The Number of Distinct Minors of a Permutation

Cheyne Homberger

August 9, 2010
$p=1234$
1234
${ }_{123}$
12
\mid
1
$p=2143$
2143

$$
p=2413
$$

1 Maximal Minors

2 Expectation and Variance

3 Minors of any Size

1 Maximal Minors

2 Expectation and Variance

3 Minors of any Size

Definition

A $(n-k)$-minor of an n-permutation is a pattern of size $(n-k)$ contained in p. Define $M_{k}(p)$ to be the set of $(n-k)$-minors of p. We call an $(n-1)$-minor a maximal minor.

Definition

A $(n-k)$-minor of an n-permutation is a pattern of size $(n-k)$ contained in p. Define $M_{k}(p)$ to be the set of $(n-k)$-minors of p. We call an $(n-1)$-minor a maximal minor.

Fact

For any n-permutation $p,\left|M_{k}(p)\right| \leq\binom{ n}{k}$. In particular, p has at most n maximal minors.

Definition

Let $p \in S_{n}$, and $i \in[n]$.
Define $M(p, i) \in S_{n-1}$ to be the ($n-1$)-permutation obtained by deleting the i th entry of p, and renumbering the remaining elements with respect to order.

$$
p=15324
$$

Definition

Let $p=p_{1} p_{2} \ldots p_{n}$ be an n-permutation. Define a consecutive pair to be a pair of entries $\left(p_{i}, p_{i+1}\right)$ such that $\left|p_{i}-p_{i+1}\right|=1$.

Definition

Let $p=p_{1} p_{2} \ldots p_{n}$ be an n-permutation. Define a consecutive pair to be a pair of entries $\left(p_{i}, p_{i+1}\right)$ such that $\left|p_{i}-p_{i+1}\right|=1$.

Definition

We say that the sequence $\left(p_{j}, p_{j+1}, \ldots p_{j+k-1}\right)$ is a consecutive run of length k when the pair $\left(p_{i}, p_{i+1}\right)$ is consecutive for each $j \leq i \leq j+k-2$.

Lemma

Let $p=p_{1} p_{2} \ldots p_{n}$ be any n permutation, and $i, j \in[n]$ with $i \neq j$. It follows that $M(p, i)=M(p, j)$ if and only if p_{i} and p_{j} are a part of the same consecutive run.

Lemma

Let $p=p_{1} p_{2} \ldots p_{n}$ be any n permutation, and $i, j \in[n]$ with $i \neq j$. It follows that $M(p, i)=M(p, j)$ if and only if p_{i} and p_{j} are a part of the same consecutive run.

Theorem

Define $C(p)$ to be the number of consecutive pairs of entries of p. Then $\left|M_{1}(p)\right|=n-C(p)$.

1 Maximal Minors

2 Expectation and Variance

3 Minors of any Size

Corollary

Let q be any n-permutation. Then q is contained as a pattern in exactly $n^{2}+1$ distinct $(n+1)$-permutations.

Corollary

Let q be any n-permutation. Then q is contained as a pattern in exactly $n^{2}+1$ distinct $(n+1)$-permutations.

Proof.

We can insert an entry into q in exactly $(n+1)^{2}$ different ways. By the lemma, inserting an entry in two different locations will result in the same permutation only when we create the same consecutive run in two different ways.

Corollary

Let q be any n-permutation. Then q is contained as a pattern in exactly $n^{2}+1$ distinct $(n+1)$-permutations.

Proof.

We can insert an entry into q in exactly $(n+1)^{2}$ different ways. By the lemma, inserting an entry in two different locations will result in the same permutation only when we create the same consecutive run in two different ways.
Now, we can create $2 n$ different consecutive pairs, and each of these pairs can be created in exactly 2 ways.

Corollary

Let q be any n-permutation. Then q is contained as a pattern in exactly $n^{2}+1$ distinct $(n+1)$-permutations.

Proof.

We can insert an entry into q in exactly $(n+1)^{2}$ different ways. By the lemma, inserting an entry in two different locations will result in the same permutation only when we create the same consecutive run in two different ways. Now, we can create $2 n$ different consecutive pairs, and each of these pairs can be created in exactly 2 ways.
Therefore, q is contained in exactly $(n+1)^{2}-2 n=n^{2}+1$ ($n+1$)-permutations.

Corollary

The expected number of maximal minors of a random n-permutation is $n-2 \frac{n-1}{n}$

Corollary

The expected number of maximal minors of a random n-permutation is $n-2 \frac{n-1}{n}$

Proof.

$$
(n-1)!\left((n-1)^{2}+1\right)=n!\left(n-2 \frac{n-1}{n}\right)
$$

Lemma

Let $b_{n, k}$ be the number of n-permutations with exactly k distinguished consecutive pairs, and let $B(z, u)=\sum_{n, k \geq 0} b_{n, k} z^{n} u^{k}$. Set $b_{0,0}=1$. Then

$$
B(z, u)=\sum_{m \geq 0} m!\left(z+\frac{2 z^{2} u}{1-z u}\right)^{m}
$$

Theorem

Let $a_{n, k}$ be the number of n-permutations with exactly k consecutive pairs (and hence $n-k$ distinct minors). Set $a_{0,0}=1$, and $A(z, u)=\sum_{n, k \geq 0} a_{n, k} z^{n} u^{k}$. Then

$$
A(z, u)=\sum_{m \geq 0} m!\left(z+\frac{2 z^{2}(u-1)}{1-z(u-1)}\right)^{m}
$$

Theorem

Let $a_{n, k}$ be the number of n-permutations with exactly k consecutive pairs (and hence $n-k$ distinct minors). Set $a_{0,0}=1$, and $A(z, u)=\sum_{n, k \geq 0} a_{n, k} z^{n} u^{k}$. Then

$$
A(z, u)=\sum_{m \geq 0} m!\left(z+\frac{2 z^{2}(u-1)}{1-z(u-1)}\right)^{m}
$$

Proof.

$$
A(z, u+1)=B(z, u), \text { and so } A(z, u)=B(z, u-1)
$$

Corollary

The generating function for the number of n-permutations with all distinct maximal minors is given by

$$
A(z, 0)=1+z+2 z^{4}+14 z^{5}+90 z^{6}+646 z^{7}+5242 z^{8} \ldots
$$

Corollary

The generating function for the number of n-permutations with all distinct maximal minors is given by

$$
A(z, 0)=1+z+2 z^{4}+14 z^{5}+90 z^{6}+646 z^{7}+5242 z^{8} \ldots
$$

Theorem (Tauraso 2006)

$$
a_{n, 0} \sim \frac{n!}{e^{2}}
$$

Theorem

Fix $n \geq 1$, and let $\chi: S_{n} \rightarrow[n]$ be the variable indicating the number of distinct maximal minors. Then

$$
\begin{gathered}
\mathbb{E}(\chi)=n-2 \frac{n-1}{n} \\
\text { and } \\
\mathbb{V}(\chi)=4 \frac{(n-2)^{2}}{n(n-1)}+2 \frac{n-1}{n}-4 \frac{(n-1)^{2}}{n^{2}} .
\end{gathered}
$$

1 Maximal Minors

2 Expectation and Variance

3 Minors of any Size

Definition

Let $p=p_{1} p_{2} \ldots p_{n}$ be a permutation. Define the gap between entries p_{i} and p_{j} to be $\operatorname{gap}\left(p_{i}, p_{j}\right)=|i-j|+\left|p_{i}-p_{j}\right|$.

Definition

Let $p=p_{1} p_{2} \ldots p_{n}$ be a permutation. Define the gap between entries p_{i} and p_{j} to be $\operatorname{gap}\left(p_{i}, p_{j}\right)=|i-j|+\left|p_{i}-p_{j}\right|$.

Define the minimum gap of p by

$$
\operatorname{mingap}(p)=\min \left\{\operatorname{gap}\left(p_{i}, p_{j}\right): i, j \in[n]\right\}
$$

For, $p=426513, \operatorname{gap}(2,5)=5$.

Theorem

A permutation p has exactly $\binom{n}{k}(n-k)$-minors if and only if $\operatorname{mingap}(p) \geq k+2$.

$\left(\ln\right.$ general, $\left.\left|p^{m}\right|=(m-1)^{2}-2\right)$

Further Questions

