Minimal Overlapping Patterns

Jeff Remmel
Department of Mathematics and Computer Science University of California, San Diego
Joint work with Adrian Duane, UCSD.

Given a sequence $\sigma=\sigma_{1} \cdots \sigma_{n}$ of distinct integers, let red (σ) be the permutation found by replacing the $i^{\text {th }}$ largest integer that appears in σ by i. For example, if $\sigma=2754$, then $\operatorname{red}(\sigma)=1432$.

Given a permutation τ in the symmetric group S_{j}, define a permutation $\sigma=\sigma_{1} \cdots \sigma_{n} \in S_{n}$ to have a τ-match at place i provided $\operatorname{red}\left(\sigma_{i} \cdots \sigma_{i+j-1}\right)=\tau$. Let $\tau-\operatorname{mch}(\sigma)$ be the number of τ-matches in the permutation σ.

A permutation is called τ-avoiding if there are no indices
$i_{1}<\cdots<i_{j}$ such that $\operatorname{red}\left(\sigma_{i_{1}} \cdots \sigma_{i_{j}}\right)=\tau$.

τ-matches

Let τ-mch (σ) be the number of τ-matches in the permutation σ.

$$
\begin{align*}
A_{\tau}(t) & =\sum_{n \geq 0} \frac{t^{n}}{n!}\left|\left\{\sigma \in S_{n}: \tau-\operatorname{mch}(\sigma)=0\right\}\right| \text { and } \tag{1}\\
P_{\tau}(x, t) & =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)} \tag{2}
\end{align*}
$$

Theorem 0.1. Goulden and Jackson (1983)
If $\tau=12 \cdots k$, then

$$
\begin{equation*}
A_{\tau}(t)=\frac{1}{\sum_{i \geq 0} \frac{x^{k i}}{(k i)!}-\frac{x^{k i+1}}{(k i+1)!}} \tag{3}
\end{equation*}
$$

Theorem 0.2. Elizalde and Noy (2003)

$$
\begin{aligned}
P_{132}(t, u) & =\frac{1}{1-\int_{0}^{t} e^{\frac{(u-1) z^{2}}{2}} d z}, \text { and } \\
P_{1342}(t, u) & =\frac{1}{1-\int_{0}^{t} e^{\frac{(u-1) z^{3}}{6}} d z} .
\end{aligned}
$$

Theorem 0.3. Kitaev (2005)
Let $\tau=12 \cdots a \sigma(a+1)$, where σ is a permutation of $\{a+2, a+3, \ldots, k+1\}$, then

$$
\begin{equation*}
A_{\tau}(t)=\frac{1}{1-t+\sum_{i \geq 1} \frac{(-1)^{i+1} k^{k i+1}}{(k i+1)!} \prod_{j=2}^{i}\binom{j k-a}{k-a}} . \tag{4}
\end{equation*}
$$

c-Wilf equivalence and strong c-Wilf equivalence

Given permutations $\alpha, \beta \in S_{n}$, we say that α is \mathbf{c}-Wilf equivalent to β if $A_{\alpha}(t)=A_{\beta}(t)$.

Given permutations $\alpha, \beta \in S_{n}$, we say that α is strongly c-Wilf equivalent to β if $P_{\alpha}(u, t)=P_{\beta}(u, t)$.

If $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in S_{n}$, we let
$\sigma^{r}=\sigma_{n} \cdots \sigma_{2} \sigma_{1}$ be the reverse of σ and
$\sigma^{c}=\left(n+1-\sigma_{1}\right)\left(n+1-\sigma_{2}\right) \cdots\left(n+1-\sigma_{n}\right)$ denote the
complement of σ.

It is easy to see that c-Wilf equivalences classes and strong c-Wilf equivalence classes are closed under complement and reverse.

Generating Functions for the maximum number of non-overlapping patterns

Let τ-nlap (σ) be the maximum number of non-overlapping τ-matches in σ where two τ-matches are said to overlap if they contain any of the same integers.

Kitaev's Theorem (2003)

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} x^{\tau-\operatorname{nlap}(\sigma)}=\frac{A(t)}{(1-x)+x(1-t) A(t)} \tag{5}
\end{equation*}
$$

where $A(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}\left|\left\{\sigma \in S_{n}: \tau-\operatorname{mch}(\sigma)=0\right\}\right|$.

Υ-matches

Suppose $\Upsilon \subseteq S_{j}$.

We say that a permutation $\sigma=\sigma_{1} \cdots \sigma_{n} \in S_{n}$ has an Υ-match at place i provided $\operatorname{red}\left(\sigma_{i} \cdots \sigma_{i+j-1}\right) \in \Upsilon$.

Let Υ-mch (σ) and Υ-nlap (σ) be the number of Υ-matches and non-overlapping Υ matches in σ, respectively.

Theorem 0.4. (Mendes-Remmel)

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!} \sum_{\sigma \in S_{n}} x^{\Upsilon-n l a p(\sigma)} q^{i n v(\sigma)}=\frac{A_{q}^{\Upsilon}(t)}{(1-x)+x(1-t) A_{q}^{\Upsilon}(t)} \tag{6}
\end{equation*}
$$

where $A_{q}^{\Upsilon}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{[n]_{q}!} \sum_{\sigma \in S_{n}: \Upsilon-\operatorname{mch}(\sigma)=0} q^{i n v(\sigma)}$.

Mendes and Remmel (2006) developed a general method for computing $A_{\tau}(t)$.

They proved $A_{\tau}(t)$ is of the form

$$
\begin{equation*}
A_{\tau}(t)=\frac{1}{1-t+\sum_{n=2}^{\infty} \frac{t^{n}}{n!} \sum_{w \in J_{\tau},\|w\|=n}(-1)^{\bar{\ell}(w)\left|\mathcal{P}_{w}^{\tau}\right|}} \tag{7}
\end{equation*}
$$

where $\|w\|=|\tau|+w_{1}+\cdots+w_{n}$,
J_{τ} is a certain collection of words associated with τ, and
\mathcal{P}_{w}^{τ} is a certain collection of permutations $\sigma \in S_{\|w\|}$ if $w=w_{1} \ldots w_{n}$.

Liese and Remmel (2009) showed how to use the Mendes-Remmel result to compute $A_{\tau}(t)$ for various classes of permutations which are shuffles of the permutation $12 \cdots n$ with an arbitrary permutation $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{m}$ of the numbers $\{n+1, \ldots, n+m\}$.

Partition $12 \cdots n$ into $\alpha^{(1)} \alpha^{(2)} \cdots \alpha^{(k+1)}$ where each $\alpha^{(j)}$ is of size $r_{j}>0$ and we partition $\sigma=\beta^{(1)} \beta^{(2)} \ldots \beta^{(k)}$ where where each $\beta^{(j)}$ is of size $s_{j}>0$ and $\operatorname{red}\left(\beta^{(1)}\right), \operatorname{red}\left(\beta^{(2)}\right), \ldots, \operatorname{red}\left(\beta^{(k)}\right)$ are pairwise distinct.

$$
\begin{equation*}
\tau_{r_{1}, \beta^{(1)}, r_{2}, \beta^{(2)}, \ldots, r_{k}, \beta^{(k)}, r_{k+1}}=\alpha^{(1)} \beta^{(1)} \alpha^{(2)} \beta^{(2)} \cdots \alpha^{(k)} \beta^{(k)} \alpha^{(k+1)} . \tag{8}
\end{equation*}
$$

Minimal overlapping permutations

We say that a permutation $\tau \in S_{j}$ is a minimal overlapping permutation if the smallest n such that there is $\sigma \in S_{n}$ where τ - $\operatorname{mch}(\sigma)=2$ is $2 j-1$.

Examples.
$\tau_{1}=1234, \tau_{2}=1324$ are not minimal overlapping permutations.
$\tau_{3}=132, \tau_{4}=1243, \tau=12 \cdots(n-2) n(n-1)$ are minimal overlapping.
$\tau=23154$ is the smallest minimal overlapping permutation such neither it, its reverse, its complement, or its reverse-complement starts with 1.

Maximum packings

$$
\tau=1342
$$

We let $M P_{\tau, j+s(j-1)}$ be the number of $\sigma \in S_{j+s(j-1)}$ such that σ is a maximum packing for τ

Theorem 0.5. Suppose that τ is a minimal overlapping permutation. Then

$$
\begin{align*}
P_{\tau}(x, t) & =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)} \tag{9}\\
& =\frac{1}{1-\left(t+\sum_{s \geq 0} \frac{t^{j+s(j-1)}}{(j+s(j-1)!)}(x-1)^{s+1} M P_{\tau, j+s(j-1)}\right)}
\end{align*}
$$

Theorem 0.6. If $\alpha=\alpha_{1} \ldots \alpha_{j}$ and $\beta=\beta_{1} \ldots \beta_{j}$ are minimal overlapping permutations in S_{j} and $\alpha_{1}=\beta_{1}$ and $\alpha_{j}=\beta_{j}$, then (1) for all $s \geq 0, M P_{\alpha, j+s(j-1)}=M P_{\beta, j+s(j-1)}$. and, hence,
(2) $P_{\alpha}(x, t)=P_{\beta}(x, t)$.

This solves a conjecture of Elizalde.

This has also been proved independently by Vladimir Dotsenko and Anton Khoroshkin.

$$
\tau=24153
$$

5	7	2	10	6	9	1	15	8	13	3	14	11	16	4	17	12

We are interested on the expansions.

$$
\begin{aligned}
& h_{\mu}(\bar{x})=\sum_{\mu \vdash n}(-1)^{n-\ell(\lambda)} B_{\lambda, \mu} e_{\lambda}(\bar{x}) \\
& p_{\mu}(\bar{x})=\sum_{\mu \vdash n}(-1)^{n-\ell(\lambda)} w(B)_{\lambda, \mu} e_{\lambda}(\bar{x})
\end{aligned}
$$

(Egecioglu and Remmel 1991)

λ-Brick Tabloids and Weighted λ-Brick Tabloids.

Suppose that $\lambda=(1,1,2,2)$ and $\mu=(2,4)$.

$$
B_{\lambda, \mu}=4 \text { and } w\left(B_{\lambda, \mu}\right)=10
$$

λ-bricks \square

Let $f_{1}:\{0,1, \ldots\} \rightarrow \mathbb{Q}[x]$ such that:

$$
f_{1}(n)= \begin{cases}1 & \text { if } n=0,1 \\ (x-1)^{s+1} M P_{\tau, j+s(j-1)} & \text { if } n=j+s(j-1) \text { and } \\ 0 & \text { otherwise }\end{cases}
$$

Define $\xi^{f_{1}}: \Lambda \rightarrow \mathbb{Q}[x]$ as a homomorphism such that

$$
\xi^{f_{1}}\left(e_{n}\right)=\frac{(-1)^{n-1}}{n!} f_{1}(n)
$$

Theorem.

$$
n!\xi^{f_{1}}\left(h_{n}\right)=\sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)}
$$

Proof.

$$
\begin{aligned}
n!\xi^{f_{1}}\left(h_{n}\right) & =n!\sum_{\lambda \vdash n}(-1)^{n-\ell(\lambda)} B_{\lambda, n} \xi^{f_{1}}\left(e_{\lambda}\right) \\
& =n!\sum_{\lambda \vdash n}(-1)^{n-\ell(\lambda)} B_{\lambda, n} \prod_{i=1}^{\ell(\lambda)} \frac{(-1)^{\lambda_{i}-1}}{\lambda_{i}!} f_{1}\left(\lambda_{i}\right) \\
& =\sum_{\lambda \vdash n}\binom{n}{\lambda_{1}, \ldots, \lambda_{\ell}} B_{\lambda, n} f_{1}\left(\lambda_{1}\right) \cdots f_{1}\left(\lambda_{\ell}\right) .
\end{aligned}
$$

We have

$$
n!\xi^{f_{1}}\left(h_{n}\right)=\sum_{\lambda \vdash n}\binom{n}{\lambda_{1}, \ldots, \lambda_{\ell}} B_{\lambda, n} f_{1}\left(\lambda_{1}\right) \cdots f_{1}\left(\lambda_{\ell}\right)
$$

from which we create the following objects:

We have

$$
\begin{gathered}
n!\xi^{f_{1}}\left(h_{n}\right)=\sum_{\lambda \vdash n}\binom{n}{\lambda_{1}, \ldots, \lambda_{\ell}} B_{\lambda, n} f_{1}\left(\lambda_{1}\right) \cdots f_{1}\left(\lambda_{\ell}\right) \\
f_{1}(n)= \begin{cases}1 & \text { if } n=0,1 \\
(x-1)^{s+1} M P_{\tau, j+s(j-1)} & \text { if } n=j+s(j-1) \text { and } \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

The weight of $T \in \mathcal{T}_{f_{1}}, w(T)$, is the product of x labels and the sign of $T \in \mathcal{T}_{f_{1}}, \operatorname{sgn}(T)$ is the product of the -1 labels.

$$
n!\xi^{f_{1}}\left(h_{n}\right)=\sum_{T \in \mathcal{J}_{f_{1}}} \operatorname{sgn}(T) w(T) .
$$

Next we define an involution will rid us of all $T \in \mathcal{T}_{f_{1}}$ with negative weights.

What are the fixed points?
(1) no -1 s .
(2) Each brick has only x 's so that we are counting
$x^{\text {no. of } \tau \text {-matches }}$
in each brick
(3) there can be no τ-matches that are not part of a brick.

Thus

$$
n!\xi^{f_{1}}\left(h_{n}\right)=\sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)}
$$

This gives a generating function:

$$
\begin{aligned}
\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)} & =\xi^{f_{1}}\left(\sum_{n \geq 0} h_{n} t^{n}\right) \\
& =\xi^{f_{1}}\left(\sum_{n \geq 0} e_{n}(-t)^{n}\right)^{-1} \\
& =\frac{1}{1-\left(t+\sum_{s \geq 0} \frac{t^{j+s(j-1)}(j+s(j-1))!}{\left.(x-1)^{s+1} M P_{\tau, j+s(j-1)}\right)}\right.} .
\end{aligned}
$$

Let

$$
M P_{\tau, j+s(j-1)}(q)=\sum_{\sigma \in \mathcal{M} \mathcal{P}_{\tau, j+s(j-1)}} q^{i n v(\sigma)}
$$

Theorem 0.7.

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{t^{n}}{[n]_{q}!} \sum_{\sigma \in S_{n}} x^{\tau-\operatorname{mch}(\sigma)} q^{i n v(\sigma)} \\
& =\frac{1}{1-\left(t+\sum_{s \geq 0} \frac{t^{j+s(j-1)}}{[j+s(j-1)]_{q}!}(x-1)^{s+1} M P_{\tau, j+s(j-1)}(q)\right)}
\end{aligned}
$$

Can we compute $M P_{\tau, j+s(j-1)}(q)$?
Answer: Yes for all minimal overlapping patterns that start with 1.
Suppose that $\tau=\tau_{1} \ldots \tau_{j}$ where $\tau_{1}=1$ and $\tau_{j}=k$. Then

$$
M P_{\tau, j+s(j-1)}(q)=q^{i n v(\tau)}
$$

and

$$
\begin{aligned}
& M P_{\tau, j+s(j-1)}(q) \\
& =q^{i n v(\tau)}\left[\begin{array}{c}
j+s(j-1)-k \\
j-k
\end{array}\right] M P_{\tau, j+(s-1)(j-1)}(q)
\end{aligned}
$$

so that for $s \geq 1$,

$$
M P_{\tau, j+s(j-1)}=\left(q^{i n v(\tau)}\right)^{s} \prod_{i=1}^{s}\left[\begin{array}{c}
j+i(j-1)-k \\
j-k
\end{array}\right] .
$$

(A) $\mathrm{S}_{1}=1$
(B) $\mathrm{S}_{\mathbf{2}}>\mathrm{k}-\mathbf{1}$
(C) $\mathrm{S}_{2}>\mathrm{k}$ is impossible
(D) $S_{2}=k$ and $1,2, \ldots, k$ must be in the first black box

We have shown that for all minimal overlapping permutations $\alpha=\alpha_{1} \ldots \alpha_{j}$ and $\beta=\beta_{1} \ldots \beta_{j}$ that $P_{\alpha}(x, t)=P_{\beta}(x, t)$ if $\alpha_{1}=\beta_{1}$ and $\alpha_{j}=\beta_{j}$.

Can we prove this bijectively?

Problem: α and β can overlap.

$$
\begin{aligned}
\alpha & =3157246 \\
\beta & =3512476
\end{aligned}
$$

Extensions.

(1) Words.
(2) You can use the idea of minimal overlapping patterns plus a bijection two find explicit generating functions for the number of occurrences of $0^{x_{1}} 10^{x_{2}} 1 \ldots 10^{x_{k-1}} 10^{x_{k}}$ in words in $\{0,1\}^{*}$ if $x_{1}, x_{k}>x_{2}, \ldots, x_{k-1}$.
(3) patterns in cycle structures.
(4) C_{k} 乙 S_{n}

