{id}_{\lceil \frac{n}{2} \rceil}$)

PP2010 36 / 44

Outline

Background

- Definitions
- Problem: How Many Distinct Shuffles?

Distinct Shuffles of Permutations

- Motivation & Special Cases
- Towards Enumeration Theorem

Goals

- Partial Ordering on Symmetric Group for Shuffles
- Minimal & Maximal Permutations for Shuffles
- Further Generalizations

(日) (四) (도) (도) (도) (대)

Shuffles of Multiset Permutations & k-Shuffles

- Enumerate distinct shuffles of multiset permutations eg compute #sh(12322, 33214)
- Enumerate distinct k-shuffles of permutations eg compute #sh(132, 231, 1324)

PP2010 38 / 44

Shuffles of Multiset Permutations & k-Shuffles

- Enumerate distinct shuffles of multiset permutations eg compute #sh(12322, 33214)
- Enumerate distinct k-shuffles of permutations eg compute #sh(132,231,1324)

PP2010 38 / 44

Acknowledgments

TYHAONUK!

Special thanks to:

- my dissertation advisor, Richard Stanley
- the organizers of PP2010

PP2010 39 / 44

Acknowledgments

TYHAONUK!

Special thanks to:

- my dissertation advisor, Richard Stanley
- the organizers of PP2010

PP2010 39 / 44

(日) (圖) (문) (문) (문)

Acknowledgments

TYHAONUK!

Special thanks to:

- my dissertation advisor, Richard Stanley
- the organizers of PP2010

PP2010 39 / 44

(日) (图) (문) (문) (문)

Selected References

W.F. Doran IV, Shuffling lattices.

J. Combinatorial Theory Ser. A 66 (2002), 1-26.

R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996), 1-25.

C. Greene, Posets of shuffles, J. Combinatorial Theory Ser. A 47 (1988), 191-206.

P. Hersh, Two generalizations of posets of shuffles, J. Combinatorial Theory Ser. A 97 (2002), 1-26.

D.E. Knuth,

The Art of Computer Programming 3, Addison-Wesley, 1973.

D.E. Knuth,

The Art of Computer Programming 2, 3rd ed., Addison-Wesley, 1998.

R. Simion & R.P. Stanley,

Flag-symmetry of the poset of shuffles and a local action of the symmetric group, Discrete Math. 204 (1999), 369-396.

R.P. Stanley,

Enumerative Combinatorics 1, Cambridge Univ. Press, 1997.

R.P. Stanley,

Enumerative Combinatorics 2, Cambridge Univ. Press, 1999.

C. S. Barnes (Sweet Briar College)

Shuffles of Permutations

PP2010 40 / 44

Extra Stuff

Statement of Enumeration Theorem

Theorem

Let $\sigma \in S_n$ and assume $m \leq n$. Then $\#\mathfrak{sh}(id_m, \sigma)$

$$=\sum_{k=0}^{\lfloor \frac{m}{2} \rfloor} \sum_{\mathbf{a} = \{0=a_0 < a_1 < \dots < a_{2k} < a_{2k+1} = m+1\}} (-1)^{h(\mathbf{a})} \prod_{r=0}^k \det Z^{\sigma}_{a_{2r}, a_{2r+1}} \prod_{s=1}^k \det Y^{\sigma}_{a_{2s-1}, a_{2s}},$$

where

$$h(\mathbf{a}) = m - \sum_{t=1}^{k} (a_{2t} - a_{2t-1}),$$

(continued on next slide...)

PP2010 41/44

Appendix

Extra Stuff

Statement of Enumeration Theorem, Continued

Theorem (continued)

and we define the matrices

$$Z_{c,d}^{\sigma} = [Z_{i,j}^{\sigma}]_{c \leq i \leq d-1, \ c+1 \leq j \leq d},$$

with

$$Z_{i,j}^{\sigma} = \begin{cases} 0, & i > j \\ 1, & i = j \\ 0, & 0 < i < j < m+1 \text{ and } \sigma^{-1}(i) > \sigma^{-1}(j) \\ \binom{j-i-1+\sigma^{-1}(j)-\sigma^{-1}(i)-1}{j-i}, & 0 < i < j < m+1 \text{ and } \sigma^{-1}(i) < \sigma^{-1}(j) \\ \binom{j-1+\sigma^{-1}(j)-1}{j-1}, & i = 0, \ j < m+1 \\ \binom{m-i+n-\sigma^{-1}(i)}{m-i}, & j = m+1, \ i > 0 \\ \binom{m+n}{m}, & i = 0, \ j = m+1, \end{cases}$$

(continued on next slide...)

Extra Stuff

Statement of Enumeration Theorem, Continued

Theorem (continued)

and the matrices

$$Y_{e,f}^{\sigma} = [y_{i,j}^{\sigma}]_{e \leq i,j \leq f-1},$$

with

$$y_{i,j}^{\sigma} = \begin{cases} 0, & i-j > 1 \text{ or } \sigma^{-1}(i+1) \neq \sigma^{-1}(i) + 1\\ -1, & i-j = 1 \text{ and } \sigma^{-1}(i+1) = \sigma^{-1}(i) + 1\\ C_{j-i}, & i \le j \text{ and } \sigma^{-1}(i+1) = \sigma^{-1}(i) + 1 \end{cases}$$

and where

$$C_{j-i} = rac{1}{j-i+1} {2(j-i) \choose j-i}$$
, the $(j-i)^{th}$ Catalan number.

C. S. Barnes (Sweet Briar College)

PP2010 43/44

Using Inclusion-Exclusion: More Details

#sh

• Recall $T_j^{\sigma} = \sum_{k=j}^m {k \choose j} 2^{k-j} N_k^{\sigma}$ where $N_k^{\sigma} = \#\{w \in \mathfrak{sh}(\mathrm{id}_m, \sigma) \mid \mu(w) = 2^k\}$ • So

$$\begin{aligned} (\mathrm{id}_{n},\sigma) &= \sum_{k=0}^{m} N_{k}^{\sigma} \\ &= \sum_{k=0}^{m} N_{k}^{\sigma} (2-1)^{k} \\ &= \sum_{k=0}^{m} N_{k}^{\sigma} \sum_{j=0}^{k} \binom{k}{j} 2^{k-j} (-1)^{j} \\ &= \sum_{j=0}^{m} (-1)^{j} \sum_{k=j}^{m} \binom{k}{j} 2^{k-j} N_{k}^{\sigma} \\ &= \sum_{j=0}^{m} (-1)^{j} T_{j}^{\sigma} \end{aligned}$$

C. S. Barnes (Sweet Briar College)

PP2010 44/44

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ = のへで