# Simple permutations poset 

Adeline Pierrot Dominique Rossin

August 10, 2010

## Patterns in permutations

Pattern relation $\preccurlyeq$ :
$\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if
$\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to $\pi$. We write $\pi \preccurlyeq \sigma$.

Example: $1324 \preccurlyeq 312854796$ since $2549 \equiv 1324$.


## Patterns in permutations

Pattern relation $\preccurlyeq:$
$\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if
$\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to $\pi$. We write $\pi \preccurlyeq \sigma$.

Example: $1324 \preccurlyeq 312854796$ since $2549 \equiv 1324$.

|  |  |  |  |  |  |  | $\bullet$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $\bullet$ |  |  |  |  |  |
|  |  |  |  |  |  | $\bullet$ |  |  |
|  |  |  |  |  |  |  |  | $\bullet$ |
|  |  |  |  | $\bullet$ |  |  |  |  |
|  |  |  |  |  | $\bullet$ |  |  |  |
| $\bullet$ |  |  |  |  |  |  |  |  |
|  |  | $\bullet$ |  |  |  |  |  |  |
|  | $\bullet$ |  |  |  |  |  |  |  |

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

Interval $=$ window of elements of $\sigma$ whose values form a range Example: 5746 is an interval of 2574613

Simple permutation $=$ has no interval except $1,2, \ldots, n$ and $\sigma$ Equivalently: In the graphical representation, every non trivial bounding box has at least a point on his side.


Example: 6354172 is not simple, whereas 3174625 is simple.

## Simple permutations and patterns

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

## Simple permutations and patterns

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

## Simple permutations and patterns

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

## Simple permutations and patterns

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Example: 316452 (not simple) $\preceq 3174625$ (simple)

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Example: 316452 (not simple) $\preceq 3174625$ (simple)

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Example: 316452 (not simple) $\preceq 3174625$ (simple)

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Example: 316452 (not simple) $\preceq 3174625$ (simple)
314625 (simple) $\preceq 3145726$ (not simple)

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Example: 316452 (not simple) $\preceq 3174625$ (simple)

$$
314625 \text { (simple) } \preceq 3145726 \text { (not simple) }
$$

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Example: 316452 (not simple) $\preceq 3174625$ (simple)

$$
314625 \text { (simple) } \preceq 3145726 \text { (not simple) }
$$

Fact $=$ The set of simple permutations is not closed for $\preccurlyeq$

not simple

simple

simple

not simple

Example: 316452 (not simple) $\preceq 3174625$ (simple)

$$
\begin{aligned}
& 314625 \text { (simple) } \preceq 3145726 \text { (not simple) } \\
& 314625 \text { (simple) } \preceq 3174625 \text { (simple). }
\end{aligned}
$$

## Exceptional permutations

Definition: Exceptional permutations are simple permutations defined below for every $m \geq 2$ :

- $2468 \ldots(2 m) 135 \ldots(2 m-1)$
- $(2 m-1)(2 m-3) \ldots 1(2 m)(2 m-2) \ldots 2$
- $(m+1) 1(m+2) 2 \ldots(2 m) m$
- $m(2 m)(m-1)(2 m-1) \ldots 1(m+1)$


Exceptional permutation of type 1, 2, 3 and 4

## Exceptional permutations

Definition: Exceptional permutations are simple permutations defined below for every $m \geq 2$ :

- $2468 \ldots(2 m) 135 \ldots(2 m-1)$
- $(2 m-1)(2 m-3) \ldots 1(2 m)(2 m-2) \ldots 2$
- $(m+1) 1(m+2) 2 \ldots(2 m) m$
- $m(2 m)(m-1)(2 m-1) \ldots 1(m+1)$


Exceptional permutation of type 1, 2, 3 and 4

## Exceptional permutations

Definition: Exceptional permutations are simple permutations defined below for every $m \geq 2$ :

- $2468 \ldots(2 m) 135 \ldots(2 m-1)$
- $(2 m-1)(2 m-3) \ldots 1(2 m)(2 m-2) \ldots 2$
- $(m+1) 1(m+2) 2 \ldots(2 m) m$
- $m(2 m)(m-1)(2 m-1) \ldots 1(m+1)$


Exceptional permutation of type 1, 2, 3 and 4

## Exceptional permutations

Definition: Exceptional permutations are simple permutations defined below for every $m \geq 2$ :

- $2468 \ldots(2 m) 135 \ldots(2 m-1)$
- $(2 m-1)(2 m-3) \ldots 1(2 m)(2 m-2) \ldots 2$
- $(m+1) 1(m+2) 2 \ldots(2 m) m$
- $m(2 m)(m-1)(2 m-1) \ldots 1(m+1)$


Exceptional permutation of type 1, 2, 3 and 4

## Exceptional permutations

Definition: Exceptional permutations are simple permutations defined below for every $m \geq 2$ :

- $2468 \ldots(2 m) 135 \ldots(2 m-1)$
- $(2 m-1)(2 m-3) \ldots 1(2 m)(2 m-2) \ldots 2$
- $(m+1) 1(m+2) 2 \ldots(2 m) m$
- $m(2 m)(m-1)(2 m-1) \ldots 1(m+1)$


Exceptional permutation of type 1, 2, 3 and 4

## Exceptional permutations

Definition: Exceptional permutations are simple permutations defined below for every $m \geq 2$ :

- $2468 \ldots(2 m) 135 \ldots(2 m-1)$
- $(2 m-1)(2 m-3) \ldots 1(2 m)(2 m-2) \ldots 2$
- $(m+1) 1(m+2) 2 \ldots(2 m) m$
- $m(2 m)(m-1)(2 m-1) \ldots 1(m+1)$


Exceptional permutation of type 1, 2, 3 and 4

## Exceptional permutations

Definition: Exceptional permutations are simple permutations defined below for every $m \geq 2$ :

- $2468 \ldots(2 m) 135 \ldots(2 m-1)$
- $(2 m-1)(2 m-3) \ldots 1(2 m)(2 m-2) \ldots 2$
- $(m+1) 1(m+2) 2 \ldots(2 m) m$
- $m(2 m)(m-1)(2 m-1) \ldots 1(m+1)$


Exceptional permutation of type 1, 2, 3 and 4

## Why exceptional ?

Proposition: $\sigma$ a non exceptional simple permutation, $4 \leq m \leq|\sigma|$ $\Rightarrow \exists$ a simple permutation $\pi$ of size $m$ such that $\pi \preceq \sigma$.

Proposition: $\sigma$ an exceptional permutation $\Rightarrow \forall m$ such that $4 \leq m \leq|\sigma|$ :

- $m$ odd $\Rightarrow \sigma$ has no simple pattern of size $m$.
- $m$ even $\Rightarrow \sigma$ has exactly one simple pattern of size $m$ : the exceptional permutation of the same type as $\sigma$.


## Constrained patterns (1)

$$
\pi \preceq \sigma \quad \xrightarrow{?} \pi \preceq \tau \preceq \sigma
$$

## Constrained patterns (1)

$$
\pi \preceq \sigma \xrightarrow{?} \pi \preceq \tau \preceq \sigma
$$

Proposition : $\pi, \sigma$ two simple permutations, $3 \leq|\pi| \leq|\sigma|-2 \Rightarrow \exists$ a simple permutation $\tau$ such that $\pi \leq \tau \leq \sigma$ and $|\tau|=|\pi|+2$.

$$
\underbrace{\pi \preceq \sigma}_{\geq 2} \Rightarrow \underbrace{\pi \preceq \tau}_{2} \preceq \sigma
$$

## Constrained patterns (2)

Proposition: $\sigma$ a non exceptional simple permutation, $|\sigma|=n \geq 4$ and $\pi$ a simple permutation, $|\pi|=n-2, \pi \preceq \sigma \Rightarrow \exists$ a simple permutation $\tau$ of size $n-1$ such that $\pi \preceq \tau \preceq \sigma$.
$\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$

## Proof (Lemma)

Lemma : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

## Proof (Lemma)

Lemma : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

$\tau$ not simple $\Rightarrow$ contains a non-trivial interval /

## Proof (Lemma)

Lemma : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

$\tau$ not simple $\Rightarrow$ contains a non-trivial interval I $\tau \backslash\left\{\tau_{i}\right\}$ simple $\Rightarrow I \backslash\left\{\tau_{i}\right\}$ is a trivial interval of $\tau$

## Proof (Lemma)

Lemma : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

$\tau$ not simple $\Rightarrow$ contains a non-trivial interval $/$ $\tau \backslash\left\{\tau_{i}\right\}$ simple $\Rightarrow I \backslash\left\{\tau_{i}\right\}$ is a trivial interval of $\tau$

2 cases:

## Proof (Lemma)

Lemma : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

$\tau$ not simple $\Rightarrow$ contains a non-trivial interval $/$ $\tau \backslash\left\{\tau_{i}\right\}$ simple $\Rightarrow I \backslash\left\{\tau_{i}\right\}$ is a trivial interval of $\tau$

2 cases:

- $|I|=2$ and $\tau_{i}$ belongs to $I$

Lemma : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

$\tau$
$\tau$ not simple $\Rightarrow$ contains a non-trivial interval / $\tau \backslash\left\{\tau_{i}\right\}$ simple $\Rightarrow I \backslash\left\{\tau_{i}\right\}$ is a trivial interval of $\tau$

2 cases:

- $|I|=2$ and $\tau_{i}$ belongs to $I$
- $\tau_{i}$ is the only point of $\tau$ outside $I$.


## Proof (1)

## Proposition : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$

Proposition : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$
Suppose that such a permutation $\tau$ does not exists. Let $i, j$ such that $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.
Then $\sigma \backslash\left\{\sigma_{i}\right\}$ is not simple but $\pi$ is simple so $\sigma_{j}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{i}\right\}$ or is in a corner of the graphical representation of $\sigma \backslash\left\{\sigma_{i}\right\}$


Proposition : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$
Suppose that such a permutation $\tau$ does not exists. Let $i, j$ such that $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.
Then $\sigma \backslash\left\{\sigma_{i}\right\}$ is not simple but $\pi$ is simple so $\sigma_{j}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{i}\right\}$ or is in a corner of the graphical representation of $\sigma \backslash\left\{\sigma_{i}\right\}$


There are 3 different cases:

- $\sigma_{i}$ and $\sigma_{j}$ are both in a corner thanks to $\pi$. In that case $\pi$ is a non trivial interval of $\sigma$, which contradicts the fact that $\sigma$ is simple.
- $\sigma_{i}$ belongs to an interval I of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi$ (or exchange $i$ and $j$ ).
- $\sigma_{i}$ belongs to an interval $I$ of size 2 of $\sigma \backslash \sigma_{j}$ and $\sigma_{j}$ belongs to an interval $J$ of size 2 of $\sigma \backslash \sigma_{i}$.


## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.


## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.
$\sigma$ is simple $\Rightarrow \sigma_{j}$ is not in a corner of $\sigma$, but is in a
 corner of $\sigma \backslash\left\{\sigma_{i}\right\} \Rightarrow \sigma_{i}$ is the only point separating $\sigma_{j}$ from a corner.


## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.

$\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash\left\{\sigma_{j}\right\}$.



## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.

$\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash\left\{\sigma_{j}\right\}$. $\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ is not simple



## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.

$\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash\left\{\sigma_{j}\right\}$.
$\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ is not simple $\Rightarrow \sigma_{j}$ belongs to an interval $J$ of size 2 of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ or is in a corner of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$, which is impossible.



## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.

$\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash\left\{\sigma_{j}\right\}$.
$\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ is not simple $\Rightarrow \sigma_{j}$ belongs to an interval $J$ of size 2 of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ or is in a corner of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$, which is impossible.


Let $j_{1}$ such that $J=\left\{j, j_{1}\right\}$, then $\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j_{1}}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{j_{1}}\right\}$ is not simple.

## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.

$\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash\left\{\sigma_{j}\right\}$.
$\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ is not simple $\Rightarrow \sigma_{j}$ belongs to an interval $J$ of size 2 of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ or is in a corner of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$, which is impossible.


Let $j_{1}$ such that $J=\left\{j, j_{1}\right\}$, then $\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j_{1}}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{j_{1}}\right\}$ is not simple.
$\Rightarrow \sigma_{i_{1}}$ belongs to an interval $I_{1}$ of size 2 of $\sigma \backslash\left\{\sigma_{j_{1}}\right\}$ or is in a corner of $\sigma \backslash\left\{\sigma_{j_{1}}\right\}$, which is impossible.

## Proof (case 2)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.

$\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash\left\{\sigma_{j}\right\}$.
$\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ is not simple $\Rightarrow \sigma_{j}$ belongs to an interval $J$ of size 2 of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$ or is in a corner of $\sigma \backslash\left\{\sigma_{i_{1}}\right\}$, which is impossible.


Let $j_{1}$ such that $J=\left\{j, j_{1}\right\}$, then $\pi=\sigma \backslash\left\{\sigma_{i_{1}}, \sigma_{j_{1}}\right\}$ is simple but $\sigma \backslash\left\{\sigma_{j_{1}}\right\}$ is not simple.
$\Rightarrow \sigma_{i_{1}}$ belongs to an interval $I_{1}$ of size 2 of $\sigma \backslash\left\{\sigma_{j_{1}}\right\}$ or is in a corner of $\sigma \backslash\left\{\sigma_{j_{1}}\right\}$, which is impossible.

## Proof (case 2.)

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.


Let $i_{0}=i$ and $j_{0}=j$, we recursively build $i_{0}, j_{0}, i_{1}, j_{1}, \ldots$ such that $\forall k, \pi=\sigma \backslash\left\{\sigma_{i_{k}}, \sigma_{j_{k}}\right\}=\sigma \backslash\left\{\sigma_{j_{k}}, \sigma_{i_{k+1}}\right\}$ and $\sigma \backslash \sigma_{i_{k}}$ and $\sigma \backslash \sigma_{j_{k}}$ are not simple.


- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.


Let $i_{0}=i$ and $j_{0}=j$, we recursively build $i_{0}, j_{0}, i_{1}, j_{1}, \ldots$ such that $\forall k, \pi=\sigma \backslash\left\{\sigma_{i_{k}}, \sigma_{j_{k}}\right\}=\sigma \backslash\left\{\sigma_{j_{k}}, \sigma_{i_{k+1}}\right\}$ and $\sigma \backslash \sigma_{i_{k}}$ and $\sigma \backslash \sigma_{j_{k}}$ are not simple.

Positions of $\sigma_{i_{k}}$ and $\sigma_{j_{k}}$ are fixed for all $k$ as $\sigma_{i_{k}}$ does not separate $\sigma_{i_{k-1}}$ from $\sigma_{i_{k-2}}$


- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.


Let $i_{0}=i$ and $j_{0}=j$, we recursively build $i_{0}, j_{0}, i_{1}, j_{1}, \ldots$ such that $\forall k, \pi=\sigma \backslash\left\{\sigma_{i_{k}}, \sigma_{j_{k}}\right\}=\sigma \backslash\left\{\sigma_{j_{k}}, \sigma_{i_{k+1}}\right\}$ and $\sigma \backslash \sigma_{i_{k}}$ and $\sigma \backslash \sigma_{j_{k}}$ are not simple.
Positions of $\sigma_{i_{k}}$ and $\sigma_{j_{k}}$ are fixed for all $k$ as $\sigma_{i_{k}}$ does
 not separate $\sigma_{i_{k-1}}$ from $\sigma_{i_{k-2}}$
$\Rightarrow \sigma$ is either a parallel alternation or a wedge alternation

- $\sigma_{i}$ belongs to an interval of size 2 of $\sigma \backslash\left\{\sigma_{j}\right\}$ and $\sigma_{j}$ is in a corner thanks to $\pi=\sigma \backslash\left\{\sigma_{i}, \sigma_{j}\right\}$.


Let $i_{0}=i$ and $j_{0}=j$, we recursively build $i_{0}, j_{0}, i_{1}, j_{1}, \ldots$ such that $\forall k, \pi=\sigma \backslash\left\{\sigma_{i_{k}}, \sigma_{j_{k}}\right\}=\sigma \backslash\left\{\sigma_{j_{k}}, \sigma_{i_{k+1}}\right\}$ and $\sigma \backslash \sigma_{i_{k}}$ and $\sigma \backslash \sigma_{j_{k}}$ are not simple.
Positions of $\sigma_{i_{k}}$ and $\sigma_{j_{k}}$ are fixed for all $k$ as $\sigma_{i_{k}}$ does
 not separate $\sigma_{i_{k-1}}$ from $\sigma_{i_{k-2}}$
$\Rightarrow \sigma$ is either a parallel alternation or a wedge alternation thus is exceptional or not simple, contradiction.

## Proof (case 3)

- $\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash \sigma_{j}$ and $\sigma_{j}$ belongs to an interval $J=\left\{j, j_{1}\right\}$ of $\sigma \backslash \sigma_{i}$.


## Proof (case 3)

- $\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash \sigma_{j}$ and $\sigma_{j}$ belongs to an interval $J=\left\{j, j_{1}\right\}$ of $\sigma \backslash \sigma_{i}$.
leads also to a contradiction (almost the same proof)
- $\sigma_{i}$ belongs to an interval $I=\left\{i, i_{1}\right\}$ of $\sigma \backslash \sigma_{j}$ and $\sigma_{j}$ belongs to an interval $J=\left\{j, j_{1}\right\}$ of $\sigma \backslash \sigma_{i}$.
leads also to a contradiction (almost the same proof)

$$
\sigma \text { non exceptional, } \underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}
$$

## Constrained patterns (main theorem)

Theorem : $\sigma \neq \pi$ two simple permutations, $\sigma$ non exceptional. $\pi \preceq \sigma$ and $|\pi| \geq 3 \Rightarrow \exists$ a simple permutation $\tau$ such that $\pi \preceq \tau \preceq \sigma$ and $|\tau|=|\sigma|-1$.

$$
\sigma \text { non exceptional, } \underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}
$$

## Constrained patterns

$\pi, \sigma$ and $\tau$ simple permutations
Proposition : $\underbrace{\pi \preceq \sigma}_{\geq 2} \Rightarrow \underbrace{\pi \preceq \tau}_{2} \preceq \sigma$
Proposition : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$
Theorem : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\pi$

$$
\preceq \sigma
$$

## Constrained patterns

$\pi, \sigma$ and $\tau$ simple permutations
Proposition : $\underbrace{\pi \preceq \sigma}_{\geq 2} \Rightarrow \underbrace{\pi \preceq \tau}_{2} \preceq \sigma$
Proposition : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$
Theorem : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$ $\pi \underbrace{\preceq \tau_{1}}_{2}$ $\preceq \sigma$

## Constrained patterns

$\pi, \sigma$ and $\tau$ simple permutations
Proposition : $\underbrace{\pi \preceq \sigma}_{\geq 2} \Rightarrow \underbrace{\pi \preceq \tau}_{2} \preceq \sigma$
Proposition : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$
Theorem : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\pi \underbrace{\preceq \tau_{1}}_{2} \underbrace{\preceq \tau_{2}}_{2}$
$\preceq \sigma$

## Constrained patterns

$\pi, \sigma$ and $\tau$ simple permutations
Proposition : $\underbrace{\pi \preceq \sigma}_{\geq 2} \Rightarrow \underbrace{\pi \preceq \tau}_{2} \preceq \sigma$
Proposition : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$
Theorem : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\pi \underbrace{\preceq \tau_{1}}_{2} \underbrace{\preceq \tau_{2}}_{2} \cdots \underbrace{\preceq \tau_{k}}_{2} \underbrace{\preceq \sigma}_{1 \text { or } 2}$

## Chains (1)

Theorem : $\pi \neq \sigma$ simple permutations. If $\pi \preceq \sigma$ and $3 \leq|\pi| \Rightarrow \exists$ a chain of simple permutations $\sigma^{(0)}=\sigma, \sigma^{(1)}, \ldots, \sigma^{(k-1)}, \sigma^{(k)}=\pi$ and $m \in\{0 \ldots k\}$ such that $\sigma^{(i)} \preceq \sigma^{(i-1)},\left|\sigma^{(i-1)}\right|-\left|\sigma^{(i)}\right|=1$ if $1 \leq i \leq m,\left|\sigma^{(i-1)}\right|-\left|\sigma^{(i)}\right|=2$ if $m+1 \leq i \leq k$ and if $m<k$ then $\sigma^{(i)}$ is exceptional for $m \leq i \leq k$.


## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains: example



Maximal chain of length 3 from $\sigma=5263714$ to $\pi=3142$.


Maximal chain of length 2 from $\sigma=5263714$ to $\pi=3142$.

## Chains (2)

Theorem : $\sigma \neq \pi$ two simple permutations, $\sigma$ non exceptional and $\ell=|\sigma|-|\pi| . \pi \preceq \sigma$ and $|\pi| \geq 3 \Rightarrow \exists$ a chain of simple permutations $\sigma^{(0)}=\sigma, \sigma^{(1)}, \ldots, \sigma^{(\ell-1)}, \sigma^{(\ell)}=\pi$ such that $\forall i$, $\sigma^{(i)} \preceq \sigma^{(i-1)}$ and $\left|\sigma^{(i-1)}\right|-\left|\sigma^{(i)}\right|=1$.

$$
\sigma \succ \pi \Rightarrow \sigma=\underbrace{\sigma^{(0)} \succ \sigma^{(1)}}_{1} \succ \cdots \succ \underbrace{\sigma^{(\ell-1)} \succ \sigma^{(\ell)}}_{1}=\pi
$$

## Chains (2)

Theorem : $\sigma \neq \pi$ two simple permutations, $\sigma$ non exceptional and $\ell=|\sigma|-|\pi| . \pi \preceq \sigma$ and $|\pi| \geq 3 \Rightarrow \exists$ a chain of simple permutations $\sigma^{(0)}=\sigma, \sigma^{(1)}, \ldots, \sigma^{(\ell-1)}, \sigma^{(\ell)}=\pi$ such that $\forall i$, $\sigma^{(i)} \preceq \sigma^{(i-1)}$ and $\left|\sigma^{(i-1)}\right|-\left|\sigma^{(i)}\right|=1$.

$$
\begin{gathered}
\sigma \succ \pi \Rightarrow \sigma=\underbrace{\sigma^{(0)} \succ \sigma^{(1)}}_{1} \succ \cdots \succ \underbrace{\sigma^{(\ell-1)} \succ \sigma^{(\ell)}}_{1}=\pi \\
\sigma=\underbrace{\sigma^{(0)} \succ \sigma^{(1)}}_{\text {non exceptional }} \succ \cdots \succ \underbrace{\sigma^{(m-1)} \succ}_{1} \underbrace{\sigma_{2}^{(m)} \succ \cdots \succ \underbrace{\sigma^{(k-1)} \succ \sigma^{(k)}}_{2}=\pi}_{\text {exceptional }}
\end{gathered}
$$

## Chains from 27481635 to 2413



## Number of parents

Definition : $\pi$ a simple permutation. We set :
$p_{\pi}=\#\{\sigma \mid \sigma$ is simple, $\pi \preceq \sigma$ and $|\sigma|=|\pi|+1\}$
Proposition : $\pi$ a simple permutation of size $n$. Then $p_{\pi}=(n+1)(n-3)$.

$\pi$

## Number of parents

Definition : $\pi$ a simple permutation. We set :
$p_{\pi}=\#\{\sigma \mid \sigma$ is simple, $\pi \preceq \sigma$ and $|\sigma|=|\pi|+1\}$
Proposition : $\pi$ a simple permutation of size $n$. Then $p_{\pi}=(n+1)(n-3)$.

$\pi$

## Number of parents

Definition : $\pi$ a simple permutation. We set:

$$
p_{\pi}=\#\{\sigma \mid \sigma \text { is simple, } \pi \preceq \sigma \text { and }|\sigma|=|\pi|+1\}
$$

Proposition : $\pi$ a simple permutation of size $n$. Then $p_{\pi}=(n+1)(n-3)$.


$$
(n+1)^{2} \text { ways to add a point }
$$

## Number of parents

Definition : $\pi$ a simple permutation. We set:

$$
p_{\pi}=\#\{\sigma \mid \sigma \text { is simple, } \pi \preceq \sigma \text { and }|\sigma|=|\pi|+1\}
$$

Proposition : $\pi$ a simple permutation of size $n$. Then
$p_{\pi}=(n+1)(n-3)$.

$(n+1)^{2}$ ways to add a point
$4 n$ lead to a permutation with an interval of size 2

## Number of parents

Definition : $\pi$ a simple permutation. We set :

$$
p_{\pi}=\#\{\sigma \mid \sigma \text { is simple, } \pi \preceq \sigma \text { and }|\sigma|=|\pi|+1\}
$$

Proposition : $\pi$ a simple permutation of size $n$. Then $p_{\pi}=(n+1)(n-3)$.

$(n+1)^{2}$ ways to add a point
$4 n$ lead to a permutation with an interval of size 2
4 lead to a permutation with an interval of size $n$

## Number of parents

Definition : $\pi$ a simple permutation. We set :
$p_{\pi}=\#\{\sigma \mid \sigma$ is simple, $\pi \preceq \sigma$ and $|\sigma|=|\pi|+1\}$
Proposition : $\pi$ a simple permutation of size $n$. Then $p_{\pi}=(n+1)(n-3)$.

$(n+1)^{2}$ ways to add a point
$4 n$ lead to a permutation with an interval of size 2
4 lead to a permutation with an interval of size $n$

Recall : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

## Number of parents

Definition : $\pi$ a simple permutation. We set:
$p_{\pi}=\#\{\sigma \mid \sigma$ is simple, $\pi \preceq \sigma$ and $|\sigma|=|\pi|+1\}$
Proposition : $\pi$ a simple permutation of size $n$. Then $p_{\pi}=(n+1)(n-3)$.

$(n+1)^{2}$ ways to add a point
$4 n$ lead to a permutation with an interval of size 2 4 lead to a permutation with an interval of size $n$

$$
\Rightarrow p_{\pi}=(n+1)^{2}-4(n+1)=(n+1)(n-3)
$$

Recall : $\tau$ a non simple permutation such that $\tau \backslash\left\{\tau_{i}\right\}$ is simple. Then $\tau_{i}$ belongs to an interval of size 2 of $\tau$ or is in a corner of the graphical representation of $\tau$.

## Number of children

Proposition: Let $c_{n}$ be the average number of children for simple permutations of size $n$. Then $c_{n}=n-4-\frac{4}{n}+O\left(\frac{1}{n^{2}}\right)$.

Proof: Let $s_{n}$ be the number of simple permutations of size $n$ and $e_{n}$ be the number of edges between simple permutations of size $n$ and $n-1$. Then $c_{n}=\frac{e_{n}}{s_{n}}=p_{n-1} \frac{s_{n-1}}{s_{n}}=n(n-4) \frac{s_{n-1}}{s_{n}}$ and we know that $s_{n}=\frac{n!}{e^{2}}\left(1-\frac{4}{n}+\frac{2}{n(n-1)}+O\left(n^{-3}\right)\right)$.

## Numerical results



Number of non-removable points

## Application : algorithm

Algorithm : Let $B=\left\{\pi_{1} \ldots \pi_{m}\right\}$ and $C=\operatorname{Av}(B)$ a wreath-closed class (i.e. $\pi_{i}$ is simple $\forall i$ ). Then we can recursively compute the set $S i_{n}$ of simple permutations of size $n$ in $C$ from $S i_{n-1}$ and $S i_{n-2}$ as follow :

## Application : algorithm

Algorithm: Let $B=\left\{\pi_{1} \ldots \pi_{m}\right\}$ and $C=A v(B)$ a wreath-closed class (i.e. $\pi_{i}$ is simple $\forall i$ ). Then we can recursively compute the set $S i_{n}$ of simple permutations of size $n$ in $C$ from $S i_{n-1}$ and $S i_{n-2}$ as follow:

- $\forall \tau \in S i_{n-1}, \forall \sigma$ simple permutation obtained from $\tau$ by adding a point, if $\sigma \notin B$ and each simple pattern of $\sigma$ of size $n-1$ is in $S i_{n-1}$, we add $\sigma$ to $S i_{n}$.


## Application : algorithm

Algorithm : Let $B=\left\{\pi_{1} \ldots \pi_{m}\right\}$ and $C=\operatorname{Av}(B)$ a wreath-closed class (i.e. $\pi_{i}$ is simple $\forall i$ ). Then we can recursively compute the set $S i_{n}$ of simple permutations of size $n$ in $C$ from $S i_{n-1}$ and $S i_{n-2}$ as follow:

- $\forall \tau \in S i_{n-1}, \forall \sigma$ simple permutation obtained from $\tau$ by adding a point, if $\sigma \notin B$ and each simple pattern of $\sigma$ of size $n-1$ is in $S i_{n-1}$, we add $\sigma$ to $S i_{n}$.
- If $n$ is even, for $i$ from 1 to 4 , let $\sigma$ be the exceptional permutation of type $i$ of size $n$. If $\sigma \notin B$ and the exceptional permutation of type $i$ of size $n-2$ is in $S i_{n-2}$, we add $\sigma$ to $S i_{n}$.


## Algorithm : proof

Recall : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\sigma$ exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{2}, \tau$ exceptional of same type.

## Algorithm : proof

Recall : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\sigma$ exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{2}, \tau$ exceptional of same type.
Proof : Let $\sigma$ be a non exceptional simple permutation of size $n$.

## Algorithm : proof

Recall : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\sigma$ exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{2}, \tau$ exceptional of same type.
Proof : Let $\sigma$ be a non exceptional simple permutation of size $n$.
Suppose $\sigma \in C$. Then $\exists \tau \prec \sigma, \tau$ simple of size $n-1$
$\Rightarrow \tau \in S i_{n-1} \Rightarrow \sigma$ is considered, and each pattern of $\sigma \in C$ so $\sigma$ is added to $S i_{n}$.

## Algorithm : proof

Recall : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\sigma$ exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{2}, \tau$ exceptional of same type.
Proof : Let $\sigma$ be a non exceptional simple permutation of size $n$.
Suppose $\sigma \in C$. Then $\exists \tau \prec \sigma, \tau$ simple of size $n-1$
$\Rightarrow \tau \in S i_{n-1} \Rightarrow \sigma$ is considered, and each pattern of $\sigma \in C$ so $\sigma$ is added to $S i_{n}$.
Reciprocally, if $\sigma \notin C$, then $\exists i, \pi_{i} \preceq \sigma$ and $\exists \tau$ simple of size $n-1$, $\pi_{i} \preceq \tau \preceq \sigma$ so $\tau \notin S i_{n-1}$ and we don't add $\sigma$ to $S i_{n}$.

## Algorithm : proof

Recall : $\sigma$ non exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$
$\sigma$ exceptional, $\underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{2}, \tau$ exceptional of same type.
Proof : Let $\sigma$ be a non exceptional simple permutation of size $n$.
Suppose $\sigma \in C$. Then $\exists \tau \prec \sigma, \tau$ simple of size $n-1$
$\Rightarrow \tau \in S i_{n-1} \Rightarrow \sigma$ is considered, and each pattern of $\sigma \in C$ so $\sigma$ is added to $S i_{n}$.
Reciprocally, if $\sigma \notin C$, then $\exists i, \pi_{i} \preceq \sigma$ and $\exists \tau$ simple of size $n-1$, $\pi_{i} \preceq \tau \preceq \sigma$ so $\tau \notin S i_{n-1}$ and we don't add $\sigma$ to $S i_{n}$.
Almost the same reasoning if $\sigma$ is exceptional.

## Conclusion

- Our goal was to find an algorithm to compute effectively the set of simple permutations in a class. We have it for wreath-closed classes. In other classes ?
- Simple permutation poset $\Rightarrow$ many results interesting in themselves.

Thank you for your attention

