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Problem Sets:

Let PS = set of consecutive pattern problems on permutations.

Let PC = set of consecutive pattern problems on compositions.

Let PCCP = set of consecutive pattern problems on column-convex
polyominoes.

Let PW = set of consecutive pattern problems on words.

Main Result

PS ⊂ PC ⊂ PCCP ⊂ PW.

Remark: Our perspective allows powerful methods from the contexts of
compositions, column-convex polyominoes, and of words to be applied
directly to the enumeration of permutations by consecutive patterns.
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Consecutive Patterns in Permutations
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Examples: σ4σ5 = 1 4 is a 12-pattern (ascent)

σ2σ3σ4 = 5 6 1 is a 231-pattern
σ2σ3σ4 = 5 6 1 and σ4σ5σ6 = 1 4 3 are peaks (231 or 132-patterns)

Definition: For a pattern set P ⊆
⋃

m≥1 Sm,

P(σ) = the total number of times elements of P occur in σ and

Pno(σ) = the maximum number of non-overlapping times elements of
P occur in σ.
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Consecutive Patterns in Compositions
Notation: Kn = {w = w1w2 . . .wn : w1,w2, . . . ,wn are positive integers}

Definition: Let sumw = w1 + w2 + · · ·+ wn. When sumw = m, w is said
to be a composition of m into n parts.

w = 3 7 7 2 5 4 =

3

7 7

2

5

4















C
C
C
C
C
C
C
C
C
C

�
�
�
�
�
�

J
J
JJ

Examples: w2w3 = 7 7 is a level
w2w3w4 = 7 7 2 is a peak (w2 ≤ w3 > w4 )
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Inverse of Fedou’s Insertion-Shift Bijection

Definitions: For σ ∈ Sn, set inviσ = |{k : i < k ≤ n, σi > σk}|.
Put Λn = {w ∈ Kn : w1 ≤ w2 ≤ ... ≤ wn}.

The inverse of Fedou’s insertion-shift bijection ∇n : Sn × Λn → Kn is given
by the rule ∇n(σ, λ) = w where wi = inviσ + λσi .

∇6(2 5 6 1 4 3, 2 2 4 4 4 4) = 3 7 7 2 5 4.
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Inverse of Fedou’s Insertion-Shift Bijection
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Put Λn = {w ∈ Kn : w1 ≤ w2 ≤ ... ≤ wn}.

The inverse of Fedou’s insertion-shift bijection ∇n : Sn × Λn → Kn is given
by the rule ∇n(σ, λ) = w where wi = inviσ + λσi .

∇6(2 5 6 1 4 3, 2 2 4 4 4 4) = 3 7 7 2 5 4.

Key Properties: If ∇n(σ, λ) = w , then
(1) inv σ + sumλ = sumw and, for i < m,
(2) σi < σm if and only if wi ≤ wm + |{j : i < j < m, σi > σj}|.

Remark: ∇n preserves general shape. As illustrations, (1) peaks are
preserved as σk < σk+1 > σk+2 if and only if wk ≤ wk+1 > wk+2 and (2)
up-down permutations coincide with up-down compositions.

Definition: For P ⊆
⋃

m≥1 Sm and w ∈ Kn, set P(w) = P(σ) where σ is
the unique permutation satisfying w = ∇n(σ, λ).
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Theorem PS ⊂ PC
If P ⊆

⋃
m≥1 Sm and if Bn ⊆ Sn, then

∑
n≥0

∑
σ∈Bn

qinv σ
(∏

p∈P
y
p(σ)
p

)
zn

(q; q)n

=
∑
n≥0

∑
w∈φn(Bn,Λn)

qsumw

(∏
p∈P

y
p(w)
p

)
(z/q)n.

Moreover, the above equality remains true if y
p(σ)
p and y

p(w)
p are

respectively replaced by y
pno(σ)
p and y

pno(w)
p for some or all p ∈ P.

Gessel :
∑
n≥0

∑
σ∈UDSn

qinv σzn

(q; q)n
= secq z + tanq z

Carlitz :
∑
n≥0

∑
w∈UDKn

qsumw (z/q)n = secq z + tanq z .

Don Rawlings and Mark Tiefenbruck () Consecutive Patterns: From Permutations to Column-Convex Polyominoes and BackAugust 10, 2010 8 / 36



Theorem PS ⊂ PC
If P ⊆

⋃
m≥1 Sm and if Bn ⊆ Sn, then

∑
n≥0

∑
σ∈Bn

qinv σ
(∏

p∈P
y
p(σ)
p

)
zn

(q; q)n

=
∑
n≥0

∑
w∈φn(Bn,Λn)

qsumw

(∏
p∈P

y
p(w)
p

)
(z/q)n.

Moreover, the above equality remains true if y
p(σ)
p and y

p(w)
p are

respectively replaced by y
pno(σ)
p and y

pno(w)
p for some or all p ∈ P.

Gessel :
∑
n≥0

∑
σ∈UDSn

qinv σzn

(q; q)n
= secq z + tanq z

Carlitz :
∑
n≥0

∑
w∈UDKn

qsumw (z/q)n = secq z + tanq z .

Don Rawlings and Mark Tiefenbruck () Consecutive Patterns: From Permutations to Column-Convex Polyominoes and BackAugust 10, 2010 8 / 36



Theorem PS ⊂ PC
If P ⊆

⋃
m≥1 Sm and if Bn ⊆ Sn, then

∑
n≥0

∑
σ∈Bn

qinv σ
(∏

p∈P
y
p(σ)
p

)
zn

(q; q)n

=
∑
n≥0

∑
w∈φn(Bn,Λn)

qsumw

(∏
p∈P

y
p(w)
p

)
(z/q)n.

Moreover, the above equality remains true if y
p(σ)
p and y

p(w)
p are

respectively replaced by y
pno(σ)
p and y

pno(w)
p for some or all p ∈ P.

Mendes, Remmel :
∑
n≥0

∑
σ∈Sn

ypic (σ)qinv σzn

(q; q)n
=

√
y − 1√

y − 1− tanq(z
√
y − 1)

Heubach, Mansour :
∑
n≥0

∑
w∈Kn

ypic (w)qsumw (z/q)n =

√
y−1√

y−1− tanq(z
√
y−1)

.
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3rd Ex of Theorem PS ⊂ PC: For P ⊆ Sm with m > 1,

∑
n≥0

∑
σ∈Sn

qinv σyPno(σ)zn

(q; q)n
=

Kq(z)

1− y + y (1− z(1− q)−1)Kq(z)

where Kq(z) =
∑

n≥0

(∑
σ∈Sn q

inv σ0P(σ)
)
zn/(q; q)n is the q-exponential

generating function for permutations that avoid P.

Note: The above is Mendes and Remmel’s extension of Kitaev’s result.

Application of Theorem PS ⊂ PC gives∑
n≥0

∑
w∈Kn

yPno(w)qsumwzn =
Lq(z)

1− y + y (1− zq(1− q)−1) Lq(z)

where Lq(z) =
∑

n≥0

(∑
w∈Kn

qsumw0P(w)
)
zn is the generating function

for compositions that avoid P.

Remark: The latter is more and less general than a result due to Heubach,
Kitaev, and Mansour; for a pattern set of cardinality 1, their result holds
for an arbitrary alphabet of positive integers.
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Consecutive Patterns in Column-Convex Polyominoes

Remark 1: The enumeration of CCPs and of subclasses of CCPs by various
statistics (area, perimeter, column number, ...etc) has been widely studied.
However, very little attention has been paid to ridge patterns in CCPs.

Remark 2: The simplest ridge patterns are formed between two adjacent
columns. The two-column ridge patterns may be used to characterize
many of the common classes of CCPs. For instance, a CCP with no lower
descents is known as a directed column-convex polyomino (DCCP).
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Common Classes of CCPs.

Directed Column−Convex Polyomino
(DCCP) : No lower descents

Parallelogram Polyomino :
No lower or upper descents

Stack Polyomino : No upper
ascents and no lower descents

Wall Polyomino : No lower
ascents and no lower descents
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Compositions and Wall Polyominoes

Notation: Let WPn= the set of wall polyominoes with n columns.

Bijection: Let γn denote the “natural” bijection from Kn to WPn.

Example: γ7 maps the composition w = 5 4 1 3 4 2 3 to

Properties: If γn(w) = Q, then

areaQ = sumw and perQ − 2colQ = varw

where variation of w is varw =
∑n

k=0 |wk+1 − wk | with the convention
that w0 = 0 = wn+1.
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Fact PC ⊂ PCCP
If P is a pattern set defined for compositions and if Bn ⊆ Kn, then∑
n≥0

∑
w∈Bn

cvarwqsumwzn
∏
p∈P

y
p(w)
p =

∑
n≥0

∑
Q∈γn(Bn)

cperQqareaQ(z/c2)n
∏
p∈P

y
p(Q)
p .
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Example of Fact PC ⊂ PCCP

Raw,Tief :
∑

Q∈DCCP

auascQu alascQl bulevQ
u bllevQ

l cperQdudesQhrelhQqareaQzcolQ

=

c2h
∑

n≥0
(c2qz)n+1

1−c2hqn+1

∏n
k=1

(
bl + alc

2hqk

1−c2hqk

)(
bu + c2dqk

1−c2qk
− au

1−qk

)
1− au

∑
n≥1

(c2qz)n

1−qn
∏n

k=1

(
bl + alc2hqk

1−c2hqk

)∏n−1
k=1

(
bu + c2dqk

1−c2qk
− au

1−qk

) .

Setting al = 0, au = a, bu = b, bl = h = 1, and replacing z by z/c2 gives
the gen func for compositions by ascents, levels, descents, and variation.
(c = 1 is a classic result due to Carlitz)∑

n≥0

∑
w∈Kn

aascwblevwddeswcvarw qsumw zn

= 1 +

c2
∑

n≥0
(qz)n+1

1−c2qn+1

∏n
k=1

(
b + c2dqk

1−c2qk
− a

1−qk

)
1− a

∑
n≥1

(qz)n

1−qn
∏n−1

k=1

(
b + c2dqk

1−c2qk
− a

1−qk

) .
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The Inclusion PCCP ⊂ PW
Let X =

{( j
m

)
: j ,m are positive integers

}
and let

Y =
⋃
n≥0

{(
j1 j2 ... jn

m1 m2 ...mn

)
∈ X n : mn = 1 and jk+jk+1 > mk for 1 ≤ k < n

}
.

For a CCP Q with n columns, define δ(Q) =
( j1 j2 ... jn
m1 m2 ...mn

)
where jk is the

number cells in Qk , mn = 1, and, for 1 ≤ k < n, mk is the change in the
y -ordinate from the bottom edge of (k + 1)st column of Q to the top edge
of the kth column of Q.

δ




=

(2 3 6 4 4 5 3 2
3 5 5 2 6 5 4 1

)
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Factors and Consecutive Patterns in Words
Let X ∗ denote the free moniod generated by the alphabet X .

Definition: For F ⊆ X+, a factor f of a word w is a said to be a
consecutive F-pattern in w if f ∈ F . The number of consecutive
F-patterns in w is denoted by F(w).

Definition: For F ⊂ X+, an F-cluster is a triple (w , ν, β) in which

w = w1w2 . . .wlenw ∈ X+,
ν = (f(1), f(2), . . . , f(k)) for some k ≥ 1 with each f(i) ∈ F , and
β = (b1, b2, . . . , bk) with each bi being a positive integer

where f(i) =wbiwbi+1 . . .wbi+len f(i)−1, each wiwi+1 is a factor of some f(j),
b1 ≤ b2≤ · · · ≤ bk , and if bi = bi+1, then len f(i)< len f(i+1).

Definition: The cluster generating function over a subset W ⊂ X ∗ is the
formal series

CF (y,W ) =
∑

(w , ν, β) ∈ CF , w ∈W

(∏
f ∈F

y
f (ν)
f

)
w

where f (ν) is the number of times f appears as a component in ν.
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Words by Factors Theorem (Goulden and Jackson)

If, for nonempty L,R ⊆ X and a nonempty F ⊆ X+, we define

L(y)=
∑
l∈L

l + CF (y, LX ∗), R(y)=
∑
r∈R

r + CF (y,X ∗R), and

X (y)=
∑
x∈X

x + CF (y,X ∗)

and if the result of replacing yf in y by yf − 1 is denoted by y − 1, then∑
w∈X∗

(∏
f ∈F

y
f (w)
f

)
w = (1−X (y − 1))−1,

∑
w∈LX∗

(∏
f ∈F

y
f (w)
f

)
w = L(y − 1)(1−X (y − 1))−1,

∑
w∈X∗R

(∏
f ∈F

y
f (w)
f

)
w = (1−X (y − 1))−1R(y − 1), and

∑
w∈LX∗R

(∏
f ∈F

y
f (w)
f

)
w = CF (y − 1, LX ∗R) + L(y − 1)(1−X (y − 1))−1R(y − 1).
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Application of Words by Factors Theorem to Permutations
Consider the alphabet N = {1, 2, 3, . . .}, let P ⊆

⋃
m≥1 Sm, and put

DP(y; z) =
∑

(w ,ν,β)∈CFP

(∏
p∈P

y
p(ν)
p

)
qsumwz lenw where p(ν) =

∑
f ∈Fp

f (ν).

Replacement of w by qsumwz lenw in the first identity of the Words by
Factors Theorem and application of Fedou’s bijection implies

Extension of Rawlings’ Theorem: If P ⊆
⋃

m≥1 Sm, then

∑
n≥0

∑
σ∈Sn

(∏
p∈P

y
p(σ)
p

)
qinv σzn

(q; q)n
=

(
1− z(1− q)−1 − DP(y − 1; z/q)

)−1

.

Non-overlapping Version: For P ⊆ Sm with m > 1, then

∑
n≥0

∑
σ∈Sn

yPno(σ) q
inv σzn

(q; q)n
=

(
1− z(1− q)−1 − (1− y)DP(−1)

)−1

.

Don Rawlings and Mark Tiefenbruck () Consecutive Patterns: From Permutations to Column-Convex Polyominoes and BackAugust 10, 2010 19 / 36



Application of Words by Factors Theorem to Permutations
Consider the alphabet N = {1, 2, 3, . . .}, let P ⊆

⋃
m≥1 Sm, and put

DP(y; z) =
∑

(w ,ν,β)∈CFP

(∏
p∈P

y
p(ν)
p

)
qsumwz lenw where p(ν) =

∑
f ∈Fp

f (ν).

Replacement of w by qsumwz lenw in the first identity of the Words by
Factors Theorem and application of Fedou’s bijection implies

Extension of Rawlings’ Theorem: If P ⊆
⋃

m≥1 Sm, then

∑
n≥0

∑
σ∈Sn

(∏
p∈P

y
p(σ)
p

)
qinv σzn

(q; q)n
=

(
1− z(1− q)−1 − DP(y − 1; z/q)

)−1

.

Non-overlapping Version: For P ⊆ Sm with m > 1, then

∑
n≥0

∑
σ∈Sn

yPno(σ) q
inv σzn

(q; q)n
=

(
1− z(1− q)−1 − (1− y)DP(−1)

)−1

.

Don Rawlings and Mark Tiefenbruck () Consecutive Patterns: From Permutations to Column-Convex Polyominoes and BackAugust 10, 2010 19 / 36



Application of Words by Factors Theorem to Permutations
Consider the alphabet N = {1, 2, 3, . . .}, let P ⊆

⋃
m≥1 Sm, and put

DP(y; z) =
∑

(w ,ν,β)∈CFP

(∏
p∈P

y
p(ν)
p

)
qsumwz lenw where p(ν) =

∑
f ∈Fp

f (ν).

Replacement of w by qsumwz lenw in the first identity of the Words by
Factors Theorem and application of Fedou’s bijection implies

Extension of Rawlings’ Theorem: If P ⊆
⋃

m≥1 Sm, then

∑
n≥0

∑
σ∈Sn

(∏
p∈P

y
p(σ)
p

)
qinv σzn

(q; q)n
=

(
1− z(1− q)−1 − DP(y − 1; z/q)

)−1

.

Non-overlapping Version: For P ⊆ Sm with m > 1, then

∑
n≥0

∑
σ∈Sn

yPno(σ) q
inv σzn

(q; q)n
=

(
1− z(1− q)−1 − (1− y)DP(−1)

)−1

.

Don Rawlings and Mark Tiefenbruck () Consecutive Patterns: From Permutations to Column-Convex Polyominoes and BackAugust 10, 2010 19 / 36



Extension of Rawlings’ Theorem

If P ⊆
⋃

m≥1 Sm, then

∑
n≥0

∑
σ∈Sn

(∏
p∈P

y
p(σ)
p

)
qinv σzn

(q; q)n
=

(
1− z(1− q)−1 − DP(y − 1; z/q)

)−1

.

Ex 1: Permutations by Peaks
Let pic = {132, 231}. As the pic -clusters are in 1-to-1 correspondence
with the up-down compositions of odd length > 1,

z

1− q
+ Dpic (y ; z/q)=

1
√
y

∑
n≥0

∑
w∈UDK2n+1

qsumw

(
z
√
y

q

)2n+1

=
tanq (z

√
y)

√
y

.

Thus,

Mendes, Remmel :
∑
n≥0

∑
σ∈Sn

ypic (σ)qinv σzn

(q; q)n
=

√
y − 1√

y − 1− tanq(z
√
y − 1)
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Ex 2: Permutations by Peaks and Twin Peaks
Let tpic = {p ∈ S5 : p1 < p2 > p3 < p4 > p5}.

Result using extension of Rawlings’ Theorem:∑
n≥0

∑
σ∈Sn

qinv σxpic (σ)y tpic (σ)zn

(q; q)n
=

1

1− z
1−q−

∑
n≥1An(x−1, y−1)Bn(q)(z/q)2n+1

where An(x , y)= (xz+yz2+xyz2)(1−xz−xyz−xyz2−yz−yz2)−1
∣∣
zn

and
Bn(q) = tanq z |z2n+1 .

Alternative Result using Pattern Algebra of Goulden and Jackson:∑
n≥0

∑
σ∈Sn

qinv σxpic (σ)y tpic (σ)zn

(q; q)n

=

(
1−

s+ sinq(z
√
r+)

2
√
r+ cosq(z

√
r+)
−

s− sinq(z
√
r−)

2
√
r− cosq(z

√
r−)

)−1

where r± = (xy−1±
√
D)/2, s± = 1± (2x−xy−1)/

√
D, and

D = (xy+1)2−4x .
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q-Olivier functions

Φj ,k(z) =
∑
n≥0

z jn+k

(q; q)jn+k

Examples: Φ1,0(z) = eq(z), Φ2,0(iz) = cosq z , and
Φ2,1(iz) = i sinq z .
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Ex 3: Permutations by (i,d)-peaks and Inversions

Let Pi ,d = {p ∈ Si+d−1 : p1 < p2 < · · · < pi > pi+1 > · · · > pi+d−1}.

Example of a (3,3)-peak:

p = 2 4 5 3 1 =

2

4

5

3

1






















A
A
A
A
A
A
A
A

A
A
A
A

.
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Ex 3: Permutations by (i,d)-peaks and Inversions
If, for i , j , d ≥ 2, we set µ = i + d − 2 and ξm = m

√
−1, then∑

n≥0

∑
σ∈Sn

yPi,d (σ)qinv σzn

(q; q)n
=

(
1− z(1− q)−1 −

Ki ,i ,d ;1( µ
√
y − 1 z)

µ
√
y − 1

)−1

where, for k ≥ 1,

Ki ,j ,d ;k(z) =
∑
m≥0

∑
w∈Ki,d ;(j,d)m ;k

qsumwz lenw .

Moreover, Ki ,j ,d ;k(z) satisfies, for d ≥ 3 and ν = j + d − 2, the recurrence

Ki ,j ,d ;k(z) =
ξ−µν Ki ,j+1,d−1;1(ξνz)

(
zk(q; q)−1

k + ξ−kν Kj ,j+1,d−1;k+1(ξνz)
)

1 + Kj ,j+1,d−1;1(ξνz)

− ξ−µ−kν Ki ,j+1,d−1;k+1(ξνz)

with the initial condition

Ki ,j ,2;k(z) = ξ−i−kj [−Φj ,i+k(ξjz) + Φj ,i (ξjz)Φj ,k(ξjz)/Φj ,0(ξjz)].
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Permutations by (3,3)-peaks and Inversions

∑
n≥0

∑
σ∈Sn

yP3,3(σ)qinv σzn

(q; q)n
=

(
1− z(1− q)−1 − K3,3,3;1( 4

√
y − 1 z)

4
√
y − 1

)−1

where

K3,3,3;1(z) =
−K3,4,2;1(ξ4z)

(
z(1− q)−1 + ξ−1

4 K3,4,2;2(ξ4z)
)

1 + K3,4,2;1(ξ4z)

+ξ−1
4 K3,4,2;2(ξ4z)

with

K3,4,2;1(z) = −Φ4,3(ξ4z)Φ4,1(ξ4z)

Φ4,0(ξ4z)
+ Φ4,4(ξ4z) and

K3,4,2;2(z) = ξ−1
4

[
−Φ4,3(ξ4z)Φ4,2(ξ4z)

Φ4,0(ξ4z)
+ Φ4,5(ξ4z)

]
.
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Ex 4: Permutations by m-Peak Ranges of (i , d)-Peaks

Corollary

If i , d ≥ 2, m ≥ 1, and ν = i + d − 2, then the generating function for
permutations by uniform m-peak ranges and inversions is

∑
n≥0

∑
σ∈Sn

yP(i,d)m (σ)qinv σzn

(q; q)n
=

(
1− z

1− q
−
∑
n≥m

An,m(y−1)Bn(q)znν+1

)−1

where

An,m(y) =
yzm(1− z)

1− z − yz(1− zm)

∣∣∣∣
zn

and Bn(q) = Ki ,i ,d ;1(z)|znν+1

with Ki ,i ,d ;1(z) as determined earlier.

Remark: For i = d = 2 with y = 0, the above provides a solution to a
problem posed by Kitaev of counting permutations that avoid
(2m + 1)-reverse-alternating patterns.
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Ex 5: Permutations by (i,m)-Maxima and Inversions

Let p(m) ∈ Si+1 with p(m)1 < p(m)2 < · · · < p(m)i and p(m)i+1 = i + 1−m.

Example: The (3,2)-maxima pattern in S3+1:

p(2) = 1 3 4 2 =

1

3

4

2






















A
A
A
A
A
A
A
A

Remark: Carlitz and Scoville referred to (2, 1) and (2, 2)-maxima as rising
and falling maxima.
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Ex 5: Permutations by (i,m)-Maxima and Inversions

Corollary (Words by Factors via extension of Rawlings’ Theorem): If
i ≥ 2, 1 ≤ m ≤ i and ξi =

i
√
−1, then

∑
n≥0

∑
σ∈Sn

( i∏
m=1

y
p(m)(σ)
m

)
qinv σzn

(q; q)n
=

(
1−

Φi ,1(y−1; ξiz)

ξiΦi ,0(y−1; ξiz)

)−1

where

Φi ,k(y1, . . . , yi ; z)=
∑
n≥0

z in+k

(q; q)in+k

n−1∏
j=0

(
yi +

i−1∑
m=1

(yi−ym)qm
[
ij+k+m−1

m

])
.

For i = 2, y1 = y , and y2 = 1, above gives Mendes and Remmel’s
q-analog of Elizalde and Noy’s result for permutations by p = 132:

∑
n≥0

∑
σ∈Sn

y132(σ)qinv σzn

(q; q)n
=

(
1−

∑
n≥0

(y − 1)nqnz2n+1

(q2; q2)n(1− q2n+1)(1− q)n

)−1

.
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An Aside

Proof of the generating function for permutations by (i ,m)-maxima of the
previous slide reveals the generating function for up-down permutations of
type (i , i , 2; 1) by (i ,m)-maxima:

z

1− q
+

∑
σ∈UDSi,i,2;1

( i∏
m=1

y
p(m)
m

)
qinv σz lenσ

(q; q)inv σ
=

Φi ,1(y1, . . . , yi−1, 1; ξiz)

ξiΦi ,0(y1, . . . , yi−1, 1; ξiz)
.

Setting y1 = y2 = ... = yi = 1, replacing z by (1− q)z , and letting q → 1
gives a result of Carlitz’s .
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Ex 5: Perms by (i,m)-Maxima using the Temperley Method
If i ≥ 2 and 1 ≤ m ≤ i , then the generating function for permutations by
(i ,m)-maxima and inversions is also given by

∑
n≥0

∑
σ∈Sn

( i∏
m=1

y
p(m)(σ)
m

)
qinv σzn

(q; q)n

=

1−

∑
n≥0

z in+1

1− qin+1

n−1∏
k=0

T (qik)

1− yi − 1

(q; q)i−1

∑
n≥1

z in

1− qin

n−1∏
k=1

T (qik−1)


−1

where

T (b) =
i−1∑
m=1

(ym − 1)qm

(q; q)m(qm+1b; q)i−m
− yi − 1

(q; q)i−1(1− qb)
.
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Ex 6: Permutations by maximal number of
non-overlapping P = {1243, 1342, 1432, 2341, 2431, 3421}

Corollary ∑
n≥0

∑
σ∈Sn

yPno(σ)qinv σzn

(q; q)n
=

K
1− y + y(1− z

1−q )K

where

K =

eq(z)eq(−z) + cos2
q z + sin2

q z + 2eq(−z) cosq z
+(eq(z) + eq(−z)) sinq z

4eq(−z) cosq z
.

Remark: K is a q-analog of Kitaev’s generating function that enumerates
permutations that avoid P = {4312, 4213, 4123, 3214, 3124, 2134}.
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Ex 7: DCCPs by All Five Two-Column Statistics

Raw,Tief :
∑

Q∈DCCP

auascQu alascQl bulevQ
u bllevQ

l cperQdudesQhrelhQqareaQzcolQ

=

c2h
∑

n≥0
(c2qz)n+1

1−c2hqn+1

∏n
k=1

(
bl + alc

2hqk

1−c2hqk

)(
bu + c2dqk

1−c2qk
− au

1−qk

)
1− au

∑
n≥1

(c2qz)n

1−qn
∏n

k=1

(
bl + alc2hqk

1−c2hqk

)∏n−1
k=1

(
bu + c2dqk

1−c2qk
− au

1−qk

) .
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Ex 8: CCPs by All Six Two-Column Statistics (Temperley)
If we set F (x) equal to∑
Q∈CCP

auascQu bulevQ
u dudesQ

u alascQl bllevQ
l d ldesQ

l cperQqareaQhrelhQxα(Q)zcolQ

where α(Q) denotes the area of the last column in Q, then

F (x) =

R(x) S(x) T (x)
R(1) S(1)− 1 T (1)
R( 1

h ) S( 1
h ) T ( 1

h )− 1

S(1)− 1 T (1)
S( 1

h ) T ( 1
h )− 1

,

where

R(x) =
∑
n≥0

zn+1y(x)y(qx) . . . y(qn−1x)r(qnx),

S(x) =
∑
n≥0

zn+1y(x)y(qx) . . . y(qn−1x)s(qnx),

T (x) =
∑
n≥0

zn+1y(x)y(qx) . . . y(qn−1x)t(qnx), and . . .
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Ex 8 Continued : The Rest of the Formula

r(x) =
qxc4h

1− qxc2h
,

s(x) =
q2x2c4haual

(1− qx)(1− qxc2h)
+

qxc2albu
1− qx

− qxc2dual
(1− h)(1− qx)

,

t(x) =
qxc2hdubl

1− qxh
+

q2x2c4hdudl
(1− qxh)(1− qxc2)

+
qxc2h2dual

(1− h)(1− qxh)
,

y(x) =
qxc4haubl
1− qxc2h

+
q2x2c6haudl

(1− qxc2)(1− qxc2h)
− qxc4haual

(1− qx)(1− qxc2h)

+c2bubl +
qxc4budl
1− qxc2

− c2bual
1− qx

− c2dubl
1− qxh

− qxc4dudl
(1− qxh)(1− qxc2)

+
c2dual

(1− qx)(1− qxh)
.
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Ex 9: DCCPs by Upper Valleys

A column-segment QkQk+1Qk+2 in a column-convex polyomino Q is said
to be a valley provided that QkQk+1 is an upper descent and Qk+1Qk+2 is
an upper ascent or an upper level.

Corollary of Words by Factors

∑
Q∈DCCP

yval(Q)qareaQzcolQ

=

∑
n≥0

(1−y)nq(n+1)(2n+1)z2n+1

(q; q)2n+1(q; q)2n∑
n≥0

(1−y)nqn(2n+1)z2n

(q; q)2
2n

−
∑
n≥0

(1−y)nq(n+1)(2n+1)z2n+1

(q; q)2
2n+1

.
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Ex 10: CCPs by Peaks, Area, and Column Number
(Temperley)

∑
Q∈CCP

ypic (Q)qareaQzcolQ =
( zq

1−q + 2z2q3

(1−q)3 )(1 + 2zq
(1−q)2 )

(1− zq2

(1−q)2 )(1 + zq
(1−q)2 )− 2yz2q3

(1−q)4

.
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