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Definition

A (n − k)-minor of an n-permutation is a pattern of size (n − k)
contained in p. Define Mk (p) to be the set of (n − k)-minors of
p. We call an (n − 1)-minor a maximal minor.

Fact

For any n-permutation p, |Mk (p)| ≤
(

n
k

)
. In particular, p has at

most n maximal minors.
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Definition

Let p ∈ Sn, and i ∈ [n].
Define M(p, i) ∈ Sn−1 to be the (n− 1)-permutation obtained by
deleting the i ’th entry of p, and renumbering the remaining
elements with respect to order.
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Definition

Let p = p1p2 . . . pn be an n-permutation. Define a consecutive
pair to be a pair of entries (pi ,pi+1) such that |pi − pi+1| = 1.

Definition

We say that the sequence (pj ,pj+1, . . .pj+k−1) is a consecutive
run of length k when the pair (pi ,pi+1) is consecutive for each
j ≤ i ≤ j + k − 2.



Definition

Let p = p1p2 . . . pn be an n-permutation. Define a consecutive
pair to be a pair of entries (pi ,pi+1) such that |pi − pi+1| = 1.

Definition

We say that the sequence (pj ,pj+1, . . .pj+k−1) is a consecutive
run of length k when the pair (pi ,pi+1) is consecutive for each
j ≤ i ≤ j + k − 2.



p = 15324

M(p,3) = 1423 = M(p,4)



p = 15324 M(p,3) = 1423 = M(p,4)



Lemma

Let p = p1p2 . . . pn be any n permutation, and i , j ∈ [n] with
i 6= j . It follows that M(p, i) = M(p, j) if and only if pi and pj are
a part of the same consecutive run.

Theorem

Define C(p) to be the number of consecutive pairs of entries of
p. Then |M1(p)| = n − C(p).
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Corollary

Let q be any n-permutation. Then q is contained as a pattern in
exactly n2 + 1 distinct (n + 1)-permutations.

Proof.

We can insert an entry into q in exactly (n + 1)2 different ways.
By the lemma, inserting an entry in two different locations will
result in the same permutation only when we create the same
consecutive run in two different ways.
Now, we can create 2n different consecutive pairs, and each of
these pairs can be created in exactly 2 ways.
Therefore, q is contained in exactly (n + 1)2 − 2n = n2 + 1
(n + 1)-permutations.
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Corollary

The expected number of maximal minors of a random
n-permutation is n − 2n−1

n

Proof.

(n − 1)!
(
(n − 1)2 + 1

)
= n!

(
n − 2

n − 1
n

)
.



Corollary

The expected number of maximal minors of a random
n-permutation is n − 2n−1

n

Proof.

(n − 1)!
(
(n − 1)2 + 1

)
= n!

(
n − 2

n − 1
n

)
.



Lemma

Let bn,k be the number of n-permutations with exactly k
distinguished consecutive pairs, and let
B(z,u) =

∑
n,k≥0 bn,kznuk . Set b0,0 = 1. Then

B(z,u) =
∑
m≥0

m!

(
z +

2z2u
1− zu

)m

.



Theorem

Let an,k be the number of n-permutations with exactly k
consecutive pairs (and hence n − k distinct minors). Set
a0,0 = 1, and A(z,u) =

∑
n,k≥0 an,kznuk . Then

A(z,u) =
∑
m≥0

m!

(
z +

2z2(u − 1)
1− z(u − 1)

)m

.

Proof.

A(z,u + 1) = B(z,u), and so A(z,u) = B(z,u − 1).
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Corollary

The generating function for the number of n-permutations with
all distinct maximal minors is given by

A(z,0) = 1 + z + 2z4 + 14z5 + 90z6 + 646z7 + 5242z8 . . . .

Theorem (Tauraso 2006)

an,0 ∼
n!
e2 .
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Theorem

Fix n ≥ 1, and let χ : Sn → [n] be the variable indicating the
number of distinct maximal minors. Then

E(χ) = n − 2
n − 1

n

and

V(χ) = 4
(n − 2)2

n(n − 1)
+ 2

n − 1
n
− 4

(n − 1)2

n2 .
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Definition

Let p = p1p2 . . . pn be a permutation. Define the gap between
entries pi and pj to be gap(pi ,pj) = |i − j |+ |pi − pj |.

Define the minimum gap of p by

mingap(p) = min{gap(pi ,pj) : i , j ∈ [n]}.
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For, p = 426513, gap(2,5) = 5.



Theorem

A permutation p has exactly
(

n
k

)
(n − k)-minors if and only if

mingap(p) ≥ k + 2.
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(
In general, |pm| = (m − 1)2 − 2

)



p4 = 3 6 1 4 7 2 5 and p5 = 4 8 12 1 5 9 13 2 6 10 14 3 7 11(
In general, |pm| = (m − 1)2 − 2

)
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