Pattern match avoidance in cycle structure

Miles Jones
joint work with Jeff Remmel
University of California, San Diego

The reduction $\operatorname{red}\left(n_{1}, \ldots, n_{k}\right)$ is a function that replaces the i-th largest number with i

Example:
$\operatorname{red}(2151097)=51432$

For $\tau \in S_{m}$ there is a τ-cycle-occurrence in a cycle $C=\left(c_{0}, \ldots, c_{p-1}\right)$ if there is an r and indices $0<i_{1}<\cdots<i_{m-1} \leq p-1$ such that $\operatorname{red}\left(c_{r}, c_{r+i_{1}}, \ldots, c_{r+i_{m-1}}\right)=\tau$ (Where the subscripts are taken $\bmod p$)

If the occurrence involves consecutive entries it is called a τ-cycle-match

$$
\tau=1234
$$

$\beta=2314$

$$
\tau=1234
$$

$$
\beta=2314
$$

$$
\begin{array}{rlrl}
\tau & =1234 & \tau_{2}=2341 \\
\tau_{2} & =3412 & & \tau_{3}=4123
\end{array}
$$

The focus of this talk will be to count

1. the number of n-permutations that have no τ-cycle-occurrences in any cycle denoted

$$
n c o S_{n}(\tau)
$$

2 . the number of n-permutations that have no τ-cycle-matches in any cycle denoted

$$
\begin{gather*}
n c m S_{n}(\tau) \\
N C O_{\tau}(t)=1+\sum_{n \geq 1} n c o S_{n}(\tau) \frac{t^{n}}{n!} \tag{1}\\
N C M_{\tau}(t)=1+\sum_{n \geq 1} n c m S_{n}(\tau) \frac{t^{n}}{n!} \tag{2}
\end{gather*}
$$

Two patterns τ and β are cycle-occurrence-Wilf-equivalent (co-Wilf-equivalent) if $N C O_{\tau}(t)=N C O_{\beta}(t)$

Two patterns τ and β are cycle-match-Wilf-equivalent (cm-Wilf-equivalent) if $N C M_{\tau}(t)=N C M_{\beta}(t)$

Any cyclic permutation of τ is co-Wilf-equivalent to τ

Reversing a Cycle:
$\left(c_{0}, c_{1}, \ldots c_{m-1}\right)^{c r}=\left(c_{m-1}, c_{m-2}, \ldots c_{0}\right)$
Complementing a Cycle:
$\left(c_{0}, c_{1}, \ldots c_{m-1}\right)^{c c}=\left(n+1-c_{0}, n+1-c_{1}, \ldots n+1-c_{m-1}\right)$
$\sigma^{c r}$ is the result when you reverse all cycles of σ
$\sigma^{c c}$ is the result when you complement all cycles of σ

Note: Reversing (complementing) the cycle structure of σ is different from reversing (complementing) σ

$$
\begin{gathered}
\sigma=1324=(1)(23)(4) \\
\sigma^{r}=\sigma^{c}=4231=(14)(2)(3) \\
\sigma^{c r}=\sigma^{c c}=(4)(23)(1)=\sigma
\end{gathered}
$$

τ is co-Wilf-equivalent and cm-Wilf-equivalent to τ^{r} and τ^{c}

The basic theorem of exponential structures allows us to simplify the problem of enumerating $n c o S_{n}(\tau)$ and $n c m S_{n}(\tau)$ to just enumerating single cycles.

Let $W_{m}: \mathcal{C}_{m} \rightarrow R$ be a weight function that sends cycles of length m to a ring R. Then let $\mathcal{C}_{n, k}$ be the set of all permutations of length n with k cycles.

For $\sigma \in \mathcal{C}_{n, k}$, let

$$
W(\sigma)=\sum_{i=1}^{k} W_{p_{i}}\left(C_{i}\right)
$$

where p_{i} is the length of C_{i}.
Theorem of Exponential Structures:
Theorem 0.1.

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{t^{n}}{n!} \sum_{k=1}^{n} x^{k} \sum_{\sigma \in \mathcal{C}_{n, k}} W(\sigma)=e^{x \sum_{m \geq 1} \frac{W_{m}\left(C_{m}\right) t^{m}}{m!}} \tag{3}
\end{equation*}
$$

For some pattern τ. if we let the weight function be
$W_{p}(C)=1$ if C has no τ-matches and $W_{p}(C)=0$ if C does have a τ-match then we get the generating functions:

$$
N C O_{\tau}(t, x)=1+\sum_{n \geq 1} \frac{t^{n}}{n!} \sum_{\substack{\sigma \in \mathcal{S}_{n} \\ c \text { has no } \\ \tau \text {-cycle-occurrences }}} x^{c y c(\sigma)}=e^{x \sum_{m \geq 1} n \operatorname{coC_{m}(\tau)\frac {t^{m}}{m!}} .}
$$

and

$$
\begin{equation*}
N C M_{\tau}(t, x)=1+\sum_{n \geq 1} \frac{t^{n}}{n!} \sum_{\substack{\sigma \in \mathcal{S}_{n} \\ c \text { has no } \\ \tau \text {-cycle-matches }}} x^{c y c(\sigma)}=e^{x \sum_{m \geq 1} n c m C_{m}(\tau) \frac{t^{m}}{m!}} . \tag{5}
\end{equation*}
$$

Example 1: Let $\tau=12$. It is clear that the only cycles that have no 12 -cycle-occurrences or 12 -cycle-matches are cycles of length 1 .

$$
\begin{aligned}
& n c o C_{1}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=n c m C_{1}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=1 \\
& n c o C_{m}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=n c m C_{m}\left(\begin{array}{ll}
1 & 2
\end{array}\right)=0 \text { for } m \geq 2
\end{aligned}
$$

$$
\begin{gathered}
\sum_{m \geq 1} n c o C_{m}(\tau) \frac{t^{m}}{m!}=\sum_{m \geq 1} n c m C_{m}(\tau) \frac{t^{m}}{m!}=t \\
N C O_{\tau}(t, x)=N C M_{\tau}(t, x)=e^{x t}
\end{gathered}
$$

Consider $\Upsilon=\left\{\begin{array}{ll}123,321\}\end{array}\right.$.
It is clear that $n c o C_{1}(\Upsilon)=n c o C_{2}(\Upsilon)=1$ and $n c o C_{n}(\Upsilon)=0$ for $n \geq 3$

Consider $\Upsilon=\left\{\begin{array}{ll}1 & 2 \\ 3 & 3 \\ 3 & 2\end{array}\right\}$.
It is clear that $n c o C_{1}(\Upsilon)=n c o C_{2}(\Upsilon)=1$ and $n c o C_{n}(\Upsilon)=0$ for $n \geq 3$

$$
\begin{gathered}
\sum_{m \geq 1} n c o C_{m}(\Upsilon) \frac{t^{m}}{m!}=t+\frac{t^{2}}{2} \\
N C O_{\Upsilon}(t, x)=e^{x\left(t+t^{2} / 2\right)}
\end{gathered}
$$

$\Upsilon=\left\{\begin{array}{lll}1 & 2 & 3, \\ 3 & 2 & 1\end{array}\right\}$
Let $C=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ have no Υ-cycle-matches and $c_{0}=1$. If $n \geq 3$

1. $c_{0}<c_{1}>c_{2}$
2. $c_{0}<c_{1}>c_{2}<c_{3}$

$$
c_{0}<c_{1}>c_{2}<c_{3}>c_{4}<c_{5}>c_{6}<c_{7} \ldots
$$

But if $n=2 k+1$ is odd then we will be forced to have
$c_{2 k-1}>c_{2 k}>c_{0}$ which will give a 32 1-match. Therefore n must be even and c_{1}, \ldots, c_{n-1} must be an alternating permutation.

$$
\begin{gathered}
\sum_{n \geq 0} A l t_{2 n+1} \frac{t^{2 n+1}}{(2 n+1)!}=\tan (t) \\
\sum_{m \geq 1} n c m C_{m}(\Upsilon) \frac{t^{m}}{m!}=t-\log |\cos (t)|
\end{gathered}
$$

$\Upsilon=\left\{\begin{array}{lll}1 & 2 & 3, \\ 3 & 2 & 1\end{array}\right\}$
Let $C=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$ have no Υ-cycle-matches and $c_{0}=1$. If $n \geq 3$

1. $c_{0}<c_{1}>c_{2}$
2. $c_{0}<c_{1}>c_{2}<c_{3}$

$$
c_{0}<c_{1}>c_{2}<c_{3}>c_{4}<c_{5}>c_{6}<c_{7} \ldots
$$

But if $n=2 k+1$ is odd then we will be forced to have
$c_{2 k-1}>c_{2 k}>c_{0}$ which will give a 32 1-match. Therefore n must be even and c_{1}, \ldots, c_{n-1} must be an alternating permutation.

$$
\begin{gathered}
\sum_{n \geq 0} A l t_{2 n+1} \frac{t^{2 n+1}}{(2 n+1)!}=\tan (t) \\
N C M_{\Upsilon}(t, x)=e^{x(t-\log |\cos (t)|)}=e^{x t} \sec ^{x}(t)
\end{gathered}
$$

Let $C=\left(c_{0}, \ldots, c_{p-1}\right)$ be a cycle with its smallest element c_{0} written first. Then $\operatorname{cdes}(C)=\operatorname{des}\left(c_{0}, \ldots, c_{p-1}\right)+1$
(169728435)

And if $\sigma=C_{1}, \ldots C_{k}$ is a permutation in cycle structure then $\operatorname{cdes}(\sigma)=\sum_{i} \operatorname{cdes}\left(C_{i}\right)$

Let $C=\left(c_{0}, \ldots, c_{p-1}\right)$ be a cycle with its smallest element c_{0} written first. Then $\operatorname{cdes}(C)=\operatorname{des}\left(c_{0}, \ldots, c_{p-1}\right)+1$
(169728435)

And if $\sigma=C_{1}, \ldots C_{k}$ is a permutation in cycle structure then $\operatorname{cdes}(\sigma)=\sum_{i} \operatorname{cdes}\left(C_{i}\right)$

Let $n m S_{n}(\tau)$ be the number of n-permutations that have no τ-matches.

If τ starts with 1 then $n c m S_{n}(\tau)=n m S_{n}(\tau)$ for all n.

$$
1+\sum_{n \geq 1} n c m S_{n}(\tau) \frac{t^{n}}{n!}=1+\sum_{n \geq 1} n m S_{n}(\tau) \frac{t^{n}}{n!}
$$

If τ starts with 1 then $n c m S_{n}(\tau)=n m S_{n}(\tau)$ for all n. Example:

$$
\left.\begin{array}{l}
\sigma=\left(\begin{array}{ll}
51011
\end{array}\right)\left(\begin{array}{ll}
3 & 6
\end{array} 48\right)(1972
\end{array}\right)
$$

Lemma 0.2. If $\tau \in S_{j}$ and τ starts with 1 , then for any $\sigma \in S_{n}$, 1. σ has k cycles if and only if $\bar{\sigma}$ has k left-to-right minima, 2. $\operatorname{cdes}(\sigma)=1+\operatorname{des}(\bar{\sigma})$, and
3. σ has no cycle- τ-matches if and only if $\bar{\sigma}$ has no τ-matches.

If τ starts with 1 then $n c m S_{n}(\tau)=n m S_{n}(\tau)$ for all n. Example:

$$
\begin{aligned}
& \sigma=\left(\begin{array}{l}
51011
\end{array}\right)(3648)(1972) \\
& \bar{\sigma}=51011|3648| 1972
\end{aligned}
$$

If τ starts with 1 ,

$$
\begin{aligned}
N C M_{\tau}(t, x, y) & =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\substack{\sigma \text { has no } \\
\tau \text {-cycle-matches }}} x^{\operatorname{cyc}(\sigma)} y^{\operatorname{cdes}(\sigma)} \\
N M_{\tau}(t, x, y) & =\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\substack{\sigma \text { has no } \\
\tau \text {-matches }}} x^{\text {LtoRmin }(\sigma)} y^{1+\operatorname{des}(\sigma)} \\
& =\exp \left(x \sum_{m \geq 1} \frac{t^{m}}{m!} \sum_{\substack{c \text { has no } \\
\tau \text {-cycle-matches }}} y^{\operatorname{cdes}(c)}\right)
\end{aligned}
$$

Suppose τ starts with 1 .

$$
\begin{gathered}
N M_{\tau}(t)=N C M_{\tau}(t)=\exp \left(\sum_{m \geq 1} n c m C_{m}(\tau) \frac{t^{m}}{m!}\right) \\
\sum_{m \geq 1} n c m C_{m}(\tau) \frac{t^{m}}{m!}=\log \left(N M_{\tau}(t)\right) \\
N M_{\tau}(t, x)=N C M_{\tau}(t, x)=\exp \left(x \sum_{m \geq 1} n c m C_{m}(\tau) \frac{t^{m}}{m!}\right) \\
N M_{\tau}(t)^{x}=N M_{\tau}(t, x)=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\substack{\sigma \text { has no } \\
\tau-\text { matches }}} x^{\operatorname{LtoRmin}(\sigma)}
\end{gathered}
$$

Example: Let $\tau=132$ and let

$$
A_{n}(y)=\sum_{\substack{c \in \mathcal{C}_{n} \\ c \text { has no } \\ \tau \text {-cycle-matches }}} y^{\operatorname{cdes}(c)}=\sum_{\substack{\sigma \in \mathcal{S}_{n} \\ \sigma \text { starts with } 1 \\ \sigma \text { has no } \\ \tau \text {-cycle-matches }}} y^{1+\operatorname{des}(\sigma)}
$$

$$
\begin{array}{ll}
A_{1}=y & (1) \\
A_{2}=y & (12) \tag{12}\\
A_{3}=y & (123),(132)
\end{array}
$$

$\tau=132$
A_{n} with $n \geq 4$
$k=2 \quad 1 \underbrace{2 \ldots \ldots}_{n-1} \quad$ we get $A_{n-1}(y)$
$k=3 \quad 1 _2 \ldots$ can't avoid 132
$k \geq 4 \quad \underbrace{1-\ldots \ldots}_{k-1} \underbrace{2 \ldots \ldots}_{n-k+1} \quad\binom{n-2}{k-2} A_{k-1}(y) A_{n-k+1}(y)$
So now we get the recursion

$$
A_{n}=A_{n-1}(y)+\sum_{k=4}^{n}\binom{n-2}{k-2} A_{k-1}(y) A_{n-k+1}(y)
$$

Let $A(t, y)=\sum_{n \geq 0} A_{n}(y) \frac{t^{n}}{n!}$
Then the recursion

$$
A_{n}(y)=A_{n-1}(y)+\sum_{k=4}^{n}\binom{n-2}{k-2} A_{k-1}(y) A_{n-k+1}(y)
$$

leads to the differential equation:

$$
A^{\prime \prime}(t, y)=\left(A^{\prime}(t, y)\right)^{2}+(1-y-y t)\left(A^{\prime}(t, y)\right)
$$

and solution

$$
A(t, y)=-\log \left(1-y \int_{0}^{t} e^{s-y s-y \frac{s^{2}}{2}} d s\right)
$$

$$
A(t, y)=-\log \left(1-y \int_{0}^{t} e^{s-y s-y \frac{s^{2}}{2}} d s\right)
$$

$N C M_{\tau}(t, x, y)=$

$$
\begin{aligned}
N M_{\tau}(t, x, y) & =\exp \left[x\left(-\log \left(1-y \int_{0}^{t} e^{s-y s-y \frac{s^{2}}{2}} d s\right)\right)\right] \\
& =\left(\frac{1}{1-y \int_{0}^{t} e^{s-y s-y \frac{s^{2}}{2}} d s}\right)^{x}
\end{aligned}
$$

The method we used for 132 will give us a differential equation for all patterns $\tau \in S_{m}$ that have the form

$$
\tau=12 \ldots(j-1) \alpha j
$$

Where α is any permutation of the last $m-j$ numbers.
Example: 12349681075

Suppose $\tau=12 \ldots(j-1) \alpha j$
$N M_{\tau}(t, x, y)=\frac{1}{1+\sum_{n \geq 1} U_{n}^{\tau}(x, y) \frac{t^{n}}{n!}}$

$$
U_{n}^{\tau}=(1-y) U_{n-1}^{\tau}+y^{\operatorname{des}(\alpha)+1}\binom{n-j}{m} U_{n-m-j+1}^{\tau}
$$

Remmel and Mendes proved the following theorem:
Theorem 0.3. For $j \geq 2$ and $\tau=j \ldots 21$,

$$
\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\substack{\sigma \in S_{n} \\ \tau-\operatorname{match}(\sigma)=0}} y^{\operatorname{des}(\sigma)}=\left(\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{i \geq 0}(-1)^{i} \mathcal{R}_{n-1, i, j-1} y^{i}\right)^{-1}
$$

where $\mathcal{R}_{n, i, j}$ is the number of rearrangements of i zeroes and $n-1$ ones such that j zeroes never appear consecutively.

This theorem gives the following result:
If $\tau=12 \ldots j$ then
$N M_{\tau}(t, x, y)=N C M_{\tau}(t, x, y)=\left(\frac{1}{\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{i \geq 0}(-1)^{i} \mathcal{R}_{n-1, i, j-1} y^{i}}\right)^{x}$

$$
\tau=12 \ldots(j-1) \alpha j
$$

$1234 \ldots$.....Remmel and Mendes

$$
1243 \ldots \ldots j=3, \alpha=1
$$

$$
1324 \ldots \ldots U_{n}=(1-y) U_{n-1}+\sum_{k=2}^{\frac{n}{2}}(-y)^{k-1} C_{k-1} U_{n-2 k+1}
$$

$$
1342 \ldots \ldots j=2, \alpha=12
$$

$$
1423 \ldots . U_{n}=(1-y) U_{n-1}+\sum_{k=2}^{\frac{n}{2}}(-y)^{k-1}\binom{n-k-1}{k-1} U_{n-2 k+1}
$$

$$
1432 \ldots \ldots j=2, \alpha=21
$$

