Crossings and patterns in signed permutations

Sylvie Corteel, Matthieu Josuat-Vergès, Jang-Soo Kim

Université Paris-sud 11, Université Paris 7
Permutation Patterns

Introduction

$$
\begin{aligned}
& \text { Example } \\
& \sigma=71510482963
\end{aligned}
$$

A crossing of a permutation σ is a couple (i, j) such that $i<j \leq \sigma(i)<\sigma(j)$, or $\sigma(i)<\sigma(j)<i<j$.

The crossings and 13-2 are equidistributed in permutations. This is also the same as superfluous ones in permutation tableaux.
[Corteel Nadeau, Steingrímsson Williams]

Introduction

$$
\begin{aligned}
& \text { Example } \\
& \sigma=71510482963
\end{aligned}
$$

A crossing of a permutation σ is a couple (i, j) such that $i<j \leq \sigma(i)<\sigma(j)$, or $\sigma(i)<\sigma(j)<i<j$.

The crossings and 13-2 are equidistributed in permutations. This is also the same as superfluous ones in permutation tableaux.
[Corteel Nadeau, Steingrímsson Williams]

Introduction

Example

Definition

An occurrence of the pattern 13-2 in $\sigma \in \mathfrak{S}_{n}$ is a triple $(i, i+1, j)$ such that $\sigma(i)<\sigma(j)<\sigma(i+1)$.

Introduction

Example

Definition

An occurrence of the pattern 13-2 in $\sigma \in \mathfrak{S}_{n}$ is a triple $(i, i+1, j)$ such that $\sigma(i)<\sigma(j)<\sigma(i+1)$.

Introduction

Example

Definition

An occurrence of the pattern 13-2 in $\sigma \in \mathfrak{S}_{n}$ is a triple $(i, i+1, j)$ such that $\sigma(i)<\sigma(j)<\sigma(i+1)$.

Introduction

Definition

A permutation tableau is a Young diagram filled with 0's and 1's, such that:

- There is at least a 1 per column, 1
- The pattern

$$
\begin{array}{llll}
& & \vdots & \text { is forbidden. } \\
1 & \ldots & 0
\end{array}
$$

Example

1	0	0	1
1	1	0	1
0	0	1	
1	1		

Introduction

Type B permutation tableaux: defined by Lam and Williams (in relation with geometric objects such as orthogonal grassmannian...)

These are roughly conjugate-symmetric permutation tableaux, and are in bijection with signed permutations.

Question: are there some notions of crossings and patterns for signed permutations?

Type B permutation tableaux

Remark: A conjugate-symmetric permutation tableau contains no zero-row.

Definition

A type B permutation tableau is obtained from a conjugate-symmetric permutation tableau by adding some zero-rows and zero-columns the following way:

Type B permutation tableaux

Remark: A conjugate-symmetric permutation tableau contains no zero-row.

Definition

A type B permutation tableau is obtained from a conjugate-symmetric permutation tableau by adding some zero-rows and zero-columns the following way:

OK

Type B permutation tableaux

Remark: A conjugate-symmetric permutation tableau contains no zero-row.

Definition

A type B permutation tableau is obtained from a conjugate-symmetric permutation tableau by adding some zero-rows and zero-columns the following way:

OK

The zig-zag bijection

We use a bijection of [Steingrímsson Williams]. Label the boundary of the permutation tableau with integers for $-n$ to n. The image of i is obtained by taking a zig-zag path, the direction East or South changing at each 1.

Example

The zig-zag bijection

We use a bijection of [Steingrímsson Williams]. Label the boundary of the permutation tableau with integers for $-n$ to n. The image of i is obtained by taking a zig-zag path, the direction East or South changing at each 1.

Example

$$
\pi=3,1,4,-2
$$

The zig-zag bijection

We use a bijection of [Steingrímsson Williams]. Label the boundary of the permutation tableau with integers for $-n$ to n. The image of i is obtained by taking a zig-zag path, the direction East or South changing at each 1.

Example

$$
\pi=3,1,4,-2
$$

The zig-zag bijection

We use a bijection of [Steingrímsson Williams]. Label the boundary of the permutation tableau with integers for $-n$ to n. The image of i is obtained by taking a zig-zag path, the direction East or South changing at each 1.

Example

\[

\]

The zig-zag bijection

We use a bijection of [Steingrímsson Williams]. Label the boundary of the permutation tableau with integers for $-n$ to n. The image of i is obtained by taking a zig-zag path, the direction East or South changing at each 1.
Example

$$
\pi=3,1,4,-2
$$

Crossings for signed permutations

Definition

A crossing of a signed permutation is a pair $(i, j) \in[n]^{2}$ such that

- either $i<j \leq \pi(i)<\pi(j)$,
- or $i>j>\pi(i)>\pi(j)$,
- or $-i<j \leq-\pi(i)<\pi(j)$.

We use an arrow notation such that this corresponds to proper intersection between arrows, or the limit case of two arrows $\sim($

Example

$$
\pi=3,1,4,-2
$$

Theorem

Via the zig-zag bijection,

- the number of superfluous 1's in type B permutation tableaux is the number of crossings in signed permutations,
- $i>0$ is such that $\pi(i) \geq i$ iff i label a vertical step in the South-East boundary of the permutation tableau,
- the number of $i>0$ with $\pi(i)<0$ is the number of 1 's in the diagonal of the permutation tableau.

Example

$$
\pi=3,1,4,-2
$$

Theorem

Via the zig-zag bijection,

- the number of superfluous 1's in type B permutation tableaux is the number of crossings in signed permutations,
- $i>0$ is such that $\pi(i) \geq i$ iff i label a vertical step in the South-East boundary of the permutation tableau,
- the number of $i>0$ with $\pi(i)<0$ is the number of 1 's in the diagonal of the permutation tableau.

Example

$$
\pi=3,1,4,-2
$$

Theorem

Via the zig-zag bijection,

- the number of superfluous 1's in type B permutation tableaux is the number of crossings in signed permutations,
- $i>0$ is such that $\pi(i) \geq i$ iff i label a vertical step in the South-East boundary of the permutation tableau,
- the number of $i>0$ with $\pi(i)<0$ is the number of 1 's in the diagonal of the permutation tableau.

Example

$$
\pi=3,1,4,-2
$$

Theorem

Via the zig-zag bijection,

- the number of superfluous 1's in type B permutation tableaux is the number of crossings in signed permutations,
- $i>0$ is such that $\pi(i) \geq i$ iff i label a vertical step in the South-East boundary of the permutation tableau,
- the number of $i>0$ with $\pi(i)<0$ is the number of 1 's in the diagonal of the permutation tableau.

Example

$$
\pi=3,1,4,-2
$$

Theorem

Via the zig-zag bijection,

- the number of superfluous 1's in type B permutation tableaux is the number of crossings in signed permutations,
- $i>0$ is such that $\pi(i) \geq i$ iff i label a vertical step in the South-East boundary of the permutation tableau,
- the number of $i>0$ with $\pi(i)<0$ is the number of 1 's in the diagonal of the permutation tableau.

Example

$$
\pi=3,1,4,-2
$$

Eulerian numbers of type B

There are some definitions of ascents and exceedances in signed permutations [Brenti, Chow] whose distribution are type B Eulerian numbers. In our context, it is interesting to define:

$$
\operatorname{twex}(\pi)=\#\{i \mid \pi(i) \geq i\}+\left\lfloor\frac{\operatorname{neg}(\pi)}{2}\right\rfloor
$$

Theorem
Let

$$
B_{n, k}(q)=\sum_{\pi \text { with } \operatorname{twex}(\pi)=k} q^{\operatorname{cr}(\pi)}
$$

Then $B_{n, k}(q)$ is a q-analog of type B Eulerian numbers such that $B_{n, k}(q)=B_{n, n-k}(q)$.

Non-crossing partitions

A set partition is non-crossing if there are no $i<j<k<\ell$ with i, j in a same block, k, ℓ a one other block.

$$
\begin{aligned}
\pi= & \{\{1,4,8\},\{2,3\}, \\
& \{5,6,7\}\}
\end{aligned}
$$

There is a bijection between non-crossing permutations and non-crossing partitions given by the cycle decomposition.

Similarly, non-crossing signed permutations are in bijection with non-crossing partitions of type B.

Non-crossing partition of classical types are defined as a sublattice of a Coxeter group. Combinatorial description in type B : a type B non-crossing partition is a couple a (type A) non-crossing partition, and a subset of the non-nested blocks.

There is a bijection with signed permutations having no crossing, for example with $\pi=-2,1,-7,3,6,5,4$:

We have $B_{n, k}(0)=\binom{n}{k}^{2}$, the Narayana number of type B.

A pattern for signed permutation ?

There is a definition of "31-2" pattern for signed permutation such that the distribution is the same as crossings, and an associated notion of signed ascents such that 31-2 gives a q-analog of type B Eulerian numbers.

Definition

- 31-2 $(\pi)=\#\{(i, j) \mid$ such that $i<j$, and $|\pi(i)|>|\pi(j)|>|\pi(i+1)|$ or $\pi(i)>-\pi(j) \geq \mid \pi(i+1)\}$
$-\operatorname{pasc}(\pi)=\#\{i \mid\}$
The proof is quite indirect: there is a recursive decomposition of type B permutation tableaux that can be interpreted in terms of weighted Motzkin paths, and then there is a bijection between paths and signed permutations.

Conclusion

- Are there nice enumeration formulas for crossings in signed permutations (case of permutations: [J-V, Corteel, Rubey, Prellberg]) ?
- Is there a better definition of the signed pattern 31-2 ?
- Snakes defined by Arnol'd are the signed analog of alternating permutations, are our statistic useful in this context?

thanks

for your
attention

