Simple permutations poset

Adeline Pierrot Dominique Rossin

August 10, 2010

Patterns in permutations

Pattern relation \preccurlyeq : $\pi \in S_k$ is a pattern of $\sigma \in S_n$ if

 $\exists \ 1 \leq i_1 < \ldots < i_k \leq n \text{ such that} \\ \sigma_{i_1} \ldots \sigma_{i_k} \text{ is order-isomorphic to } \pi. \\ \text{We write } \pi \preccurlyeq \sigma. \end{cases}$

Example: $1324 \preccurlyeq 312854796$ since $2549 \equiv 1324$.

Patterns in permutations

Pattern relation \preccurlyeq :

 $\pi \in S_k \text{ is a pattern of } \sigma \in S_n \text{ if } \\ \exists \ 1 \leq i_1 < \ldots < i_k \leq n \text{ such that } \\ \sigma_{i_1} \ldots \sigma_{i_k} \text{ is order-isomorphic to } \pi. \\ \text{We write } \pi \preccurlyeq \sigma. \end{cases}$

Example: $1324 \preccurlyeq 312854796$ since $2549 \equiv 1324$.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Simple permutation = has no interval except 1, 2, ..., n and σ <u>Equivalently</u>: In the graphical representation, every non trivial bounding box has at least a point on his side.

Example: 316452 (not simple) ≤ 3174625 (simple)

Example: 316452 (not simple) ≤ 3174625 (simple)

Example: 316452 (not simple) ≤ 3174625 (simple)

Example: 316452 (not simple) ≤ 3174625 (simple) 314625 (simple) ≤ 3145726 (not simple)

Example: 316452 (not simple) ≤ 3174625 (simple) 314625 (simple) ≤ 3145726 (not simple)

Example: 316452 (not simple) ≤ 3174625 (simple) 314625 (simple) ≤ 3145726 (not simple)

Example: 316452 (not simple) ≤ 3174625 (simple) 314625 (simple) ≤ 3145726 (not simple) 314625 (simple) ≤ 3174625 (simple).

2 4 6 8...(2m) 1 3 5...(2m − 1)
(2m − 1) (2m − 3)...1 (2m) (2m − 2)...2
(m + 1) 1 (m + 2) 2...(2m) m
m (2m) (m − 1) (2m − 1)...1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4

2 4 6 8...(2m) 1 3 5...(2m − 1)
(2m − 1) (2m − 3)...1 (2m) (2m − 2)...2
(m + 1) 1 (m + 2) 2...(2m) m
m (2m) (m − 1) (2m − 1)...1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4

2 4 6 8...(2m) 1 3 5...(2m − 1)
(2m − 1) (2m − 3)...1 (2m) (2m − 2)...2
(m + 1) 1 (m + 2) 2...(2m) m
m (2m) (m − 1) (2m − 1)...1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4

2 4 6 8...(2m) 1 3 5...(2m − 1)
(2m − 1) (2m − 3)...1 (2m) (2m − 2)...2
(m + 1) 1 (m + 2) 2...(2m) m
m (2m) (m − 1) (2m − 1)...1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4

2 4 6 8...(2m) 1 3 5...(2m − 1)
(2m − 1) (2m − 3)...1 (2m) (2m − 2)...2
(m + 1) 1 (m + 2) 2...(2m) m
m (2m) (m − 1) (2m − 1)...1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4

.

.

.

2 4 6 8...(2m) 1 3 5...(2m − 1)
(2m − 1) (2m − 3)...1 (2m) (2m − 2)...2
(m + 1) 1 (m + 2) 2...(2m) m
m (2m) (m − 1) (2m − 1)...1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4

2 4 6 8...(2m) 1 3 5...(2m − 1)
(2m − 1) (2m − 3)...1 (2m) (2m − 2)...2
(m + 1) 1 (m + 2) 2...(2m) m
m (2m) (m − 1) (2m − 1)...1 (m + 1)

Exceptional permutation of type 1, 2, 3 and 4

Proposition: σ a non exceptional simple permutation, $4 \le m \le |\sigma| \Rightarrow \exists$ a simple permutation π of size m such that $\pi \preceq \sigma$.

Proposition: σ an exceptional permutation $\Rightarrow \forall m$ such that $4 \le m \le |\sigma|$:

- $m \text{ odd} \Rightarrow \sigma$ has no simple pattern of size m.
- *m* even ⇒ σ has exactly one simple pattern of size *m* : the exceptional permutation of the same type as σ.

Constrained patterns (1)

$$\pi \preceq \sigma \xrightarrow{?} \pi \preceq \tau \preceq \sigma$$

▶ ∢ ≣

æ

Constrained patterns (1)

$$\pi \preceq \sigma \xrightarrow{?} \pi \preceq \tau \preceq \sigma$$

Proposition : π, σ two simple permutations, $3 \le |\pi| \le |\sigma| - 2 \Rightarrow \exists$ a simple permutation τ such that $\pi \le \tau \le \sigma$ and $|\tau| = |\pi| + 2$.

$$\underbrace{\pi \preceq \sigma}_{>2} \Rightarrow \underbrace{\pi \preceq \tau}_{2} \preceq \sigma$$

Proposition : σ a non exceptional simple permutation, $|\sigma| = n \ge 4$ and π a simple permutation, $|\pi| = n - 2$, $\pi \preceq \sigma \Rightarrow \exists$ a simple permutation τ of size n - 1 such that $\pi \preceq \tau \preceq \sigma$.

$$\sigma$$
 non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$

Lemma : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ . Lemma : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ .

 τ not simple \Rightarrow contains a non-trivial interval I

Lemma : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ .

 τ not simple \Rightarrow contains a non-trivial interval I $\tau \setminus \{\tau_i\}$ simple $\Rightarrow I \setminus \{\tau_i\}$ is a trivial interval of τ
Lemma : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ .

 τ not simple \Rightarrow contains a non-trivial interval I $\tau \setminus \{\tau_i\}$ simple $\Rightarrow I \setminus \{\tau_i\}$ is a trivial interval of τ

2 cases :

Lemma : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ .

au not simple \Rightarrow contains a non-trivial interval I $\tau \setminus \{\tau_i\}$ simple $\Rightarrow I \setminus \{\tau_i\}$ is a trivial interval of τ 2 cases : • |I| = 2 and τ_i belongs to I Lemma : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ .

 τ not simple \Rightarrow contains a non-trivial interval I $\tau \setminus \{\tau_i\}$ simple $\Rightarrow I \setminus \{\tau_i\}$ is a trivial interval of τ

2 cases :

- |I| = 2 and τ_i belongs to I
- τ_i is the only point of τ outside *I*.

Proposition : σ non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$

æ

Proof (1)

Proposition : σ non exceptional, $\underline{\pi} \leq \sigma \Rightarrow \underline{\pi} \leq \tau \leq \sigma$ Suppose that such a permutation τ does not exists. Let i, j such that $\pi = \sigma \setminus \{\sigma_i, \sigma_j\}$. Then $\sigma \setminus \{\sigma_i\}$ is not simple but π is simple so σ_j belongs to an interval of size 2 of $\sigma \setminus \{\sigma_i\}$ or is in a corner of the graphical representation of $\sigma \setminus \{\sigma_i\}$

Proof (1)

Proposition : σ non exceptional, $\underline{\pi \leq \sigma}_{2} \Rightarrow \underline{\pi \leq \tau \leq \sigma}_{1}$ Suppose that such a permutation τ does not exists. Let i, j such that $\pi = \sigma \setminus \{\sigma_i, \sigma_j\}$. Then $\sigma \setminus \{\sigma_i\}$ is not simple but π is simple so σ_j belongs to an interval of size 2 of $\sigma \setminus \{\sigma_i\}$ or is in a corner of the graphical representation of $\sigma \setminus \{\sigma_i\}$

There are 3 different cases:

- σ_i and σ_j are both in a corner thanks to π . In that case π is a non trivial interval of σ , which contradicts the fact that σ is simple.
- σ_i belongs to an interval *I* of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π (or exchange *i* and *j*).
- σ_i belongs to an interval *I* of size 2 of σ \ σ_j and σ_j belongs to an interval *J* of size 2 of σ \ σ_i.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

同 ト イ ヨ ト イ ヨ ト

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

 σ is simple $\Rightarrow \sigma_j$ is not in a corner of σ , but is in a corner of $\sigma \setminus \{\sigma_i\} \Rightarrow \sigma_i$ is the only point separating σ_j from a corner.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

 σ_i belongs to an interval $I = \{i, i_1\}$ of $\sigma \setminus \{\sigma_j\}$.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

 $\begin{array}{c|c} \sigma_{i_1} \\ \pi \end{array} & \sigma_i \text{ belongs to an interval } I = \{i, i_1\} \text{ of } \sigma \setminus \{\sigma_j\}. \\ \pi = \sigma \setminus \{\sigma_{i_1}, \sigma_j\} \text{ is simple but } \sigma \setminus \{\sigma_{i_1}\} \text{ is not simple} \end{array}$

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

 σ_i belongs to an interval $I = \{i, i_1\}$ of $\sigma \setminus \{\sigma_j\}$. $\pi = \sigma \setminus \{\sigma_{i_1}, \sigma_j\}$ is simple but $\sigma \setminus \{\sigma_{i_1}\}$ is not simple $\Rightarrow \sigma_j$ belongs to an interval J of size 2 of $\sigma \setminus \{\sigma_{i_1}\}$ or is in a corner of $\sigma \setminus \{\sigma_{i_1}\}$, which is impossible.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

 σ_i belongs to an interval $I = \{i, i_1\}$ of $\sigma \setminus \{\sigma_j\}$. $\pi = \sigma \setminus \{\sigma_{i_1}, \sigma_j\}$ is simple but $\sigma \setminus \{\sigma_{i_1}\}$ is not simple $\Rightarrow \sigma_j$ belongs to an interval J of size 2 of $\sigma \setminus \{\sigma_{i_1}\}$ or is in a corner of $\sigma \setminus \{\sigma_{i_1}\}$, which is impossible.

Let j_1 such that $J = \{j, j_1\}$, then $\pi = \sigma \setminus \{\sigma_{i_1}, \sigma_{j_1}\}$ is simple but $\sigma \setminus \{\sigma_{j_1}\}$ is not simple.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

 σ_i belongs to an interval $I = \{i, i_1\}$ of $\sigma \setminus \{\sigma_j\}$.

 $\begin{aligned} \pi &= \sigma \setminus \{\sigma_{i_1}, \sigma_j\} \text{ is simple but } \sigma \setminus \{\sigma_{i_1}\} \text{ is not simple} \\ \Rightarrow \sigma_j \text{ belongs to an interval } J \text{ of size 2 of } \sigma \setminus \{\sigma_{i_1}\} \text{ or is} \\ \text{ in a corner of } \sigma \setminus \{\sigma_{i_1}\}, \text{ which is impossible.} \end{aligned}$

Let j_1 such that $J = \{j, j_1\}$, then $\pi = \sigma \setminus \{\sigma_{i_1}, \sigma_{j_1}\}$ is simple but $\sigma \setminus \{\sigma_{j_1}\}$ is not simple. $\Rightarrow \sigma_{i_1}$ belongs to an interval I_1 of size 2 of $\sigma \setminus \{\sigma_{j_1}\}$ or is in a corner of $\sigma \setminus \{\sigma_{j_1}\}$, which is impossible.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

 σ_i belongs to an interval $I = \{i, i_1\}$ of $\sigma \setminus \{\sigma_j\}$. $\pi = \sigma \setminus \{\sigma_{i_1}, \sigma_j\}$ is simple but $\sigma \setminus \{\sigma_{i_1}\}$ is not simple $\Rightarrow \sigma_j$ belongs to an interval J of size 2 of $\sigma \setminus \{\sigma_{i_1}\}$ or is in a corner of $\sigma \setminus \{\sigma_{i_1}\}$, which is impossible.

Let j_1 such that $J = \{j, j_1\}$, then $\pi = \sigma \setminus \{\sigma_{i_1}, \sigma_{j_1}\}$ is simple but $\sigma \setminus \{\sigma_{j_1}\}$ is not simple. $\Rightarrow \sigma_{i_1}$ belongs to an interval I_1 of size 2 of $\sigma \setminus \{\sigma_{j_1}\}$ or is in a corner of $\sigma \setminus \{\sigma_{j_1}\}$, which is impossible.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

Let $i_0 = i$ and $j_0 = j$, we recursively build $i_0, j_0, i_1, j_1, \ldots$ such that $\forall k, \pi = \sigma \setminus \{\sigma_{i_k}, \sigma_{j_k}\} = \sigma \setminus \{\sigma_{j_k}, \sigma_{i_{k+1}}\}$ and $\sigma \setminus \sigma_{i_k}$ and $\sigma \setminus \sigma_{j_k}$ are not simple.

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

Let $i_0 = i$ and $j_0 = j$, we recursively build $i_0, j_0, i_1, j_1, \ldots$ such that $\forall k, \pi = \sigma \setminus \{\sigma_{i_k}, \sigma_{j_k}\} = \sigma \setminus \{\sigma_{j_k}, \sigma_{i_{k+1}}\}$ and $\sigma \setminus \sigma_{i_k}$ and $\sigma \setminus \sigma_{j_k}$ are not simple.

Positions of σ_{i_k} and σ_{j_k} are fixed for all k as σ_{i_k} does not separate $\sigma_{i_{k-1}}$ from $\sigma_{i_{k-2}}$

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

Let $i_0 = i$ and $j_0 = j$, we recursively build $i_0, j_0, i_1, j_1, \ldots$ such that $\forall k, \pi = \sigma \setminus \{\sigma_{i_k}, \sigma_{j_k}\} = \sigma \setminus \{\sigma_{j_k}, \sigma_{i_{k+1}}\}$ and $\sigma \setminus \sigma_{i_k}$ and $\sigma \setminus \sigma_{j_k}$ are not simple.

- Positions of σ_{i_k} and σ_{j_k} are fixed for all k as σ_{i_k} does not separate $\sigma_{i_{k-1}}$ from $\sigma_{i_{k-2}}$
- $\Rightarrow \sigma$ is either a parallel alternation or a wedge alternation

σ_i belongs to an interval of size 2 of σ \ {σ_j} and σ_j is in a corner thanks to π = σ \ {σ_i, σ_j}.

Let $i_0 = i$ and $j_0 = j$, we recursively build $i_0, j_0, i_1, j_1, \ldots$ such that $\forall k, \pi = \sigma \setminus \{\sigma_{i_k}, \sigma_{j_k}\} = \sigma \setminus \{\sigma_{j_k}, \sigma_{i_{k+1}}\}$ and $\sigma \setminus \sigma_{i_k}$ and $\sigma \setminus \sigma_{j_k}$ are not simple.

- Positions of σ_{i_k} and σ_{j_k} are fixed for all k as σ_{i_k} does not separate $\sigma_{i_{k-1}}$ from $\sigma_{i_{k-2}}$
- $\Rightarrow \sigma$ is either a parallel alternation or a wedge alternation thus is exceptional or not simple, contradiction.

σ_i belongs to an interval I = {i, i₁} of σ \ σ_j and σ_j belongs to an interval J = {j, j₁} of σ \ σ_i.

同 ト イ ヨ ト イ ヨ ト

• σ_i belongs to an interval $I = \{i, i_1\}$ of $\sigma \setminus \sigma_j$ and σ_j belongs to an interval $J = \{j, j_1\}$ of $\sigma \setminus \sigma_i$.

leads also to a contradiction (almost the same proof)

σ_i belongs to an interval I = {i, i₁} of σ \ σ_j and σ_j belongs to an interval J = {j, j₁} of σ \ σ_i.

leads also to a contradiction (almost the same proof)

$$\sigma$$
 non exceptional, $\underbrace{\pi \preceq \sigma}_{2} \Rightarrow \underbrace{\pi \preceq \tau}_{1} \underbrace{\preceq \sigma}_{1}$

Theorem : $\sigma \neq \pi$ two simple permutations, σ non exceptional. $\pi \preceq \sigma$ and $|\pi| \ge 3 \Rightarrow \exists$ a simple permutation τ such that $\pi \preceq \tau \preceq \sigma$ and $|\tau| = |\sigma| - 1$.

$$\sigma \text{ non exceptional, } \underbrace{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underbrace{\tau \preceq \sigma}_{1}$$

 $\pi\text{, }\sigma$ and τ simple permutations

Proposition :
$$\underline{\pi \preceq \sigma}_{\geq 2} \Rightarrow \underline{\pi \preceq \tau}_{2} \preceq \sigma$$

Proposition : σ non exceptional, $\underline{\pi \preceq \sigma}_{2} \Rightarrow \underline{\pi \preceq \tau}_{1} \underline{\preceq \sigma}_{1}$
Theorem : σ non exceptional, $\underline{\pi \preceq \sigma}_{\geq 1} \Rightarrow \pi \preceq \underline{\tau \preceq \sigma}_{1}$
 $\pi \qquad \leq \sigma$

 $\pi\text{, }\sigma\text{ and }\tau\text{ simple permutations}$

Proposition :
$$\underline{\pi} \leq \underline{\sigma} \Rightarrow \underline{\pi} \leq \underline{\tau} \leq \sigma$$

Proposition : σ non exceptional, $\underline{\pi} \leq \underline{\sigma} \Rightarrow \underline{\pi} \leq \underline{\tau} \leq \underline{\sigma}$
Theorem : σ non exceptional, $\underline{\pi} \leq \sigma \Rightarrow \pi \leq \underline{\tau} \leq \sigma$
 $\pi \leq \underline{\tau}_{1} \qquad \leq \sigma$

 \sum_{2}

2

 $\pi\text{, }\sigma\text{ and }\tau\text{ simple permutations}$

Proposition :
$$\underline{\pi} \leq \underline{\sigma} \Rightarrow \underline{\pi} \leq \underline{\tau} \leq \sigma$$

Proposition : σ non exceptional, $\underline{\pi} \leq \underline{\sigma} \Rightarrow \underline{\pi} \leq \underline{\tau} \leq \underline{\sigma}$
Theorem : σ non exceptional, $\underline{\pi} \leq \underline{\sigma} \Rightarrow \pi \leq \underline{\tau} \leq \underline{\sigma}$
 $\pi \leq \tau_1 \leq \tau_2 \qquad \leq \sigma$

< E

 \sum_{2}

2

 $\pi\text{, }\sigma\text{ and }\tau\text{ simple permutations}$

Proposition :
$$\underline{\pi} \preceq \underline{\sigma} \Rightarrow \underline{\pi} \preceq \underline{\tau} \preceq \sigma$$

Proposition : σ non exceptional, $\underline{\pi} \preceq \underline{\sigma} \Rightarrow \underline{\pi} \preceq \underline{\tau} \preceq \underline{\sigma}$
Theorem : σ non exceptional, $\underline{\pi} \preceq \underline{\sigma} \Rightarrow \pi \preceq \underline{\tau} \preceq \underline{\sigma}$
 $\pi \preceq \tau_1 \preceq \tau_2 \dots \preceq \tau_k \preceq \sigma$

< ∃ >

1 or 2

2

Chains (1)

Theorem : $\pi \neq \sigma$ simple permutations. If $\pi \preceq \sigma$ and $3 \leq |\pi| \Rightarrow \exists$ a chain of simple permutations $\sigma^{(0)} = \sigma, \sigma^{(1)}, \ldots, \sigma^{(k-1)}, \sigma^{(k)} = \pi$ and $m \in \{0 \ldots k\}$ such that $\sigma^{(i)} \preceq \sigma^{(i-1)}, |\sigma^{(i-1)}| - |\sigma^{(i)}| = 1$ if $1 \leq i \leq m, |\sigma^{(i-1)}| - |\sigma^{(i)}| = 2$ if $m + 1 \leq i \leq k$ and if m < kthen $\sigma^{(i)}$ is exceptional for $m \leq i \leq k$.

Chains (2)

Theorem : $\sigma \neq \pi$ two simple permutations, σ non exceptional and $\ell = |\sigma| - |\pi|$. $\pi \preceq \sigma$ and $|\pi| \ge 3 \Rightarrow \exists$ a chain of simple permutations $\sigma^{(0)} = \sigma, \sigma^{(1)}, \dots, \sigma^{(\ell-1)}, \sigma^{(\ell)} = \pi$ such that $\forall i$, $\sigma^{(i)} \preceq \sigma^{(i-1)}$ and $|\sigma^{(i-1)}| - |\sigma^{(i)}| = 1$.

$$\sigma \succ \pi \; \Rightarrow \; \sigma = \underbrace{\sigma^{(0)} \succ \sigma^{(1)}}_{1} \succ \cdots \succ \underbrace{\sigma^{(\ell-1)} \succ \sigma^{(\ell)}}_{1} = \pi$$

• • = • • = •
Chains (2)

Theorem : $\sigma \neq \pi$ two simple permutations, σ non exceptional and $\ell = |\sigma| - |\pi|$. $\pi \preceq \sigma$ and $|\pi| \ge 3 \Rightarrow \exists$ a chain of simple permutations $\sigma^{(0)} = \sigma, \sigma^{(1)}, \dots, \sigma^{(\ell-1)}, \sigma^{(\ell)} = \pi$ such that $\forall i, \sigma^{(i)} \preceq \sigma^{(i-1)}$ and $|\sigma^{(i-1)}| - |\sigma^{(i)}| = 1$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

3

《曰》《聞》《臣》《臣》

Definition : π a simple permutation. We set : $p_{\pi} = \# \{ \sigma \mid \sigma \text{ is simple, } \pi \preceq \sigma \text{ and } |\sigma| = |\pi| + 1 \}$

Proposition : π a simple permutation of size n. Then $p_{\pi} = (n+1)(n-3)$.

- ₹ 🖬 🕨

Definition : π a simple permutation. We set : $p_{\pi} = \# \{ \sigma \mid \sigma \text{ is simple, } \pi \preceq \sigma \text{ and } |\sigma| = |\pi| + 1 \}$

Proposition : π a simple permutation of size n. Then $p_{\pi} = (n+1)(n-3)$.

Definition : π a simple permutation. We set : $p_{\pi} = \# \{ \sigma \mid \sigma \text{ is simple, } \pi \preceq \sigma \text{ and } |\sigma| = |\pi| + 1 \}$

Proposition : π a simple permutation of size n. Then $p_{\pi} = (n+1)(n-3)$.

 $(n+1)^2$ ways to add a point

Definition : π a simple permutation. We set : $p_{\pi} = \# \{ \sigma \mid \sigma \text{ is simple, } \pi \preceq \sigma \text{ and } |\sigma| = |\pi| + 1 \}$

Proposition : π a simple permutation of size n. Then $p_{\pi} = (n+1)(n-3)$.

 $(n+1)^2$ ways to add a point 4n lead to a permutation with an interval of size 2

Definition : π a simple permutation. We set : $p_{\pi} = \# \{ \sigma \mid \sigma \text{ is simple, } \pi \preceq \sigma \text{ and } |\sigma| = |\pi| + 1 \}$

Proposition : π a simple permutation of size n. Then $p_{\pi} = (n+1)(n-3)$.

 $(n+1)^2$ ways to add a point 4*n* lead to a permutation with an interval of size 2 4 lead to a permutation with an interval of size *n*

Definition : π a simple permutation. We set : $p_{\pi} = \# \{ \sigma \mid \sigma \text{ is simple, } \pi \preceq \sigma \text{ and } |\sigma| = |\pi| + 1 \}$

Proposition : π a simple permutation of size n. Then $p_{\pi} = (n+1)(n-3)$.

 $(n + 1)^2$ ways to add a point 4*n* lead to a permutation with an interval of size 2 4 lead to a permutation with an interval of size *n*

Recall : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ .

Definition : π a simple permutation. We set : $p_{\pi} = \# \{ \sigma \mid \sigma \text{ is simple, } \pi \preceq \sigma \text{ and } |\sigma| = |\pi| + 1 \}$

Proposition : π a simple permutation of size n. Then $p_{\pi} = (n+1)(n-3)$.

 $(n + 1)^2$ ways to add a point 4*n* lead to a permutation with an interval of size 2 4 lead to a permutation with an interval of size *n* $\Rightarrow p_{\pi} = (n + 1)^2 - 4(n + 1) = (n + 1)(n - 3)$

Recall : τ a non simple permutation such that $\tau \setminus {\tau_i}$ is simple. Then τ_i belongs to an interval of size 2 of τ or is in a corner of the graphical representation of τ . Proposition : Let c_n be the average number of children for simple permutations of size n. Then $c_n = n - 4 - \frac{4}{n} + O(\frac{1}{n^2})$.

Proof : Let s_n be the number of simple permutations of size n and e_n be the number of edges between simple permutations of size n and n-1. Then $c_n = \frac{e_n}{s_n} = p_{n-1} \frac{s_{n-1}}{s_n} = n(n-4) \frac{s_{n-1}}{s_n}$ and we know that $s_n = \frac{n!}{e^2} \left(1 - \frac{4}{n} + \frac{2}{n(n-1)} + O(n^{-3})\right)$.

Numerical results

Algorithm : Let $B = \{\pi_1 \dots \pi_m\}$ and C = Av(B) a wreath-closed class (i.e. π_i is simple $\forall i$). Then we can recursively compute the set Si_n of simple permutations of size n in C from Si_{n-1} and Si_{n-2} as follow :

Algorithm : Let $B = \{\pi_1 \dots \pi_m\}$ and C = Av(B) a wreath-closed class (i.e. π_i is simple $\forall i$). Then we can recursively compute the set Si_n of simple permutations of size n in C from Si_{n-1} and Si_{n-2} as follow :

• $\forall \tau \in Si_{n-1}$, $\forall \sigma$ simple permutation obtained from τ by adding a point, if $\sigma \notin B$ and each simple pattern of σ of size n-1 is in Si_{n-1} , we add σ to Si_n .

Algorithm : Let $B = \{\pi_1 \dots \pi_m\}$ and C = Av(B) a wreath-closed class (i.e. π_i is simple $\forall i$). Then we can recursively compute the set Si_n of simple permutations of size n in C from Si_{n-1} and Si_{n-2} as follow :

- $\forall \tau \in Si_{n-1}$, $\forall \sigma$ simple permutation obtained from τ by adding a point, if $\sigma \notin B$ and each simple pattern of σ of size n-1 is in Si_{n-1} , we add σ to Si_n .
- If *n* is even, for *i* from 1 to 4, let σ be the exceptional permutation of type *i* of size *n*. If $\sigma \notin B$ and the exceptional permutation of type *i* of size n 2 is in Si_{n-2} , we add σ to Si_n .

Algorithm : proof

|圖 | | 国 | | 国 |

æ

Algorithm : proof

Proof : Let σ be a non exceptional simple permutation of size *n*.

御 と く き と く き と …

Proof: Let σ be a non exceptional simple permutation of size n. Suppose $\sigma \in C$. Then $\exists \tau \prec \sigma, \tau$ simple of size n-1 $\Rightarrow \tau \in Si_{n-1} \Rightarrow \sigma$ is considered, and each pattern of $\sigma \in C$ so σ is added to Si_n .

Proof : Let σ be a non exceptional simple permutation of size n. Suppose $\sigma \in C$. Then $\exists \tau \prec \sigma, \tau$ simple of size n-1 $\Rightarrow \tau \in Si_{n-1} \Rightarrow \sigma$ is considered, and each pattern of $\sigma \in C$ so σ is added to Si_n . Reciprocally, if $\sigma \notin C$, then $\exists i, \pi_i \preceq \sigma$ and $\exists \tau$ simple of size n-1,

 $\pi_i \leq \tau \leq \sigma$ so $\tau \notin Si_{n-1}$ and we don't add σ to Si_n .

• • = • • = •

Proof : Let σ be a non exceptional simple permutation of size n. Suppose $\sigma \in C$. Then $\exists \tau \prec \sigma, \tau$ simple of size n-1 $\Rightarrow \tau \in Si_{n-1} \Rightarrow \sigma$ is considered, and each pattern of $\sigma \in C$ so σ is added to Si_n . Reciprocally, if $\sigma \notin C$, then $\exists i, \pi_i \preceq \sigma$ and $\exists \tau$ simple of size n-1,

 $\pi_i \preceq \tau \preceq \sigma$ so $\tau \notin Si_{n-1}$ and we don't add σ to Si_n .

Almost the same reasoning if σ is exceptional.

- Our goal was to find an algorithm to compute effectively the set of simple permutations in a class. We have it for wreath-closed classes. In other classes ?
- Simple permutation poset \Rightarrow many results interesting in themselves.

Thank you for your attention