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Gridding a permutation
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Gridding a permutation

3, 5, 4, 6, 9, 2, 11, 12, 1, 10, 8, 7
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Gridding a permutation

3, 5, 4, 6, 9, 2, 11, 12, 1, 10, 8, 7

M =

(

0 1 −1
1 −1 0

)
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Basic definitions
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Basic definitions

◮ Gridding matrix: M = (mij)p×q, mij ∈ {0,±1}.
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Basic definitions

◮ Gridding matrix: M = (mij)p×q, mij ∈ {0,±1}.
◮ Permutation π admits an M-gridding if the xy -plane with the

graph Γ of π plotted in it can be partitioned into an axis
parallel rectangular grid Cij (i ∈ [p], j ∈ [q]) such that

Γ ∩ Cij is







increasing, if mij = 1
decreasing, if mij = −1
∅, if mij = 0.
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Basic definitions

◮ Gridding matrix: M = (mij)p×q, mij ∈ {0,±1}.
◮ Permutation π admits an M-gridding if the xy -plane with the

graph Γ of π plotted in it can be partitioned into an axis
parallel rectangular grid Cij (i ∈ [p], j ∈ [q]) such that

Γ ∩ Cij is







increasing, if mij = 1
decreasing, if mij = −1
∅, if mij = 0.

◮ The (pattern class) of all π that admit an M-gridding is called
a (monotone) grid class, and denoted Grid(M).
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Outline & Credits

◮ Early occurrences of grid classes in literature.

◮ New project: Basic properties of grid classes.

◮ Interplay of permutation, geometrical and language-theoretical
methods.

◮ Future directions.

Collaborators: Michael Albert (Otago), Mike Atkinson (Otago),
Mathilde Bouvel (Paris/Bordeaux), Robert Brignall (Bristol/OU),
Vincent Vatter (Dartmouth/Florida), NR.
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Easy examples
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Easy examples

Example

Matrix:
(

1 1
)
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Easy examples

Example

Matrix:
(

1 1
)

Description: juxtapositions of two increasing sequences.
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Easy examples

Example

Matrix:
(

1 1
)

Description: juxtapositions of two increasing sequences.
Basis: 321, 3142, 2143.
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Easy examples

Example

Matrix:
(

1 1
)

Description: juxtapositions of two increasing sequences.
Basis: 321, 3142, 2143.
Enumeration: 2n − n.
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Easy examples

Example

Matrix:
(

1 1
)

Description: juxtapositions of two increasing sequences.
Basis: 321, 3142, 2143.
Enumeration: 2n − n.

Example

Matrix:
(

−1 1
)

Description: juxtapositions of a decreasing and an increasing
sequence.

Basis: 231, 132.
Enumeration: 2n−1.
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Further examples (1)

Example

Atkinson (1999) proves

Av(321, 2143) = Grid
(

1 1
)

∪ Grid

(

1
1

)

and derives as a consequence the enumeration for Av(321, 2143):

2n+1 − 2n − 1−
(

n + 1

3

)

.
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Further examples (2)

Example

Murphy (2003) expresses several classes with two basis
permutations of lengths 3 and 4 as grid classes. For instance

Av(132, 4312) = Grid













0 0 1
1 0 0
0 1 0
0 −1 0
0 0 −1













.
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Other occurrences in literature

◮ Atkinson (1998) – skew merge permutations.

◮ Profile classes (Atkinson (1999)) – permutation matrices.

◮ W -classes (Atkinson, Murphy, NR (2002)) – 1× q matrices.

◮ Murphy, Vatter (2002) – PWO.

◮ Waton (2007) – atomicity, Grid

(

1 1
1 1

)

.

◮ Huczynska, Vatter (2006) – sparse matrices; decidability for
subclasses of grid classes.

◮ Vatter (submitted) – small growth rates.

◮ Brendan 25,081: Blend includes art arranged in rectangular
array.
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Playing with the picture
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Graph Γ(M): definition

M = (mij)p×q – gridding matrix.

Define graph Γ = Γ(M) as follows:
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Graph Γ(M): definition

M = (mij)p×q – gridding matrix.

Define graph Γ = Γ(M) as follows:

vertices: r1, . . . , rp, c1, . . . , cq.
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Graph Γ(M): definition

M = (mij)p×q – gridding matrix.

Define graph Γ = Γ(M) as follows:

vertices: r1, . . . , rp, c1, . . . , cq.

edges: ri ∼ cj ⇔ mij = ±1.
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Graph Γ(M): definition

M = (mij)p×q – gridding matrix.

Define graph Γ = Γ(M) as follows:

vertices: r1, . . . , rp, c1, . . . , cq.

edges: ri ∼ cj ⇔ mij = ±1.

Definition

If Γ(M) is a forest we say that Grid(M) is a forest grid class.
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Graph Γ(M): examples

Example

1 −1

1 −1
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Graph Γ(M): examples

Example
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Graph Γ(M): examples
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Graph Γ(M): examples

Example
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Graph Γ(M): examples

Example

1 −1

1 −1

1
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Partial well order

Definition

A pattern class is partially well ordered (PWO) if it doesn’t contain
an infinite antichain.
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Partial well order

Definition

A pattern class is partially well ordered (PWO) if it doesn’t contain
an infinite antichain.

Proposition

A finitely based class is PWO iff it has ≤ ℵ0 subclasses iff all its
subclasses are finitely based.
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Partial well order

Definition

A pattern class is partially well ordered (PWO) if it doesn’t contain
an infinite antichain.

Proposition

A finitely based class is PWO iff it has ≤ ℵ0 subclasses iff all its
subclasses are finitely based.

Theorem (Murphy, Vatter (2002))

A grid class is PWO iff it is a forest grid class.
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Important things

He took the biscuits carefully out of the packet and laid them face

upward on the grass, in order as he felt of edibility. They were the same

as always, a Ginger, an Osborne, a Digestive, a Petit Beurre and one

anonymous. He always ate the first-named last, because he liked it the

best, and the anonymous first, because he thought it very likely the least

palatable. The order in which he ate the remaining three was indifferent

to him and varied irregularly from day to day. On his knees now before

the 5 it struck him for the first time that this reduced to a paltry six the

number of ways in which he could make his meal. (. . . ) Even if he

conquered his prejudice against the anonymous, still there would be only

twenty-four ways in which the biscuits could be eaten. But were he to

take the final step and overcome his infatuation with the ginger, then the

assortment would spring to life before him, dancing the radiant measure

of its total permutability, edible in a hundred and twenty ways!

(S. Beckett, Murphy)
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Geometric classes

◮ To every finite set F of points in a xy -plane which are
xy -independent there corresponds a unique permutation π(F ).
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Geometric classes

◮ To every finite set F of points in a xy -plane which are
xy -independent there corresponds a unique permutation π(F ).

◮ Let F be any figure (set of points) in a plane. Define

Sub(F) = {π(F ) : F ⊆ F , |F | < ∞}.
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Geometric classes

◮ To every finite set F of points in a xy -plane which are
xy -independent there corresponds a unique permutation π(F ).

◮ Let F be any figure (set of points) in a plane. Define

Sub(F) = {π(F ) : F ⊆ F , |F | < ∞}.

◮ This is clearly a pattern class.
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Geometric classes

◮ To every finite set F of points in a xy -plane which are
xy -independent there corresponds a unique permutation π(F ).

◮ Let F be any figure (set of points) in a plane. Define

Sub(F) = {π(F ) : F ⊆ F , |F | < ∞}.

◮ This is clearly a pattern class.

◮ Waton (et al.): permutations from parallel lines; circle
permutations; convex permutations; etc.
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .

◮ If mij = −1 draw a NW-SE diagonal in Cij .
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .

◮ If mij = −1 draw a NW-SE diagonal in Cij .

◮ Let F be the figure consisting of these diagonals and
GGrid(M) = Sub(F).
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .

◮ If mij = −1 draw a NW-SE diagonal in Cij .

◮ Let F be the figure consisting of these diagonals and
GGrid(M) = Sub(F).

1 −1

1 −1
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .

◮ If mij = −1 draw a NW-SE diagonal in Cij .

◮ Let F be the figure consisting of these diagonals and
GGrid(M) = Sub(F).
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .

◮ If mij = −1 draw a NW-SE diagonal in Cij .

◮ Let F be the figure consisting of these diagonals and
GGrid(M) = Sub(F).
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .

◮ If mij = −1 draw a NW-SE diagonal in Cij .

◮ Let F be the figure consisting of these diagonals and
GGrid(M) = Sub(F).

Proposition

◮ GGrid(M) ⊆ Grid(M).
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Geometric grid classes

To every grid class Grid(M) associate a geometric grid class
GGrid(M) as follows:

◮ Draw a p × q rectangular grid with cells Cij .

◮ If mij = 1 draw a SW-NE diagonal in Cij .

◮ If mij = −1 draw a NW-SE diagonal in Cij .

◮ Let F be the figure consisting of these diagonals and
GGrid(M) = Sub(F).

Proposition

◮ GGrid(M) ⊆ Grid(M).

◮ GGrid(M) = Grid(M) if Γ(M) is a forest.
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Finite basis (in words)

Theorem

Every forest grid class Grid(M) is finitely based.
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Finite basis (in words)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof

◮ Every basis permutation is a one point extension of a
permutation from Grid(M).
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Finite basis (in words)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof

◮ Every basis permutation is a one point extension of a
permutation from Grid(M).

◮ There are only finitely many ways to insert a point into the
geometrical representation of Grid(M).
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Finite basis (in words)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof

◮ Every basis permutation is a one point extension of a
permutation from Grid(M).

◮ There are only finitely many ways to insert a point into the
geometrical representation of Grid(M).

◮ Re-grid: every basis element also belongs to a forest grid class.
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Finite basis (in words)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof

◮ Every basis permutation is a one point extension of a
permutation from Grid(M).

◮ There are only finitely many ways to insert a point into the
geometrical representation of Grid(M).

◮ Re-grid: every basis element also belongs to a forest grid class.

◮ Use PWO.
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Finite basis (in words)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof

◮ Every basis permutation is a one point extension of a
permutation from Grid(M).

◮ There are only finitely many ways to insert a point into the
geometrical representation of Grid(M).

◮ Re-grid: every basis element also belongs to a forest grid class.

◮ Use PWO.

Theorem

Every subclass of a forest grid class is finitely based.
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Finite basis (in pictures)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof
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Finite basis (in pictures)
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Every forest grid class Grid(M) is finitely based.

Proof
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Finite basis (in pictures)

Theorem

Every forest grid class Grid(M) is finitely based.
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Finite basis (in pictures)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof
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Finite basis (in pictures)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof
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Finite basis (in pictures)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof
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Finite basis (in pictures)

Theorem

Every forest grid class Grid(M) is finitely based.
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Finite basis (in pictures)

Theorem

Every forest grid class Grid(M) is finitely based.

Proof
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Corollary

Every subclass of a forest grid class is finitely based.
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Words are good
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Words are good

◮ A – an alphabet.
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Words are good

◮ A – an alphabet.

◮ A∗ – the free monoid.
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Words are good

◮ A – an alphabet.

◮ A∗ – the free monoid.

◮ � – the subsequence (subword) ordering.
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Words are good

◮ A – an alphabet.

◮ A∗ – the free monoid.

◮ � – the subsequence (subword) ordering.

◮ (A∗,�) is PWO (Higman).

◮ All closed subsets of A∗ are finitely based.
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Words are good

◮ A – an alphabet.

◮ A∗ – the free monoid.

◮ � – the subsequence (subword) ordering.

◮ (A∗,�) is PWO (Higman).

◮ All closed subsets of A∗ are finitely based.

◮ Every closed subset of A∗ is a finite union of sets of the form

a1A
∗

1a2A
∗

2 . . . akA
∗

kak+1

with ai ∈ A, Aj ⊆ A.
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Words are good

◮ A – an alphabet.

◮ A∗ – the free monoid.

◮ � – the subsequence (subword) ordering.

◮ (A∗,�) is PWO (Higman).

◮ All closed subsets of A∗ are finitely based.

◮ Every closed subset of A∗ is a finite union of sets of the form

a1A
∗

1a2A
∗

2 . . . akA
∗

kak+1

with ai ∈ A, Aj ⊆ A.

◮ Every closed subset of A∗ has a rational generating function.
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Encoding gridded permutations as words



Decoding words

◮ The ‘inverse’ process.

◮ M = (mij)p×q, Γ(M) a forest.

◮ A = {aij : i ∈ [p], j ∈ [q]}.
◮ φ : A∗ → Grid(M).

University of St Andrews Nik Ruškuc: Grid Classes



Decoding words

◮ The ‘inverse’ process.

◮ M = (mij)p×q, Γ(M) a forest.

◮ A = {aij : i ∈ [p], j ∈ [q]}.
◮ φ : A∗ → Grid(M).

◮ φ is onto
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Decoding words

◮ The ‘inverse’ process.

◮ M = (mij)p×q, Γ(M) a forest.

◮ A = {aij : i ∈ [p], j ∈ [q]}.
◮ φ : A∗ → Grid(M).

◮ φ is onto, not 1-1.
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Decoding words

◮ The ‘inverse’ process.

◮ M = (mij)p×q, Γ(M) a forest.

◮ A = {aij : i ∈ [p], j ∈ [q]}.
◮ φ : A∗ → Grid(M).

◮ φ is onto, not 1-1.

◮ φ is length preserving,
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Decoding words

◮ The ‘inverse’ process.

◮ M = (mij)p×q, Γ(M) a forest.

◮ A = {aij : i ∈ [p], j ∈ [q]}.
◮ φ : A∗ → Grid(M).

◮ φ is onto, not 1-1.

◮ φ is length preserving, finite-to-one.
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Decoding words

◮ The ‘inverse’ process.

◮ M = (mij)p×q, Γ(M) a forest.

◮ A = {aij : i ∈ [p], j ∈ [q]}.
◮ φ : A∗ → Grid(M).

◮ φ is onto, not 1-1.

◮ φ is length preserving, finite-to-one.

◮ w1 � w2 ⇒ φ(w1) � φ(w2).
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Immediate corollaries

Theorem

Every forest grid class is PWO.
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Immediate corollaries

Theorem

Every forest grid class is PWO.

Theorem

Every subclass of a forest grid class is a finite union of forest grid
classes.
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Immediate corollaries

Theorem

Every forest grid class is PWO.

Theorem

Every subclass of a forest grid class is a finite union of forest grid
classes.

Remark

Here ‘forest grid class’ stands for a small generalisation: one point
cells are also allowed.
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Ambiguities

If we could find a ‘nice’ subset W ⊆ A∗ such that φ ↾W is a
bijection between W and Grid(M) we would get a rational
generating function for Grid(M).
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Ambiguities

If we could find a ‘nice’ subset W ⊆ A∗ such that φ ↾W is a
bijection between W and Grid(M) we would get a rational
generating function for Grid(M).

The following make φ non-injective:

A B

C D
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Ambiguities

If we could find a ‘nice’ subset W ⊆ A∗ such that φ ↾W is a
bijection between W and Grid(M) we would get a rational
generating function for Grid(M).

The following make φ non-injective:
◮ xy -independent cells can be read off in either order.

A B

C D
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Ambiguities

If we could find a ‘nice’ subset W ⊆ A∗ such that φ ↾W is a
bijection between W and Grid(M) we would get a rational
generating function for Grid(M).

The following make φ non-injective:
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Resolving ambiguities

Independent cells:

◮ aijast = astaij where i 6= s, j 6= t.

◮ Trace monoids, regular sets of representatives with uniqueness.

Multiple griddings:

◮ There are only finitely many different gridline movements,
relative to the geometric representation.

◮ An argument similar to basis and subclasses.

Corollary

Every forest grid class has a rational generating function.
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Summary of results

For a forest grid class Grid(M) the following hold:

◮ Grid(M) is finitely based.

◮ Grid(M) is partially well ordered.

◮ Every subclass of Grid(M) is a finite union of (slightly
generalised) forest grid classes.

◮ Grid(M) and each of its subclasses have rational generating
functions.

◮ The basis and the generating function for Grid(M) can be
effectively computed from M.

◮ The sets of ⊕-indecomposable, ⊖-indecomposable and simple
permutations in Grid(M) all have rational generating
functions.
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Out of the woods?

Conjecture

Every grid class is finitely based.

Conjecture

Every grid class has an algebraic generating function.

Question

Are the basis and the generating function for a grid class
algorithmically computable from the gridding matrix?

Question

Is there an algorithm which decides whether a finitely based
pattern class (given by its basis) is a grid class?
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Evidence

◮ Waton (2007): Grid

(

1 1
1 1

)

is finitely based.

◮ Stankova (1994), Atkinson (1998): Grid

(

−1 1
1 −1

)

has

basis {2143, 3412} and generating function

1− 3x

(1− 2x)
√
1− 4x

.
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Further directions

Generalised grid classes: Allow cells in the matrix to contain
arbitrary pattern classes.

V. Vatter, Small permutation classes, submitted.

R. Brignall, Grid classes and partial well order, submitted.
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Thank you!
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