Pattern Avoiding Colored Partitions

Adam M. Goyt
Minnesota State University Moorhead goytadam@mnstate.edu

Lara K. Pudwell
Valparaiso University
Lara.Pudwell@valpo.edu

Valparaiso University
August 9, 2010
(1) History and Definitions
(2) Colored Partitions and Avoidance
(3) A Flavor of the Proofs

4 Summary and Future Ideas

Outline

(1) History and Definitions
(2) Colored Partitions and Avoidance
(3) A Flavor of the Proofs
4. Summary and Future Ideas

Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)

Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set S_{n} 乙 C_{k}. (Mansour [5], Egge [2], and Sizzle!)

Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set S_{n} l C_{k}. (Mansour [5], Egge [2], and Sizzle!)
- Pattern Avoidance in Set Partitions. (Klazar [3], Sagan [6], Snap, Crackle)

Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set S_{n} l C_{k}. (Mansour [5], Egge [2], and Sizzle!)
- Pattern Avoidance in Set Partitions. (Klazar [3], Sagan [6], Snap, Crackle)
- The notion of signed set partitions was considered by Anders Björner and Michelle Wachs [1] from a poset and homological perspective.

Who and What

- Pattern Avoidance in Permutations. (Knuth [4], Simion and Schmidt [7], and Boom!)
- Pattern Avoidance in Colored Permutations. Done by considering the set S_{n} 乙 C_{k}. (Mansour [5], Egge [2], and Sizzle!)
- Pattern Avoidance in Set Partitions. (Klazar [3], Sagan [6], Snap, Crackle)
- The notion of signed set partitions was considered by Anders Björner and Michelle Wachs [1] from a poset and homological perspective.
- Now, we consider Pattern Avoidance in Colored Set Partitions. (Boom?)

Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_{i} \subseteq S$, called blocks, such that $\uplus B_{i}=S$.

Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_{i} \subseteq S$, called blocks, such that $\uplus B_{i}=S$.

We write

$$
\pi=B_{1} / B_{2} / \ldots / B_{k},
$$

where

$$
\min B_{1}<\min B_{2}<\cdots<\min B_{k},
$$

Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_{i} \subseteq S$, called blocks, such that $\uplus B_{i}=S$.

We write

$$
\pi=B_{1} / B_{2} / \ldots / B_{k},
$$

where

$$
\min B_{1}<\min B_{2}<\cdots<\min B_{k},
$$

Let

$$
\Pi_{n}=\{\pi: \pi \vdash[n]=\{1,2, \ldots, n\}\}, \text { and } \Pi=\bigcup_{n} \Pi_{n} .
$$

Set Partition Definition

Definition

A partition π of a set S, written $\pi \vdash S$, is a family of disjoint nonempty subsets $B_{i} \subseteq S$, called blocks, such that $\uplus B_{i}=S$.

We write

$$
\pi=B_{1} / B_{2} / \ldots / B_{k},
$$

where

$$
\min B_{1}<\min B_{2}<\cdots<\min B_{k},
$$

Let

$$
\Pi_{n}=\{\pi: \pi \vdash[n]=\{1,2, \ldots, n\}\}, \text { and } \Pi=\bigcup_{n} \Pi_{n} .
$$

Example

Canonical Words

Definition

Given any word $w \in[k]^{n}$ we may canonize w by replacing all occurrences of the first letter of w by 1 , all occurrences of the next occurring letter by 2, etc.

Canonical Words

Definition
Given any word $w \in[k]^{n}$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example
The canonized form of 47411477 is 12133122.

Canonical Words

Definition
Given any word $w \in[k]^{n}$ we may canonize w by replacing all occurrences of the first letter of w by 1, all occurrences of the next occurring letter by 2, etc.

Example
The canonized form of 47411477 is 12133122.
There is a bijection between all canonized words of length n and partitions of $[n]$.

Canonical Words

To each set partition is associated a canonical word $a_{1} a_{2} \ldots a_{n}$ where $a_{i}=j$ if $i \in B_{j}$.

Canonical Words

To each set partition is associated a canonical word $a_{1} a_{2} \ldots a_{n}$ where $a_{i}=j$ if $i \in B_{j}$.

Example
137/25/46 corresponds to 1213231.

Canonical Words

To each set partition is associated a canonical word $a_{1} a_{2} \ldots a_{n}$ where $a_{i}=j$ if $i \in B_{j}$.

Example
137/25/46 corresponds to 1213231.
We will say that a partition, π is of length $n, \ell(\pi)=n$, if its associated canonical word has n letters.

From now on we will refer to these canonical words as partitions.

Pattern Avoidance

Definition
Let σ be a partition with $\ell(\sigma)=n$ and π be a partition with $\ell(\pi)=k$. We say that σ contains π if there is a subsequence of σ of length k whose canonization is π. Otherwise we say that σ avoids π.

Example
Let $\sigma=1213431$.

Pattern Avoidance

Definition
Let σ be a partition with $\ell(\sigma)=n$ and π be a partition with $\ell(\pi)=k$. We say that σ contains π if there is a subsequence of σ of length k whose canonization is π. Otherwise we say that σ avoids π.

Example
Let $\sigma=1213431$.
σ contains a copy of 112 namely 1213431 or 1213431 . However, σ avoids 1112.

Outline

(1) History and Definitions

2 Colored Partitions and Avoidance

(3) A Flavor of the Proofs

44 Summary and Future Ideas

Colored Partitions

Definition
A colored partition is a set partition where each element is given one of k colors.

Colored Partitions

Definition
A colored partition is a set partition where each element is given one of k colors.

Definition
Denote the set of all k-colored set partitions of $[n]$ by $\Pi_{n} 乙 C_{k}$.

Example

Consider $\sigma=1213431 \in \Pi_{7}$ from the previous slide. We can make σ an element of $\Pi_{7} \backslash C_{3}$ simply by choosing one of three colors for each of the elements. So $1211341 \in \Pi_{7}$ 久 C_{3}.

Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_{n} \backslash C_{k}$ contains a copy of $\pi \in \Pi_{m}$ 久 C_{j} if
(1) the uncolored version of σ contains a copy of the uncolored version of π and

Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_{n} \backslash C_{k}$ contains a copy of $\pi \in \Pi_{m}$ 久 C_{j} if
(1) the uncolored version of σ contains a copy of the uncolored version of π and
(2) the colors of this copy of π equal the colors of π.

Otherwise we say that σ avoids π.

Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_{n} \backslash C_{k}$ contains a copy of $\pi \in \Pi_{m}$ 久 C_{j} if
(1) the uncolored version of σ contains a copy of the uncolored version of π and
(2) the colors of this copy of π equal the colors of π.

Otherwise we say that σ avoids π.
Example
Consider $\sigma=1211341$. Then σ contains a copy of 122 , but σ avoids 122.

Avoiding Colored Partitions

Definition

We say that $\sigma \in \Pi_{n} \backslash C_{k}$ contains a copy of $\pi \in \Pi_{m}$ 久 C_{j} if
(1) the uncolored version of σ contains a copy of the uncolored version of π and
(2) the colors of this copy of π equal the colors of π.

Otherwise we say that σ avoids π.
Example
Consider $\sigma=1211341$. Then σ contains a copy of 122, but σ avoids 122.

Definition
For a set of colored set partitions S let Π_{n} 乙 $C_{k}(S)$ be the set of partitions in $\Pi_{n} \backslash C_{k}$ that avoid every pattern in S.

Outline

(1) History and Definitions

2 Colored Partitions and Avoidance

(3) A Flavor of the Proofs

4 Summary and Future Ideas

Friendly Results

Theorem
For $n \geq 1$ and $c \geq 2,\left|\Pi_{n} 2 C_{2}(11,11)\right|=\sum_{i=1}^{n} 2^{i} S(n, i)$ (OEIS A001861)

Theorem
For $n \geq 1$ and $c \geq 2,\left|\Pi_{n} 2 C_{2}(12)\right|=\left(B_{n+1}-B_{n+1}\right)-\left(B_{n+1}-B_{n}\right)$ (OEIS A011965)

$\left|\Pi_{n} 乙 C_{k}(112)\right|$

Theorem

For $n \geq 1$ and $c \geq 2,\left|\Pi_{n} \backslash C_{k}(112)\right|=$
$B(n)(k-1)^{n}+\sum_{m=1}^{n} \sum_{j=1}^{m}\binom{n}{m}\binom{m}{j} B(n-j)(k-1)^{n-j}+$
$\sum_{1 \leq i<j \leq n} \sum_{a, b} \sum_{d, e} \sum_{f, g} \sum_{m} \sum_{p, q} \sum_{\ell}\binom{i-1}{a, b}\binom{j-i-1}{d, e}\binom{n-j}{f, g}$.
$\binom{i-a-b-1}{m}\binom{j-i-d-e-1}{p}\binom{n-a-b-f-g-j+i-m-1}{q}$
$S(p+q, \ell) m^{\ell} B(n-a-b-d-e-f-g-m-p-q-2)$.
$\left((k-1)^{b}+b(k-1)^{b-1}\right)\left((k-1)^{a}+a(k-1)^{a-1}\right)(k-2)^{d+p} k^{e}$.
$(k-1)^{n-a-b-d-e-m-p-2}$.

Avoiding 112 - Sketch of Proof

The Proof of this Theorem can be broken into 3 cases.

Avoiding 112 - Sketch of Proof

The Proof of this Theorem can be broken into 3 cases.

Case 1: No elements are colored blue.

Avoiding 112 - Sketch of Proof

The Proof of this Theorem can be broken into 3 cases.

Case 1: No elements are colored blue.

Case 2: Exactly one block contains elements colored blue.

Avoiding 112 - Sketch of Proof

The Proof of this Theorem can be broken into 3 cases.

Case 1: No elements are colored blue.

Case 2: Exactly one block contains elements colored blue.

Case 3: At least two blocks contain elements colored blue.

No elements are colored blue.

In this case there can't possibly be a copy of 112 .

- $B(n)\left(n^{\text {th }}\right.$ Bell number) ways to partition the elements in [n]
- $(k-1)^{n}$ ways to color each element any color but blue.

Thus there are $B(n)(k-1)^{n}$ such 112 avoiding partitions in Π_{n} 亿 C_{k}.

Exactly one block contains elements colored blue.

In this case there can't possibly be a copy of 112 .

- Select m elements to be in the block with the elements that are colored blue.
- Select j of these elements to be colored blue.
- Partition the remaining $n-m$ elements in $B(n-m)$ ways.
- Color the non-blue elements in $(k-1)^{n-j}$ ways.

Thus there are

$$
\sum_{m=1}^{n} \sum_{j=1}^{m}\binom{n}{m}\binom{m}{j} B(n-m)(k-1)^{n-j}
$$

such partitions avoiding 112.

The Final Case

At least two blocks contain elements colored blue and there is no copy of 112 .

SEE BOARD!

Outline

(1) History and Definitions

2 Colored Partitions and Avoidance

(3) A Flavor of the Proofs

4 Summary and Future Ideas

Where Do We Go from Here?

- Generating Functions?

Where Do We Go from Here?

- Generating Functions?
- connections via OEIS

Where Do We Go from Here?

- Generating Functions?
- connections via OEIS
- Wilf Classes

Where Do We Go from Here?

- Generating Functions?
- connections via OEIS
- Wilf Classes
- eq-avoidance, It-avoidance, color-pattern-avoidance

Where Do We Go from Here?

- Generating Functions?
- connections via OEIS
- Wilf Classes
- eq-avoidance, It-avoidance, color-pattern-avoidance
- Set Partition Statistics

Thank You

THANK YOU

R A．Björner，M．L．Wachs，Geometrically constructed bases for homology of partition lattices of type A, B and D ，Electron．J． Combin． 11 （2）（2004／06）Research Paper 3， 26. URL http：／／www．combinatorics．org／Volume＿11／ Abstracts／v11i2r3．html

目 E．S．Egge，Restricted colored permutations and Chebyshev polynomials，Discrete Math． 307 （14）（2007）1792－1800． URL http：／／dx．doi．org／10．1016／j．disc．2006．09．027

國 M．Klazar，Counting pattern－free set partitions．I．A generalization of Stirling numbers of the second kind，European J．Combin． 21 （2000）367－378．

围 D．E．Knuth，The art of computer programming．Volume 3. Sorting and Searching，Addison－Wesley Publishing Co．，Reading， Mass．－London－Don Mills，Ont．， 1973.
T. Mansour, Pattern avoidance in coloured permutations, Sém. Lothar. Combin. 46 (2001/02) Art. B46g, 12 pp. (electronic).

园 B. E. Sagan, Pattern avoidance in set partitions, Ars Combin. 94 (2010) 79-96.

固 R. Simion, F. W. Schmidt, Restricted permutations, European J. Combin. 6 (1985) 383-406.

