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Patterns in permutations

Pattern relation 4:
π ∈ Sk is a pattern of σ ∈ Sn if
∃ 1 ≤ i1 < . . . < ik ≤ n such that
σi1 . . . σik is order-isomorphic to π.
We write π 4 σ.

Example: 1 3 2 4 4 3 1 2 8 5 4 7 9 6
since 2 5 4 9 ≡ 1 3 2 4.
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Simple permutations

Interval = window of elements of σ whose values form a range
Example: 5 7 4 6 is an interval of 2 5 7 4 6 1 3

Simple permutation = has no interval except 1, 2, . . . , n and σ
Equivalently: In the graphical representation, every non trivial
bounding box has at least a point on his side.

Example: 6 3 5 4 1 7 2 is not simple, whereas 3 1 7 4 6 2 5 is simple.
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Simple permutations and patterns

Fact = The set of simple permutations is not closed for 4

not simple simple simple not simple

Example: 3 1 6 4 5 2 (not simple) � 3 1 7 4 6 2 5 (simple)
3 1 4 6 2 5 (simple) � 3 1 4 5 7 2 6 (not simple)
3 1 4 6 2 5 (simple) � 3 1 7 4 6 2 5 (simple).
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Exceptional permutations

Definition: Exceptional permutations are simple permutations
defined below for every m ≥ 2:

2 4 6 8 . . . (2m) 1 3 5 . . . (2m − 1)

(2m − 1) (2m − 3) . . . 1 (2m) (2m − 2) . . . 2

(m + 1) 1 (m + 2) 2 . . . (2m) m

m (2m) (m − 1) (2m − 1) . . . 1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4
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Why exceptional ?

Proposition: σ a non exceptional simple permutation, 4 ≤ m ≤ |σ|
⇒ ∃ a simple permutation π of size m such that π � σ.

Proposition: σ an exceptional permutation ⇒ ∀ m such that
4 ≤ m ≤ |σ| :

m odd ⇒ σ has no simple pattern of size m.

m even ⇒ σ has exactly one simple pattern of size m : the
exceptional permutation of the same type as σ.
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Constrained patterns (1)

π � σ ?−→ π � τ � σ

Proposition : π, σ two simple permutations, 3 ≤ |π| ≤ |σ| − 2 ⇒ ∃
a simple permutation τ such that π ≤ τ ≤ σ and |τ | = |π|+ 2.

π � σ︸ ︷︷ ︸
≥2

⇒ π � τ︸ ︷︷ ︸
2

� σ
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Constrained patterns (2)

Proposition : σ a non exceptional simple permutation, |σ| = n ≥ 4
and π a simple permutation, |π| = n − 2, π � σ ⇒ ∃ a simple
permutation τ of size n − 1 such that π � τ � σ.

σ non exceptional, π � σ︸ ︷︷ ︸
2

⇒ π � τ︸ ︷︷ ︸
1

� σ︸︷︷︸
1
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Proof (Lemma)

Lemma : τ a non simple permutation such that τ \ {τi} is simple.
Then τi belongs to an interval of size 2 of τ or is in a corner of the
graphical representation of τ .

τ not simple ⇒ contains a non-trivial interval I
τ \ {τi} simple ⇒ I \ {τi} is a trivial interval of τ

2 cases :

|I | = 2 and τi belongs to I

τi is the only point of τ outside I .

Adeline Pierrot Simple permutations poset



Proof (Lemma)

Lemma : τ a non simple permutation such that τ \ {τi} is simple.
Then τi belongs to an interval of size 2 of τ or is in a corner of the
graphical representation of τ .

τ

I

τ not simple ⇒ contains a non-trivial interval I

τ \ {τi} simple ⇒ I \ {τi} is a trivial interval of τ

2 cases :

|I | = 2 and τi belongs to I

τi is the only point of τ outside I .

Adeline Pierrot Simple permutations poset



Proof (Lemma)

Lemma : τ a non simple permutation such that τ \ {τi} is simple.
Then τi belongs to an interval of size 2 of τ or is in a corner of the
graphical representation of τ .

τ

I

τ not simple ⇒ contains a non-trivial interval I
τ \ {τi} simple ⇒ I \ {τi} is a trivial interval of τ

2 cases :

|I | = 2 and τi belongs to I

τi is the only point of τ outside I .

Adeline Pierrot Simple permutations poset



Proof (Lemma)

Lemma : τ a non simple permutation such that τ \ {τi} is simple.
Then τi belongs to an interval of size 2 of τ or is in a corner of the
graphical representation of τ .

τ

I

τ not simple ⇒ contains a non-trivial interval I
τ \ {τi} simple ⇒ I \ {τi} is a trivial interval of τ

2 cases :

|I | = 2 and τi belongs to I

τi is the only point of τ outside I .

Adeline Pierrot Simple permutations poset



Proof (Lemma)

Lemma : τ a non simple permutation such that τ \ {τi} is simple.
Then τi belongs to an interval of size 2 of τ or is in a corner of the
graphical representation of τ .

τ

τi

τ not simple ⇒ contains a non-trivial interval I
τ \ {τi} simple ⇒ I \ {τi} is a trivial interval of τ

2 cases :

|I | = 2 and τi belongs to I

τi is the only point of τ outside I .

Adeline Pierrot Simple permutations poset



Proof (Lemma)

Lemma : τ a non simple permutation such that τ \ {τi} is simple.
Then τi belongs to an interval of size 2 of τ or is in a corner of the
graphical representation of τ .

τ

I

τi

τ not simple ⇒ contains a non-trivial interval I
τ \ {τi} simple ⇒ I \ {τi} is a trivial interval of τ

2 cases :

|I | = 2 and τi belongs to I

τi is the only point of τ outside I .

Adeline Pierrot Simple permutations poset



Proof (1)

Proposition : σ non exceptional, π � σ︸ ︷︷ ︸
2

⇒ π � τ︸ ︷︷ ︸
1

� σ︸︷︷︸
1

Suppose that such a permutation τ does not exists.
Let i , j such that π = σ \ {σi , σj}.
Then σ \ {σi} is not simple but π is simple so σj

belongs to an interval of size 2 of σ \ {σi} or is in a

corner of the graphical representation of σ \ {σi} σj

σi

π

σ

There are 3 different cases:

σi and σj are both in a corner thanks to π. In that case π is a non
trivial interval of σ, which contradicts the fact that σ is simple.

σi belongs to an interval I of size 2 of σ \ {σj} and σj is in a corner
thanks to π (or exchange i and j).

σi belongs to an interval I of size 2 of σ \ σj and σj belongs to an
interval J of size 2 of σ \ σi .
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Proof (case 2)

σi belongs to an interval of size 2 of σ \ {σj} and σj is in a
corner thanks to π = σ \ {σi , σj}.

σj

σi
π π = σ \ {σi1 , σj} is simple but σ \ {σi1} is not simple

⇒ σj belongs to an interval J of size 2 of σ \ {σi1} or is
in a corner of σ \ {σi1}, which is impossible.

Let j1 such that J = {j , j1}, then π = σ \ {σi1 , σj1} is
simple but σ \ {σj1} is not simple.
⇒ σi1 belongs to an interval I1 of size 2 of σ \ {σj1} or
is in a corner of σ \ {σj1}, which is impossible.
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π
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Proof (case 2.)

σi belongs to an interval of size 2 of σ \ {σj} and σj is in a
corner thanks to π = σ \ {σi , σj}.

σj

σi
π

σi1

σj1

σi2

σj

σi πσi1

σj1

σi2

Let i0 = i and j0 = j , we recursively build i0, j0, i1, j1, . . .
such that ∀k , π = σ \ {σik , σjk} = σ \ {σjk , σik+1

} and
σ \ σik and σ \ σjk are not simple.

Positions of σik and σjk are fixed for all k as σik does
not separate σik−1

from σik−2

⇒ σ is either a parallel alternation or a wedge
alternation thus is exceptional or not simple,
contradiction.
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Proof (case 3)

σi belongs to an interval I = {i , i1} of σ \ σj and σj belongs
to an interval J = {j , j1} of σ \ σi .

leads also to a contradiction (almost the same proof)

σ non exceptional, π � σ︸ ︷︷ ︸
2

⇒ π � τ︸ ︷︷ ︸
1

� σ︸︷︷︸
1
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Constrained patterns (main theorem)

Theorem : σ 6= π two simple permutations, σ non exceptional.
π � σ and |π| ≥ 3 ⇒ ∃ a simple permutation τ such that
π � τ � σ and |τ | = |σ| − 1.

σ non exceptional, π � σ︸ ︷︷ ︸
≥1

⇒ π � τ � σ︸ ︷︷ ︸
1
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Constrained patterns

π, σ and τ simple permutations

Proposition : π � σ︸ ︷︷ ︸
≥2

⇒ π � τ︸ ︷︷ ︸
2

� σ

Proposition : σ non exceptional, π � σ︸ ︷︷ ︸
2

⇒ π � τ︸ ︷︷ ︸
1

� σ︸︷︷︸
1

Theorem : σ non exceptional, π � σ︸ ︷︷ ︸
≥1

⇒ π � τ � σ︸ ︷︷ ︸
1

π

� τ1︸︷︷︸
2

� τ2︸︷︷︸
2

. . .� τk︸︷︷︸
2

� σ
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Chains (1)

Theorem : π 6= σ simple permutations. If π � σ and 3 ≤ |π| ⇒ ∃
a chain of simple permutations σ(0) = σ, σ(1), . . . , σ(k−1), σ(k) = π
and m ∈ {0 . . . k} such that σ(i) � σ(i−1), |σ(i−1)| − |σ(i)| = 1 if
1 ≤ i ≤ m, |σ(i−1)| − |σ(i)| = 2 if m + 1 ≤ i ≤ k and if m < k
then σ(i) is exceptional for m ≤ i ≤ k .

σ � π ⇒

σ = σ(0) � σ(1)︸ ︷︷ ︸
1

� · · · � σ(m−1) �︸ ︷︷ ︸
1︸ ︷︷ ︸

non exceptional

σ(m) �︸ ︷︷ ︸
2

· · · � σ(k−1) � σ(k)︸ ︷︷ ︸
2

= π︸ ︷︷ ︸
exceptional
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Chains : example

Maximal chain of length 3 from σ = 5263714 to π = 3142.

Maximal chain of length 2 from σ = 5263714 to π = 3142.
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Chains (2)

Theorem : σ 6= π two simple permutations, σ non exceptional and
` = |σ| − |π|. π � σ and |π| ≥ 3 ⇒ ∃ a chain of simple
permutations σ(0) = σ, σ(1), . . . , σ(`−1), σ(`) = π such that ∀i ,
σ(i) � σ(i−1) and |σ(i−1)| − |σ(i)| = 1.

σ � π ⇒ σ = σ(0) � σ(1)︸ ︷︷ ︸
1

� · · · � σ(`−1) � σ(`)︸ ︷︷ ︸
1

= π

σ = σ(0) � σ(1)︸ ︷︷ ︸
1

� · · · � σ(m−1) �︸ ︷︷ ︸
1︸ ︷︷ ︸

non exceptional

σ(m) �︸ ︷︷ ︸
2

· · · � σ(k−1) � σ(k)︸ ︷︷ ︸
2

= π︸ ︷︷ ︸
exceptional
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Chains from 27481635 to 2413

27481635

2471635 2647135 2647153 2741635 6371524

241635 246135 246153 253614 264135 264153 361524 526413 536142

24153 25314 31524 35142 42513

2413
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Number of parents

Definition : π a simple permutation. We set :
pπ = # {σ | σ is simple, π � σ and |σ| = |π|+ 1}

Proposition : π a simple permutation of size n. Then
pπ = (n + 1)(n − 3).

π

(n + 1)2 ways to add a point
4n lead to a permutation with an interval of size 2
4 lead to a permutation with an interval of size n
⇒ pπ = (n + 1)2 − 4(n + 1) = (n + 1)(n − 3)

Recall : τ a non simple permutation such that τ \ {τi} is simple.
Then τi belongs to an interval of size 2 of τ or is in a corner of the
graphical representation of τ .
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Number of children

Proposition : Let cn be the average number of children for simple
permutations of size n. Then cn = n − 4− 4

n + O( 1
n2 ).

Proof : Let sn be the number of simple permutations of size n and
en be the number of edges between simple permutations of size n
and n − 1. Then cn = en

sn
= pn−1

sn−1

sn
= n(n − 4) sn−1

sn
and we know

that sn = n!
e2

(
1− 4

n + 2
n(n−1) + O(n−3)

)
.
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Numerical results
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Application : algorithm

Algorithm : Let B = {π1 . . . πm} and C = Av(B) a wreath-closed
class (i.e. πi is simple ∀i). Then we can recursively compute the
set Sin of simple permutations of size n in C from Sin−1 and Sin−2

as follow :

∀τ ∈ Sin−1, ∀σ simple permutation obtained from τ by adding
a point, if σ /∈ B and each simple pattern of σ of size n − 1 is
in Sin−1, we add σ to Sin.

If n is even, for i from 1 to 4, let σ be the exceptional
permutation of type i of size n. If σ /∈ B and the exceptional
permutation of type i of size n − 2 is in Sin−2, we add σ to
Sin.
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Algorithm : proof

Recall : σ non exceptional, π � σ︸ ︷︷ ︸
≥1

⇒ π � τ � σ︸ ︷︷ ︸
1

σ exceptional, π � σ︸ ︷︷ ︸
≥1

⇒ π � τ � σ︸ ︷︷ ︸
2

, τ exceptional of same type.

Proof : Let σ be a non exceptional simple permutation of size n.
Suppose σ ∈ C . Then ∃τ ≺ σ, τ simple of size n − 1
⇒ τ ∈ Sin−1 ⇒ σ is considered, and each pattern of σ ∈ C so σ is
added to Sin.
Reciprocally, if σ /∈ C , then ∃i , πi � σ and ∃τ simple of size n− 1,
πi � τ � σ so τ /∈ Sin−1 and we don’t add σ to Sin.
Almost the same reasoning if σ is exceptional.
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Conclusion

Our goal was to find an algorithm to compute effectively the
set of simple permutations in a class. We have it for
wreath-closed classes. In other classes ?

Simple permutation poset ⇒ many results interesting in
themselves.
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Thank you for your attention
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