Consecutive Patterns: From Permutations to Column-Convex Polyominoes and Back

Don Rawlings
California Polytechnic State University San Luis Obispo, Ca. 93407 drawling@calpoly.edu

Mark Tiefenbruck University of California San Diego, Ca. 92093 mtiefenb@math.ucsd.edu

Problem Sets:

- Let $\mathcal{P S}=$ set of consecutive pattern problems on permutations.

Problem Sets:

- Let $\mathcal{P S}=$ set of consecutive pattern problems on permutations.
- Let $\mathcal{P C}=$ set of consecutive pattern problems on compositions.

Problem Sets:

- Let $\mathcal{P S}=$ set of consecutive pattern problems on permutations.
- Let $\mathcal{P C}=$ set of consecutive pattern problems on compositions.
- Let $\mathcal{P C C P}=$ set of consecutive pattern problems on column-convex polyominoes.

Problem Sets:

- Let $\mathcal{P S}=$ set of consecutive pattern problems on permutations.
- Let $\mathcal{P C}=$ set of consecutive pattern problems on compositions.
- Let $\mathcal{P C C P}=$ set of consecutive pattern problems on column-convex polyominoes.
- Let $\mathcal{P W}=$ set of consecutive pattern problems on words.

Problem Sets:

- Let $\mathcal{P S}=$ set of consecutive pattern problems on permutations.
- Let $\mathcal{P C}=$ set of consecutive pattern problems on compositions.
- Let $\mathcal{P C C P}=$ set of consecutive pattern problems on column-convex polyominoes.
- Let $\mathcal{P W}=$ set of consecutive pattern problems on words.

Main Result

$$
\mathcal{P S} \subset \mathcal{P C} \subset \mathcal{P C C P} \subset \mathcal{P W}
$$

Remark: Our perspective allows powerful methods from the contexts of compositions, column-convex polyominoes, and of words to be applied directly to the enumeration of permutations by consecutive patterns.

Consecutive Patterns in Permutations

$\sigma=256143=$

Consecutive Patterns in Permutations

Consecutive Patterns in Permutations

$$
\begin{aligned}
& \sigma=256143= \\
& \text { Examples: } \sigma_{4} \sigma_{5}=14 \text { is a 12-pattern (ascent) } \\
& \sigma_{2} \sigma_{3} \sigma_{4}=561 \text { is a } 231 \text {-pattern } \\
& \sigma_{2} \sigma_{3} \sigma_{4}=561 \text { and } \sigma_{4} \sigma_{5} \sigma_{6}=143 \text { are peaks (231 or 132-patterns) }
\end{aligned}
$$

Consecutive Patterns in Permutations

$\sigma=256143=$

Examples: $\sigma_{4} \sigma_{5}=14$ is a 12 -pattern (ascent) ${ }^{1}$

$$
\begin{aligned}
& \sigma_{2} \sigma_{3} \sigma_{4}=561 \text { is a } 231 \text {-pattern } \\
& \sigma_{2} \sigma_{3} \sigma_{4}=561 \text { and } \sigma_{4} \sigma_{5} \sigma_{6}=143 \text { are peaks (231 or 132-patterns) }
\end{aligned}
$$

Definition: For a pattern set $P \subseteq \bigcup_{m \geq 1} S_{m}$,

- $P(\sigma)=$ the total number of times elements of P occur in σ and
- $P_{n o}(\sigma)=$ the maximum number of non-overlapping times elements of P occur in σ.

Consecutive Patterns in Compositions

Notation: $K_{n}=\left\{w=w_{1} w_{2} \ldots w_{n}: w_{1}, w_{2}, \ldots, w_{n}\right.$ are positive integers $\}$

Consecutive Patterns in Compositions

Notation: $K_{n}=\left\{w=w_{1} w_{2} \ldots w_{n}: w_{1}, w_{2}, \ldots, w_{n}\right.$ are positive integers $\}$
Definition: Let sum $w=w_{1}+w_{2}+\cdots+w_{n}$. When sum $w=m, w$ is said to be a composition of m into n parts.

Consecutive Patterns in Compositions

Notation: $K_{n}=\left\{w=w_{1} w_{2} \ldots w_{n}: w_{1}, w_{2}, \ldots, w_{n}\right.$ are positive integers $\}$
Definition: Let $\operatorname{sum} w=w_{1}+w_{2}+\cdots+w_{n}$. When sum $w=m, w$ is said to be a composition of m into n parts.

Examples: $w_{2} w_{3}=77$ is a level

$$
w_{2} w_{3} w_{4}=772 \text { is a peak }\left(w_{2} \leq w_{3}>w_{4}\right)
$$

Inverse of Fedou's Insertion-Shift Bijection

Definitions: For $\sigma \in S_{n}$, set $\operatorname{inv}_{i} \sigma=\left|\left\{k: i<k \leq n, \sigma_{i}>\sigma_{k}\right\}\right|$.

$$
\text { Put } \Lambda_{n}=\left\{w \in K_{n}: w_{1} \leq w_{2} \leq \ldots \leq w_{n}\right\}
$$

Inverse of Fedou's Insertion-Shift Bijection

Definitions: For $\sigma \in S_{n}$, set $\operatorname{inv}_{i} \sigma=\left|\left\{k: i<k \leq n, \sigma_{i}>\sigma_{k}\right\}\right|$.

$$
\text { Put } \Lambda_{n}=\left\{w \in K_{n}: w_{1} \leq w_{2} \leq \ldots \leq w_{n}\right\} .
$$

The inverse of Fedou's insertion-shift bijection $\nabla_{n}: S_{n} \times \Lambda_{n} \rightarrow K_{n}$ is given by the rule $\nabla_{n}(\sigma, \lambda)=w$ where $w_{i}=\operatorname{inv}_{i} \sigma+\lambda_{\sigma_{i}}$.

$$
\nabla_{6}(256143,224444)=377254
$$

Inverse of Fedou's Insertion-Shift Bijection

Definitions: For $\sigma \in S_{n}$, set $\operatorname{inv}_{i} \sigma=\left|\left\{k: i<k \leq n, \sigma_{i}>\sigma_{k}\right\}\right|$.

$$
\text { Put } \Lambda_{n}=\left\{w \in K_{n}: w_{1} \leq w_{2} \leq \ldots \leq w_{n}\right\}
$$

The inverse of Fedou's insertion-shift bijection $\nabla_{n}: S_{n} \times \Lambda_{n} \rightarrow K_{n}$ is given by the rule $\nabla_{n}(\sigma, \lambda)=w$ where $w_{i}=\operatorname{inv}_{i} \sigma+\lambda_{\sigma_{i}}$.

$$
\nabla_{6}(256143,224444)=377254
$$

Key Properties: If $\nabla_{n}(\sigma, \lambda)=w$, then
(1) $\operatorname{inv} \sigma+\operatorname{sum} \lambda=\operatorname{sum} w$ and, for $i<m$,
(2) $\sigma_{i}<\sigma_{m}$ if and only if $w_{i} \leq w_{m}+\left|\left\{j: i<j<m, \sigma_{i}>\sigma_{j}\right\}\right|$.

Inverse of Fedou's Insertion-Shift Bijection

Definitions: For $\sigma \in S_{n}$, set $\operatorname{inv}_{i} \sigma=\left|\left\{k: i<k \leq n, \sigma_{i}>\sigma_{k}\right\}\right|$.

$$
\text { Put } \Lambda_{n}=\left\{w \in K_{n}: w_{1} \leq w_{2} \leq \ldots \leq w_{n}\right\} .
$$

The inverse of Fedou's insertion-shift bijection $\nabla_{n}: S_{n} \times \Lambda_{n} \rightarrow K_{n}$ is given by the rule $\nabla_{n}(\sigma, \lambda)=w$ where $w_{i}=\operatorname{inv}_{i} \sigma+\lambda_{\sigma_{i}}$.

$$
\nabla_{6}(256143,224444)=377254
$$

Key Properties: If $\nabla_{n}(\sigma, \lambda)=w$, then
(1) $\operatorname{inv} \sigma+\operatorname{sum} \lambda=\operatorname{sum} w$ and, for $i<m$,
(2) $\sigma_{i}<\sigma_{m}$ if and only if $w_{i} \leq w_{m}+\left|\left\{j: i<j<m, \sigma_{i}>\sigma_{j}\right\}\right|$.

Remark: ∇_{n} preserves general shape. As illustrations, (1) peaks are preserved as $\sigma_{k}<\sigma_{k+1}>\sigma_{k+2}$ if and only if $w_{k} \leq w_{k+1}>w_{k+2}$ and (2) up-down permutations coincide with up-down compositions.

Definition: For $P \subseteq \bigcup_{m \geq 1} S_{m}$ and $w \in K_{n}$, set $P(w)=P(\sigma)$ where σ is the unique permutation satisfying $w=\nabla_{n}(\sigma, \lambda)$.

Theorem $\mathcal{P S} \subset \mathcal{P C}$

If $P \subseteq \bigcup_{m \geq 1} S_{m}$ and if $B_{n} \subseteq S_{n}$, then

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{\sigma \in B_{n}} q^{\operatorname{inv} \sigma}\left(\prod_{p \in P} y_{P}^{p(\sigma)}\right) \frac{z^{n}}{(q ; q)_{n}} \\
& \quad=\sum_{n \geq 0} \sum_{w \in \phi_{n}\left(B_{n}, \Lambda_{n}\right)} q^{\text {sum w }}\left(\prod_{p \in P} y_{P}^{p(w)}\right)(z / q)^{n} .
\end{aligned}
$$

Moreover, the above equality remains true if $y_{p}^{p(\sigma)}$ and $y_{p}^{p(w)}$ are respectively replaced by $y_{p}^{p_{n o}(\sigma)}$ and $y_{P}^{p_{n o}(w)}$ for some or all $p \in P$.

Theorem $\mathcal{P S} \subset \mathcal{P C}$

If $P \subseteq \bigcup_{m \geq 1} S_{m}$ and if $B_{n} \subseteq S_{n}$, then

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{\sigma \in B_{n}} q^{\operatorname{inv} \sigma}\left(\prod_{p \in P} y_{P}^{p(\sigma)}\right) \frac{z^{n}}{(q ; q)_{n}} \\
& \quad=\sum_{n \geq 0} \sum_{w \in \phi_{n}\left(B_{n}, \Lambda_{n}\right)} q^{\text {sum w }}\left(\prod_{p \in P} y_{P}^{p(w)}\right)(z / q)^{n} .
\end{aligned}
$$

Moreover, the above equality remains true if $y_{p}^{p(\sigma)}$ and $y_{p}^{p(w)}$ are respectively replaced by $y_{p}^{p_{n o}(\sigma)}$ and $y_{P}^{p_{n o}(w)}$ for some or all $p \in P$.

Gessel : $\quad \sum_{n \geq 0} \sum_{\sigma \in \mathrm{UD} S_{n}} \frac{q^{\operatorname{inv} \sigma} z^{n}}{(q ; q)_{n}}=\sec _{q} z+\tan _{q} z$
Carlitz: $\quad \sum_{n \geq 0} \sum_{w \in \mathrm{UD} K_{n}} q^{\text {sum } w}(z / q)^{n}=\sec _{q} z+\tan _{q} z$.

Theorem $\mathcal{P S} \subset \mathcal{P C}$

If $P \subseteq \bigcup_{m \geq 1} S_{m}$ and if $B_{n} \subseteq S_{n}$, then

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{\sigma \in B_{n}} q^{\operatorname{inv} \sigma}\left(\prod_{p \in P} y_{P}^{p(\sigma)}\right) \frac{z^{n}}{(q ; q)_{n}} \\
& \quad=\sum_{n \geq 0} \sum_{w \in \phi_{n}\left(B_{n}, \Lambda_{n}\right)} q^{\text {sum w }}\left(\prod_{p \in P} y_{P}^{p(w)}\right)(z / q)^{n} .
\end{aligned}
$$

Moreover, the above equality remains true if $y_{p}^{p(\sigma)}$ and $y_{p}^{p(w)}$ are respectively replaced by $y_{p}^{p_{n}(\sigma)}$ and $y_{p}^{p_{n o}(w)}$ for some or all $p \in P$.

Mendes, Remmel : $\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{\operatorname{pic}(\sigma)} q^{\operatorname{inv} \sigma} z^{n}}{(q ; q)_{n}}=\frac{\sqrt{y-1}}{\sqrt{y-1}-\tan _{q}(z \sqrt{y-1})}$
Heubach, Mansour : $\sum_{n \geq 0} \sum_{w \in K_{n}} y^{\operatorname{pic}(w)} q^{\operatorname{sum} w}(z / q)^{n}=\frac{\sqrt{y-1}}{\sqrt{y-1}-\tan _{q}(z \sqrt{y-1})}$

$3^{\text {rd }}$ Ex of Theorem $\mathcal{P S} \subset \mathcal{P C}$: For $P \subseteq S_{m}$ with $m>1$,

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{q^{\operatorname{inv} \sigma} \sigma_{y} P_{n 0}(\sigma)^{n}}{(q ; q)_{n}}=\frac{\mathcal{K}_{q}(z)}{1-y+y\left(1-z(1-q)^{-1}\right) \mathcal{K}_{q}(z)}
$$

where $\mathcal{K}_{q}(z)=\sum_{n \geq 0}\left(\sum_{\sigma \in S_{n}} q^{\operatorname{inv} \sigma} 0^{P(\sigma)}\right) z^{n} /(q ; q)_{n}$ is the q-exponential generating function for permutations that avoid P.

Note: The above is Mendes and Remmel's extension of Kitaev's result.
$3^{\text {rd }}$ Ex of Theorem $\mathcal{P S} \subset \mathcal{P C}$: For $P \subseteq S_{m}$ with $m>1$,

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{q^{\text {inv } \sigma} y^{P_{n o}(\sigma)^{n}}}{(q ; q)_{n}}=\frac{\mathcal{K}_{q}(z)}{1-y+y\left(1-z(1-q)^{-1}\right) \mathcal{K}_{q}(z)}
$$

where $\mathcal{K}_{q}(z)=\sum_{n \geq 0}\left(\sum_{\sigma \in S_{n}} q^{\operatorname{inv} \sigma} 0^{P(\sigma)}\right) z^{n} /(q ; q)_{n}$ is the q-exponential generating function for permutations that avoid P.

Note: The above is Mendes and Remmel's extension of Kitaev's result. Application of Theorem $\mathcal{P S} \subset \mathcal{P C}$ gives

$$
\sum_{n \geq 0} \sum_{w \in K_{n}} y^{P_{n o}(w)} q^{\text {sum } w} z^{n}=\frac{L_{q}(z)}{1-y+y\left(1-z q(1-q)^{-1}\right) L_{q}(z)}
$$

where $L_{q}(z)=\sum_{n \geq 0}\left(\sum_{w \in K_{n}} q^{\text {sum } w} 0^{P(w)}\right) z^{n}$ is the generating function for compositions that avoid P.

Remark: The latter is more and less general than a result due to Heubach, Kitaev, and Mansour; for a pattern set of cardinality 1, their result holds for an arbitrary alphabet of positive integers.

Consecutive Patterns in Column-Convex Polyominoes

Remark 1: The enumeration of CCPs and of subclasses of CCPs by various statistics (area, perimeter, column number, ...etc) has been widely studied. However, very little attention has been paid to ridge patterns in CCPs.

Consecutive Patterns in Column-Convex Polyominoes

Remark 1: The enumeration of CCPs and of subclasses of CCPs by various statistics (area, perimeter, column number, ...etc) has been widely studied. However, very little attention has been paid to ridge patterns in CCPs.

Remark 2: The simplest ridge patterns are formed between two adjacent columns. The two-column ridge patterns may be used to characterize many of the common classes of CCPs. For instance, a CCP with no lower descents is known as a directed column-convex polyomino (DCCP).

Common Classes of CCPs.

Directed Column-Convex Polyomino
(DCCP): No lower descents

Stack Polyomino: No upper ascents and no lower descents

Parallelogram Polyomino: No lower or upper descents

Wall Polyomino: No lower ascents and no lower descents

Compositions and Wall Polyominoes

Notation: Let $\mathrm{WP}_{n}=$ the set of wall polyominoes with n columns.
Bijection: Let γ_{n} denote the "natural" bijection from K_{n} to WP_{n}.
Example: γ_{7} maps the composition $w=5413423$ to

Compositions and Wall Polyominoes

Notation: Let $\mathrm{WP}_{n}=$ the set of wall polyominoes with n columns.
Bijection: Let γ_{n} denote the "natural" bijection from K_{n} to WP_{n}.
Example: γ_{7} maps the composition $w=5413423$ to

Properties: If $\gamma_{n}(w)=Q$, then

$$
\text { area } Q=\operatorname{sum} w \text { and } \operatorname{per} Q-2 \operatorname{col} Q=\operatorname{var} w
$$

where variation of w is var $w=\sum_{k=0}^{n}\left|w_{k+1}-w_{k}\right|$ with the convention that $w_{0}=0=w_{n+1}$.

Fact $\mathcal{P C} \subset \mathcal{P C C P}$

If P is a pattern set defined for compositions and if $B_{n} \subseteq K_{n}$, then
$\sum_{n \geq 0} \sum_{w \in B_{n}} c^{\operatorname{var} w} q^{\text {sum } w} z^{n} \prod_{p \in P} y_{p}^{p(w)}=\sum_{n \geq 0} \sum_{Q \in \gamma_{n}\left(B_{n}\right)} c^{\text {per } Q} q^{\text {area } Q}\left(z / c^{2}\right)^{n} \prod_{p \in P} y_{p}^{p(Q)}$

Example of Fact $\mathcal{P C} \subset \mathcal{P C C P}$

Raw, Tief : $\sum_{Q \in \mathrm{DCCP}} a_{u}^{\text {uasc } Q} a_{l}^{\text {lasc } Q} b_{u}^{\text {ulev } Q} b_{l}^{\text {llev } Q} c^{\text {per } Q} d^{\text {udes } Q} h^{\text {relh } Q} q^{\text {area } Q} z^{\text {col } Q}$

$$
=\frac{c^{2} h \sum_{n \geq 0} \frac{\left(c^{2} q z\right)^{n+1}}{1-c^{2} h q^{n+1}} \prod_{k=1}^{n}\left(b_{l}+\frac{a, c^{2} h q^{k}}{1-c^{2} h q^{k}}\right)\left(b_{u}+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a_{u}}{1-q^{k}}\right)}{1-a_{u} \sum_{n \geq 1} \frac{\left(c^{2} q z\right)^{n}}{1-q^{n}} \prod_{k=1}^{n}\left(b_{I}+\frac{a_{l} c^{2} h q^{k}}{1-c^{2} h q^{k}}\right) \prod_{k=1}^{n-1}\left(b_{u}+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a_{u}}{1-q^{k}}\right)} .
$$

Example of Fact $\mathcal{P C} \subset \mathcal{P C C P}$

Raw, Tief : $\sum a_{u}^{\text {uasc } Q} a_{l}^{\text {lasc } Q} b_{u}^{\text {ulev } Q} b_{l}^{\text {liev } Q} c^{\text {per } Q} d^{\text {udes } Q} h^{\text {relh } Q} q^{\text {area } Q} z^{\operatorname{col} Q}$ $Q \in \mathrm{DCCP}$

$$
\frac{c^{2} h \sum_{n \geq 0} \frac{\left(c^{2} q z\right)^{n+1}}{1-c^{2} h q^{n+1}} \prod_{k=1}^{n}\left(b_{l}+\frac{a_{1} c^{2} h q^{k}}{1-c^{2} h q^{k}}\right)\left(b_{u}+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a_{u}}{1-q^{k}}\right)}{1-a_{u} \sum_{n \geq 1} \frac{\left(c^{2} q z\right)^{n}}{1-q^{n}} \prod_{k=1}^{n}\left(b_{l}+\frac{a_{1} c^{2} h q^{k}}{1-c^{2} h q^{k}}\right) \prod_{k=1}^{n-1}\left(b_{u}+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a_{u}}{1-q^{k}}\right)} .
$$

Setting $a_{l}=0, a_{u}=a, b_{u}=b, b_{l}=h=1$, and replacing z by z / c^{2} gives the gen func for compositions by ascents, levels, descents, and variation. ($c=1$ is a classic result due to Carlitz)

$$
\begin{aligned}
& \sum_{n \geq 0} \sum_{w \in K_{n}} a^{\operatorname{asc} w} b^{\operatorname{lev} w} d^{\operatorname{des} w} c^{\operatorname{var} w} q^{\text {sum } w} z^{n} \\
& \quad=1+\frac{c^{2} \sum_{n \geq 0} \frac{(q z)^{n+1}}{1-c^{2} q^{n+1}} \prod_{k=1}^{n}\left(b+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a}{1-q^{k}}\right)}{1-a \sum_{n \geq 1} \frac{(q z)^{n}}{1-q^{n}} \prod_{k=1}^{n-1}\left(b+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a}{1-q^{k}}\right)} .
\end{aligned}
$$

The Inclusion $\mathcal{P C C P} \subset \mathcal{P W}$

Let $X=\left\{\binom{j}{m}: j, m\right.$ are positive integers $\}$ and let
$\mathcal{Y}=\bigcup_{n \geq 0}\left\{\left(\begin{array}{ccc}j_{1} j_{2} & \ldots & j_{n} \\ m_{1} m_{2} & \ldots & m_{n}\end{array}\right) \in X^{n}: m_{n}=1\right.$ and $j_{k}+j_{k+1}>m_{k}$ for $\left.1 \leq k<n\right\}$.
For a CCP Q with n columns, define $\delta(Q)=\binom{j_{1} j_{2} \ldots j_{n}}{m_{1} m_{2} \ldots m_{n}}$ where j_{k} is the number cells in $Q_{k}, m_{n}=1$, and, for $1 \leq k<n, m_{k}$ is the change in the y-ordinate from the bottom edge of $(k+1)^{\text {st }}$ column of Q to the top edge of the $k^{\text {th }}$ column of Q.

Factors and Consecutive Patterns in Words

Let X^{*} denote the free moniod generated by the alphabet X.
Definition: For $\mathcal{F} \subseteq X^{+}$, a factor f of a word w is a said to be a consecutive \mathcal{F}-pattern in w if $f \in \mathcal{F}$. The number of consecutive \mathcal{F}-patterns in w is denoted by $\mathcal{F}(w)$.

Factors and Consecutive Patterns in Words

Let X^{*} denote the free moniod generated by the alphabet X.
Definition: For $\mathcal{F} \subseteq X^{+}$, a factor f of a word w is a said to be a consecutive \mathcal{F}-pattern in w if $f \in \mathcal{F}$. The number of consecutive \mathcal{F}-patterns in w is denoted by $\mathcal{F}(w)$.

Definition: For $\mathcal{F} \subset X^{+}$, an \mathcal{F}-cluster is a triple (w, ν, β) in which

$$
\begin{aligned}
& w=w_{1} w_{2} \ldots w_{\text {len } w} \in X^{+} \\
& \nu=\left(f_{(1)}, f_{(2)}, \ldots, f_{(k)}\right) \text { for some } k \geq 1 \text { with each } f_{(i)} \in \mathcal{F}, \text { and } \\
& \beta=\left(b_{1}, b_{2}, \ldots, b_{k}\right) \text { with each } b_{i} \text { being a positive integer }
\end{aligned}
$$

where $f_{(i)}=w_{b_{i}} w_{b_{i}+1} \ldots w_{b_{i}+\operatorname{len}} f_{(i)}-1$, each $w_{i} w_{i+1}$ is a factor of some $f_{(j)}$, $b_{1} \leq b_{2} \leq \cdots \leq b_{k}$, and if $b_{i}=b_{i+1}$, then len $f_{(i)}<\operatorname{len} f_{(i+1)}$.

Factors and Consecutive Patterns in Words

Let X^{*} denote the free moniod generated by the alphabet X.
Definition: For $\mathcal{F} \subseteq X^{+}$, a factor f of a word w is a said to be a consecutive \mathcal{F}-pattern in w if $f \in \mathcal{F}$. The number of consecutive \mathcal{F}-patterns in w is denoted by $\mathcal{F}(w)$.

Definition: For $\mathcal{F} \subset X^{+}$, an \mathcal{F}-cluster is a triple (w, ν, β) in which

$$
\begin{aligned}
& w=w_{1} w_{2} \ldots w_{\text {len } w} \in X^{+}, \\
& \nu=\left(f_{(1)}, f_{(2)}, \ldots, f_{(k)}\right) \text { for some } k \geq 1 \text { with each } f_{(i)} \in \mathcal{F}, \text { and } \\
& \beta=\left(b_{1}, b_{2}, \ldots, b_{k}\right) \text { with each } b_{i} \text { being a positive integer }
\end{aligned}
$$

where $f_{(i)}=w_{b_{i}} w_{b_{i}+1} \ldots w_{b_{i}+\operatorname{len}} f_{(i)}-1$, each $w_{i} w_{i+1}$ is a factor of some $f_{(j)}$, $b_{1} \leq b_{2} \leq \cdots \leq b_{k}$, and if $b_{i}=b_{i+1}$, then len $f_{(i)}<\operatorname{len} f_{(i+1)}$.
Definition: The cluster generating function over a subset $W \subset X^{*}$ is the formal series

$$
C_{\mathcal{F}}(\mathbf{y}, W)=\sum_{(w, \nu, \beta) \in C_{\mathcal{F}}, w \in W}\left(\prod_{f \in \mathcal{F}} y_{f}^{f(\nu)}\right) w
$$

Words by Factors Theorem (Goulden and Jackson)

If, for nonempty $L, R \subseteq X$ and a nonempty $\mathcal{F} \subseteq X^{+}$, we define

$$
\begin{aligned}
& \mathcal{L}(\mathbf{y})=\sum_{I \in L} I+C_{\mathcal{F}}\left(\mathbf{y}, L X^{*}\right), \quad \mathcal{R}(\mathbf{y})=\sum_{r \in R} r+C_{\mathcal{F}}\left(\mathbf{y}, X^{*} R\right), \text { and } \\
& \mathcal{X}(\mathbf{y})=\sum_{x \in X} x+C_{\mathcal{F}}\left(\mathbf{y}, X^{*}\right)
\end{aligned}
$$

and if the result of replacing y_{f} in \mathbf{y} by $y_{f}-1$ is denoted by $\mathbf{y}-\mathbf{1}$, then

$$
\begin{aligned}
\sum_{w \in X^{*}}\left(\prod_{f \in \mathcal{F}} y_{f}^{f(w)}\right) w & =(1-\mathcal{X}(\mathbf{y}-\mathbf{1}))^{-1} \\
\sum_{w \in L X^{*}}\left(\prod_{f \in \mathcal{F}} y_{f}^{f(w)}\right) w & =\mathcal{L}(\mathbf{y}-\mathbf{1})(1-\mathcal{X}(\mathbf{y}-\mathbf{1}))^{-1}
\end{aligned}
$$

$$
\sum_{w \in X^{*} R}\left(\prod_{f \in \mathcal{F}} y_{f}^{f(w)}\right) w=(1-\mathcal{X}(\mathbf{y}-\mathbf{1}))^{-1} \mathcal{R}(\mathbf{y}-\mathbf{1}), \text { and }
$$

$\sum\left(\prod y_{f}^{f(w)}\right) w=C_{\mathcal{F}}\left(\mathbf{y}-\mathbf{1}, L X^{*} R\right)+\mathcal{L}(\mathbf{y}-\mathbf{1})(1-\mathcal{X}(\mathbf{y}-\mathbf{1}))^{-1} \mathcal{R}(\mathbf{y}$

Application of Words by Factors Theorem to Permutations Consider the alphabet $N=\{1,2,3, \ldots\}$, let $P \subseteq \bigcup_{m \geq 1} S_{m}$, and put

$$
D_{P}(\mathbf{y} ; z)=\sum_{(w, \nu, \beta) \in C_{\mathcal{F}_{p}}}\left(\prod_{p \in P} y_{P}^{p(\nu)}\right) q^{\text {sum } w} z^{\operatorname{len} w} \text { where } p(\nu)=\sum_{f \in \mathcal{F}_{p}} f(\nu) \text {. }
$$

Application of Words by Factors Theorem to Permutations

 Consider the alphabet $N=\{1,2,3, \ldots\}$, let $P \subseteq \bigcup_{m \geq 1} S_{m}$, and put$$
D_{P}(\mathbf{y} ; z)=\sum_{(w, \nu, \beta) \in C_{\mathcal{F}_{P}}}\left(\prod_{p \in P} y_{p}^{p(\nu)}\right) q^{\text {sum } w} z^{\text {len } w} \text { where } p(\nu)=\sum_{f \in \mathcal{F}_{p}} f(\nu)
$$

Replacement of w by $q^{\text {sum } w} z^{\text {len } w}$ in the first identity of the Words by Factors Theorem and application of Fedou's bijection implies
Extension of Rawlings' Theorem: If $P \subseteq \bigcup_{m \geq 1} S_{m}$, then

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}}\left(\prod_{p \in P} y_{p}^{p(\sigma)}\right) \frac{q^{\mathrm{inv} \sigma} z^{n}}{(q ; q)_{n}}=\left(1-z(1-q)^{-1}-D_{P}(\mathbf{y}-\mathbf{1} ; z / q)\right)^{-1}
$$

Application of Words by Factors Theorem to Permutations

 Consider the alphabet $N=\{1,2,3, \ldots\}$, let $P \subseteq \bigcup_{m \geq 1} S_{m}$, and put$$
D_{P}(\mathbf{y} ; z)=\sum_{(w, \nu, \beta) \in C_{\mathcal{F}_{P}}}\left(\prod_{p \in P} y_{p}^{p(\nu)}\right) q^{\text {sum } w} z^{\operatorname{len} w} \text { where } p(\nu)=\sum_{f \in \mathcal{F}_{p}} f(\nu) \text {. }
$$

Replacement of w by $q^{\text {sum } w} z^{\operatorname{len} w}$ in the first identity of the Words by Factors Theorem and application of Fedou's bijection implies
Extension of Rawlings' Theorem: If $P \subseteq \bigcup_{m \geq 1} S_{m}$, then

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}}\left(\prod_{p \in P} y_{p}^{p(\sigma)}\right) \frac{q^{\text {inv } \sigma} z^{n}}{(q ; q)_{n}}=\left(1-z(1-q)^{-1}-D_{P}(\mathbf{y}-\mathbf{1} ; z / q)\right)^{-1} .
$$

Non-overlapping Version: For $P \subseteq S_{m}$ with $m>1$, then

$$
\sum_{n>0} \sum_{\sigma \in S_{n}} y^{P_{n o}(\sigma)} \frac{q^{\text {inv } \sigma} z^{n}}{(q ; q)_{n}}=\left(1-z(1-q)^{-1}-(1-y) D_{P}(-\mathbf{1})\right)^{-1} .
$$

Extension of Rawlings' Theorem

If $P \subseteq \bigcup_{m \geq 1} S_{m}$, then

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}}\left(\prod_{p \in P} y_{p}^{p(\sigma)}\right) \frac{q^{\text {inv } \sigma} z^{n}}{(q ; q)_{n}}=\left(1-z(1-q)^{-1}-D_{P}(\mathbf{y}-\mathbf{1} ; z / q)\right)^{-1} .
$$

Ex 1: Permutations by Peaks
Let pic $=\{132,231\}$. As the pic-clusters are in 1-to-1 correspondence with the up-down compositions of odd length >1,

$$
\frac{z}{1-q}+D_{\text {pic }}(y ; z / q)=\frac{1}{\sqrt{y}} \sum_{n \geq 0} \sum_{w \in \mathrm{UD} K_{2 n+1}} q^{\operatorname{sum} w}\left(\frac{z \sqrt{y}}{q}\right)^{2 n+1}=\frac{\tan _{q}(z \sqrt{y})}{\sqrt{y}} .
$$

Thus,
Mendes, Remmel : $\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{\text {pic }(\sigma)} q^{\text {inv } \sigma} z^{n}}{(q ; q)_{n}}=\frac{\sqrt{y-1}}{\sqrt{y-1}-\tan _{q}(z \sqrt{y-1})}$

Ex 2: Permutations by Peaks and Twin Peaks

Let tpic $=\left\{p \in S_{5}: p_{1}<p_{2}>p_{3}<p_{4}>p_{5}\right\}$.
Result using extension of Rawlings' Theorem:
$\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{q^{\text {inv } \sigma} x^{\text {pic }(\sigma)} y^{\text {tpic }(\sigma)} z^{n}}{(q ; q)_{n}}=\frac{1}{1-\frac{z}{1-q}-\sum_{n \geq 1} A_{n}(x-1, y-1) B_{n}(q)(z / q)^{2 n+1}}$
where $A_{n}(x, y)=\left.\left(x z+y z^{2}+x y z^{2}\right)\left(1-x z-x y z-x y z^{2}-y z-y z^{2}\right)^{-1}\right|_{z^{n}}$ and $B_{n}(q)=\left.\tan _{q} z\right|_{z^{2 n+1}}$.

Ex 2: Permutations by Peaks and Twin Peaks

Let tpic $=\left\{p \in S_{5}: p_{1}<p_{2}>p_{3}<p_{4}>p_{5}\right\}$.
Result using extension of Rawlings' Theorem:
$\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{q^{\text {inv } \sigma} x^{\text {pic }(\sigma)} y^{\text {tpic }(\sigma)} z^{n}}{(q ; q)_{n}}=\frac{1}{1-\frac{z}{1-q}-\sum_{n \geq 1} A_{n}(x-1, y-1) B_{n}(q)(z / q)^{2 n+1}}$ where $A_{n}(x, y)=\left.\left(x z+y z^{2}+x y z^{2}\right)\left(1-x z-x y z-x y z^{2}-y z-y z^{2}\right)^{-1}\right|_{z^{n}}$ and $B_{n}(q)=\left.\tan _{q} z\right|_{z^{2 n+1}}$.

Alternative Result using Pattern Algebra of Goulden and Jackson:

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{q^{\operatorname{inv} \sigma_{x}} x^{\text {pic }(\sigma)} y^{\operatorname{tpic}(\sigma)} z^{n}}{(q ; q)_{n}}
$$

$$
=\left(1-\frac{s_{+} \sin _{q}\left(z \sqrt{r_{+}}\right)}{2 \sqrt{r_{+}} \cos _{q}\left(z \sqrt{r_{+}}\right)}-\frac{s_{-} \sin _{q}\left(z \sqrt{r_{-}}\right)}{2 \sqrt{r_{-}} \cos _{q}\left(z \sqrt{r_{-}}\right)}\right)^{-1}
$$

where $r_{ \pm}=(x y-1 \pm \sqrt{D}) / 2, s_{ \pm}=1 \pm(2 x-x y-1) / \sqrt{D}$, and $D=(x y+1)^{2}-4 x$.

q-Olivier functions

$$
\Phi_{j, k}(z)=\sum_{n \geq 0} \frac{z^{j n+k}}{(q ; q)_{j n+k}}
$$

Examples: $\Phi_{1,0}(z)=e_{q}(z), \quad \Phi_{2,0}(i z)=\cos _{q} z, \quad$ and $\Phi_{2,1}(i z)=i \sin _{q} z$.

Ex 3: Permutations by (i,d)-peaks and Inversions

Let $P_{i, d}=\left\{p \in S_{i+d-1}: p_{1}<p_{2}<\cdots<p_{i}>p_{i+1}>\cdots>p_{i+d-1}\right\}$.

Example of a (3,3)-peak:

$$
p=24531=
$$

Ex 3: Permutations by (i,d)-peaks and Inversions

If, for $i, j, d \geq 2$, we set $\mu=i+d-2$ and $\xi_{m}=\sqrt[m]{-1}$, then
$\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{P_{i, d}(\sigma)} q^{\operatorname{inv} \sigma} z^{n}}{(q ; q)_{n}}=\left(1-z(1-q)^{-1}-\frac{K_{i, i, d ; 1}(\sqrt[\mu]{y-1} z)}{\sqrt[\mu]{y-1}}\right)^{-1}$
where, for $k \geq 1$,

$$
K_{i, j, d ; k}(z)=\sum_{m \geq 0} \sum_{w \in K_{i, d ; j ;, d)^{m} ; k}} q^{\operatorname{sum} w} z^{\operatorname{len} w} .
$$

Ex 3: Permutations by (i,d)-peaks and Inversions

 If, for $i, j, d \geq 2$, we set $\mu=i+d-2$ and $\xi_{m}=\sqrt[m]{-1}$, then$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{P_{i, d}(\sigma)} q^{\operatorname{inv} z^{n}}}{(q ; q)_{n}}=\left(1-z(1-q)^{-1}-\frac{K_{i, i, d ; 1}(\sqrt[\mu]{y-1} z)}{\sqrt[\mu]{y-1}}\right)^{-1}
$$

where, for $k \geq 1$,

$$
K_{i, j, d ; k}(z)=\sum_{m \geq 0} \sum_{w \in K_{i, d ; j ; j, d)^{m} ; k}} q^{\text {sum } w} z^{\operatorname{len} w} .
$$

Moreover, $K_{i, j, d ; k}(z)$ satisfies, for $d \geq 3$ and $\nu=j+d-2$, the recurrence

$$
\begin{array}{r}
K_{i, j, d ; k}(z)=\frac{\xi_{\nu}^{-\mu} K_{i, j+1, d-1 ; 1}\left(\xi_{\nu} z\right)\left(z^{k}(q ; q)_{k}^{-1}+\xi_{\nu}^{-k} K_{j, j+1, d-1 ; k+1}\left(\xi_{\nu} z\right)\right)}{1+K_{j, j+1, d-1 ; 1}\left(\xi_{\nu} z\right)} \\
-\xi_{\nu}^{-\mu-k} K_{i, j+1, d-1 ; k+1}\left(\xi_{\nu} z\right)
\end{array}
$$

with the initial condition

$$
K_{i, j, 2 ; k}(z)=\xi_{j}^{-i-k}\left[-\Phi_{j, i+k}\left(\xi_{j} z\right)+\Phi_{j, i}\left(\xi_{j} z\right) \Phi_{j, k}\left(\xi_{j} z\right) / \Phi_{j, 0}\left(\xi_{j} z\right)\right]
$$

Permutations by (3,3)-peaks and Inversions

$\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{P_{3,3}(\sigma)} q^{\text {inv } \sigma} z^{n}}{(q ; q)_{n}}=\left(1-z(1-q)^{-1}-\frac{K_{3,3,3 ; 1}(\sqrt[4]{y-1} z)}{\sqrt[4]{y-1}}\right)^{-1}$ where

$$
\begin{aligned}
&\left.K_{3,3,3 ; 1}(z)=\frac{-K_{3,4,2 ; 1}\left(\xi_{4} z\right)\left(z(1-q)^{-1}+\right.}{}+\xi_{4}^{-1} K_{3,4,2 ; 2}\left(\xi_{4} z\right)\right) \\
& 1+K_{3,4,2 ; 1}\left(\xi_{4} z\right) \\
&+ \xi_{4}^{-1} K_{3,4,2 ; 2}\left(\xi_{4} z\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& K_{3,4,2 ; 1}(z)=-\frac{\Phi_{4,3}\left(\xi_{4} z\right) \Phi_{4,1}\left(\xi_{4} z\right)}{\Phi_{4,0}\left(\xi_{4} z\right)}+\Phi_{4,4}\left(\xi_{4} z\right) \text { and } \\
& K_{3,4,2 ; 2}(z)=\xi_{4}^{-1}\left[-\frac{\Phi_{4,3}\left(\xi_{4} z\right) \Phi_{4,2}\left(\xi_{4} z\right)}{\Phi_{4,0}\left(\xi_{4} z\right)}+\Phi_{4,5}\left(\xi_{4} z\right)\right] .
\end{aligned}
$$

Ex 4: Permutations by m-Peak Ranges of (i, d)-Peaks

Corollary

If $i, d \geq 2, m \geq 1$, and $\nu=i+d-2$, then the generating function for permutations by uniform m-peak ranges and inversions is
$\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{P_{(i, d)}(2)}(\sigma)}{q^{\operatorname{inv} \sigma} z^{n}}(q ; q)_{n} \quad=\left(1-\frac{z}{1-q}-\sum_{n \geq m} A_{n, m}(y-1) B_{n}(q) z^{n \nu+1}\right)^{-1}$
where

$$
A_{n, m}(y)=\left.\frac{y z^{m}(1-z)}{1-z-y z\left(1-z^{m}\right)}\right|_{z^{n}} \text { and } B_{n}(q)=\left.K_{i, i, d ; 1}(z)\right|_{z^{n \nu+1}}
$$

with $K_{i, i, d ; 1}(z)$ as determined earlier.
Remark: For $i=d=2$ with $y=0$, the above provides a solution to a problem posed by Kitaev of counting permutations that avoid $(2 m+1)$-reverse-alternating patterns.

Ex 5: Permutations by (i,m)-Maxima and Inversions
Let $p_{(m)} \in S_{i+1}$ with $p_{(m) 1}<p_{(m) 2}<\cdots<p_{(m) i}$ and $p_{(m) i+1}=i+1-m$.

Example: The (3,2)-maxima pattern in S_{3+1} :
$p_{(2)}=1342=$

Remark: Carlitz and Scoville referred to $(2,1)$ and $(2,2)$-maxima as rising and falling maxima.

Ex 5: Permutations by (i,m)-Maxima and Inversions

Corollary (Words by Factors via extension of Rawlings' Theorem): If

 $i \geq 2,1 \leq m \leq i$ and $\xi_{i}=\sqrt[i]{-1}$, then$$
\begin{gathered}
\sum_{n \geq 0} \sum_{\sigma \in S_{n}}\left(\prod_{m=1}^{i} y_{m}^{p_{(m)}(\sigma)}\right) \frac{q^{\text {inv } \sigma} z^{n}}{(q ; q)_{n}}=\left(1-\frac{\Phi_{i, 1}\left(\mathbf{y}-\mathbf{1} ; \xi_{i} z\right)}{\xi_{i} \Phi_{i, 0}\left(\mathbf{y}-\mathbf{1} ; \xi_{i} z\right)}\right)^{-1} \text { where } \\
\Phi_{i, k}\left(y_{1}, \ldots, y_{i} ; z\right)=\sum_{n \geq 0} \frac{z^{i n+k}}{(q ; q)_{i n+k}} \prod_{j=0}^{n-1}\left(y_{i}+\sum_{m=1}^{i-1}\left(y_{i}-y_{m}\right) q^{m}\left[\begin{array}{c}
i j+k+m-1 \\
m
\end{array}\right]\right) .
\end{gathered}
$$

For $i=2, y_{1}=y$, and $y_{2}=1$, above gives Mendes and Remmel's q-analog of Elizalde and Noy's result for permutations by $p=132$:

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{132(\sigma)} q^{\text {inv }} z^{n}}{(q ; q)_{n}}=\left(1-\sum_{n \geq 0} \frac{(y-1)^{n} q^{n} z^{2 n+1}}{\left(q^{2} ; q^{2}\right)_{n}\left(1-q^{2 n+1}\right)(1-q)^{n}}\right)^{-1} .
$$

An Aside

Proof of the generating function for permutations by (i, m)-maxima of the previous slide reveals the generating function for up-down permutations of type $(i, i, 2 ; 1)$ by (i, m)-maxima:
$\frac{z}{1-q}+\sum_{\sigma \in \mathrm{UDS}_{i, i, 2 ; 1}}\left(\prod_{m=1}^{i} y_{m}^{p_{(m)}}\right) \frac{q^{\operatorname{inv} \sigma} z^{\operatorname{len} \sigma}}{(q ; q)_{\operatorname{inv} \sigma}}=\frac{\Phi_{i, 1}\left(y_{1}, \ldots, y_{i-1}, 1 ; \xi_{i} z\right)}{\xi_{i} \Phi_{i, 0}\left(y_{1}, \ldots, y_{i-1}, 1 ; \xi_{i} z\right)}$.
Setting $y_{1}=y_{2}=\ldots=y_{i}=1$, replacing z by $(1-q) z$, and letting $q \rightarrow 1$ gives a result of Carlitz's.

Ex 5: Perms by (i,m)-Maxima using the Temperley Method If $i \geq 2$ and $1 \leq m \leq i$, then the generating function for permutations by (i, m)-maxima and inversions is also given by

$$
\begin{aligned}
\sum_{n \geq 0} \sum_{\sigma \in S_{n}} & \left(\prod_{m=1}^{i} y_{m}^{p_{(m)}(\sigma)}\right) \frac{q^{\operatorname{inv} \sigma z^{n}}}{(q ; q)_{n}} \\
& =\binom{\sum_{n \geq 0} \frac{z^{i n+1}}{1-q^{i n+1}} \prod_{k=0}^{n-1} T\left(q^{i k}\right)}{1-\frac{y_{i}-1}{(q ; q)_{i-1}} \sum_{n \geq 1} \frac{z^{i n}}{1-q^{i n}} \prod_{k=1}^{n-1} T\left(q^{i k-1}\right)}^{-1}
\end{aligned}
$$

where

$$
T(b)=\sum_{m=1}^{i-1} \frac{\left(y_{m}-1\right) q^{m}}{(q ; q)_{m}\left(q^{m+1} b ; q\right)_{i-m}}-\frac{y_{i}-1}{(q ; q)_{i-1}(1-q b)}
$$

Ex 6: Permutations by maximal number of

 non-overlapping $P=\{1243,1342,1432,2341,2431,3421\}$
Corollary

$$
\sum_{n \geq 0} \sum_{\sigma \in S_{n}} \frac{y^{P_{n o}(\sigma)} q^{\operatorname{inv} z^{n}}}{(q ; q)_{n}}=\frac{\mathcal{K}}{1-y+y\left(1-\frac{z}{1-q}\right) \mathcal{K}}
$$

where

$$
\mathcal{K}=\frac{e_{q}(z) e_{q}(-z)+\cos _{q}^{2} z+\sin _{q}^{2} z+2 e_{q}(-z) \cos _{q} z}{+\left(e_{q}(z)+e_{q}(-z)\right) \sin _{q} z} .
$$

Remark: \mathcal{K} is a q-analog of Kitaev's generating function that enumerates permutations that avoid $P=\{4312,4213,4123,3214,3124,2134\}$.

Ex 7: DCCPs by All Five Two-Column Statistics

Raw, Tref : $\sum a_{u}^{\text {masc } Q} a_{l}^{\text {lass } Q} b_{u}^{\text {ulev }} Q_{b} b_{l}^{\text {lev }} Q_{c}{ }^{\text {per } Q} d^{\text {utes } Q} h^{\text {relh }} Q_{q}$ area $Q_{z}{ }^{\operatorname{col} Q}$ $Q \in$ DCCP

$$
=\frac{c^{2} h \sum_{n \geq 0} \frac{\left(c^{2} q z\right)^{n+1}}{1-c^{2} h q^{n+1}} \prod_{k=1}^{n}\left(b_{l}+\frac{a_{1} c^{2} h q^{k}}{1-c^{2} h q^{k}}\right)\left(b_{u}+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a_{u}}{1-q^{k}}\right)}{1-a_{u} \sum_{n \geq 1} \frac{\left(c^{2} q z\right)^{n}}{1-q^{n}} \prod_{k=1}^{n}\left(b_{l}+\frac{a_{l} c^{2} h q^{k}}{1-c^{2} h q^{k}}\right) \prod_{k=1}^{n-1}\left(b_{u}+\frac{c^{2} d q^{k}}{1-c^{2} q^{k}}-\frac{a_{u}}{1-q^{k}}\right)} .
$$

Ex 8: CCPs by All Six Two-Column Statistics (Temperley) If we set $F(x)$ equal to
$\sum_{Q \in \mathrm{CCP}} a_{u}^{\text {uasc } Q} b_{u}^{\text {ulev } Q} d_{u}^{\text {udes } Q} a_{I}^{\text {lasc } Q} b_{I}^{\text {llev } Q} d_{I}^{\text {ldes } Q} C^{\text {per } Q} q^{\text {area } Q} h^{\text {relh } Q} x^{\alpha(Q)} z^{\text {col } Q}$ where $\alpha(Q)$ denotes the area of the last column in Q, then

$$
F(x)=\frac{\left|\begin{array}{ccc}
R(x) & S(x) & T(x) \\
R(1) & S(1)-1 & T(1) \\
R\left(\frac{1}{h}\right) & S\left(\frac{1}{h}\right) & T\left(\frac{1}{h}\right)-1
\end{array}\right|}{\left|\begin{array}{cc}
S(1)-1 & T(1) \\
S\left(\frac{1}{h}\right) & T\left(\frac{1}{h}\right)-1
\end{array}\right|},
$$

where

$$
\begin{aligned}
R(x) & =\sum_{n \geq 0} z^{n+1} y(x) y(q x) \ldots y\left(q^{n-1} x\right) r\left(q^{n} x\right), \\
S(x) & =\sum_{n \geq 0} z^{n+1} y(x) y(q x) \ldots y\left(q^{n-1} x\right) s\left(q^{n} x\right), \\
T(x) & =\sum z^{n+1} y(x) y(q x) \ldots y\left(q^{n-1} x\right) t\left(q^{n} x\right), \text { and } \ldots .
\end{aligned}
$$

Ex 8 Continued: The Rest of the Formula

$$
\begin{aligned}
r(x)= & \frac{q \times c^{4} h}{1-q \times c^{2} h}, \\
s(x)= & \frac{q^{2} x^{2} c^{4} h a_{u} a_{l}}{(1-q \times)\left(1-q \times c^{2} h\right)}+\frac{q \times c^{2} a_{l} b_{u}}{1-q x}-\frac{q \times c^{2} d_{u} a_{l}}{(1-h)(1-q \times)}, \\
t(x)= & \frac{q \times c^{2} h d_{u} b_{l}}{1-q \times h}+\frac{q^{2} x^{2} c^{4} h d_{u} d_{l}}{(1-q \times h)\left(1-q \times c^{2}\right)}+\frac{q \times c^{2} h^{2} d_{u} a_{l}}{(1-h)(1-q \times h)}, \\
y(x)= & \frac{q \times c^{4} h a_{u} b_{l}}{1-q \times c^{2} h}+\frac{q^{2} x^{2} c^{6} h a_{u} d_{l}}{\left(1-q \times c^{2}\right)\left(1-q \times c^{2} h\right)}-\frac{q \times c^{4} h a_{u} a_{l}}{(1-q \times)\left(1-q \times c^{2} h\right)} \\
& +c^{2} b_{u} b_{l}+\frac{q \times c^{4} b_{u} d_{l}}{1-q \times c^{2}}-\frac{c^{2} b_{u} a_{l}}{1-q x}-\frac{c^{2} d_{u} b_{l}}{1-q \times h} \\
& -\frac{q \times c^{4} d_{u} d_{l}}{(1-q \times h)\left(1-q \times c^{2}\right)}+\frac{c^{2} d_{u} a_{l}}{(1-q \times)(1-q \times h)} .
\end{aligned}
$$

Ex 9: DCCPs by Upper Valleys

A column-segment $Q_{k} Q_{k+1} Q_{k+2}$ in a column-convex polyomino Q is said to be a valley provided that $Q_{k} Q_{k+1}$ is an upper descent and $Q_{k+1} Q_{k+2}$ is an upper ascent or an upper level.

Corollary of Words by Factors

$$
\sum_{Q \in \mathrm{DCCP}} y^{\operatorname{val}(Q)} q^{\operatorname{area} Q_{z} \operatorname{col} Q}
$$

$$
=\frac{\sum_{n \geq 0} \frac{(1-y)^{n} q^{(n+1)(2 n+1)} z^{2 n+1}}{(q ; q)_{2 n+1}(q ; q)_{2 n}}}{\sum_{n \geq 0} \frac{(1-y)^{n} q^{n(2 n+1)} z^{2 n}}{(q ; q)_{2 n}^{2}}-\sum_{n \geq 0} \frac{(1-y)^{n} q^{(n+1)(2 n+1)} z^{2 n+1}}{(q ; q)_{2 n+1}^{2}}} .
$$

Ex 10: CCPs by Peaks, Area, and Column Number (Temperley)

$$
\sum_{Q \in \mathrm{CCP}} y^{\operatorname{pic}(Q)} q^{\operatorname{area} Q_{z} \operatorname{col} Q}=\frac{\left(\frac{z q}{1-q}+\frac{2 z^{2} q^{3}}{(1-q)^{3}}\right)\left(1+\frac{2 z q}{(1-q)^{2}}\right)}{\left(1-\frac{z q^{2}}{(1-q)^{2}}\right)\left(1+\frac{z q}{(1-q)^{2}}\right)-\frac{2 y z^{2} q^{3}}{(1-q)^{4}}}
$$

