Composition and partition matrices, bivincular patterns and $(2+2)$-free posets

Mark Dukes, University of Iceland
with: Anders Claesson \& Martina Kubitzke (RU)
treatment a Pour 2010 Pints

The bivincular pattern $2 \mid 3 \overline{1}$

Let $S_{n}(2 \mid 3 \overline{1})$ be the set of permutations π of $\{1, \ldots, n\}$ such that there do not exist indices $i<k$ satisfying:

$$
\begin{aligned}
& \pi_{i}<\pi_{i+1} \text { and } \pi_{i}=\pi_{k}+1 .
\end{aligned}
$$

The bivincular pattern $2 \mid 3 \overline{1}$
Let $S_{n}(2 \mid 3 \overline{1})$ be the set of permutations π of $\{1, \ldots, n\}$ such that there do not exist indices $i<k$ satisfying:

$$
\pi_{i}<\pi_{i+1} \text { and } \pi_{i}=\pi_{k}+1
$$

$$
S_{n}(2 \mid 3 \overline{1})=S_{n}\left(\begin{array}{cc}
\bullet \bullet-\infty \\
\bullet & \vdots \\
\bullet & \bullet \infty \\
\hline
\end{array}\right)=S_{n}\binom{0}{\hline}
$$

All permutation diagrams of $S_{4}(2 \mid 3 \overline{1})$:

Ascent sequences

A sequence $a=\left(a_{1}, \ldots, a_{n}\right)$ of non-negative integers is called an ascent sequence if $a_{1}=0$ and

$$
a_{i} \in\left\{0,1, \ldots, 1+\operatorname{asc}\left(a_{1}, \ldots, a_{i-1}\right)\right\}
$$

for all $1<i \leq n$.
$[$ Note $\operatorname{asc}(\underline{0}, 1,0, \underline{0}, 2,0)=2$.
Let \mathcal{A}_{n} be set the of all ascent sequences of length n.

$$
\begin{aligned}
\mathcal{A}_{4}= & \{0000,0001,0010,0011,0012,0100,0101 \\
& 0102,0110,0111,0112,0120,0121,0122,0123 .\}
\end{aligned}
$$

Integer matrices

Let lnt_{n} be the collection of all upper triangular matrices taking values in $\mathbb{N}=\{0,1, \ldots\}$ such that

- the entries sum to n, and
- there are no rows or columns of 0 s .

$$
\begin{aligned}
\operatorname{lnt}_{4}= & \left\{[4],\left[\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right],\left[\begin{array}{lll}
2 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right],\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right],\right. \\
& {\left.\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right\} . }
\end{aligned}
$$

$(2+2)$-free posets

A partially ordered set $\left(P, \leq_{P}\right)$ is called $(\mathbf{2}+\mathbf{2})$-free if it contains no induced sub-poset isomorphic to $(\mathbf{2}+\mathbf{2})=$! !

$(2+2)$-free posets

A partially ordered set $\left(P, \leq_{P}\right)$ is called $(\mathbf{2}+\mathbf{2})$-free if it contains no induced sub-poset isomorphic to $(\mathbf{2}+\mathbf{2})=$!.

Such posets arise as interval orders:

$(2+2)$-free posets

A partially ordered set $\left(P, \leq_{P}\right)$ is called $(\mathbf{2}+\mathbf{2})$-free if it contains no induced sub-poset isomorphic to $(\mathbf{2}+\mathbf{2})=$!.

Such posets arise as interval orders:

Theorem 1 (Not ours!)
A poset P is $(\mathbf{2}+\mathbf{2})$-free iff the collection of strict order ideals $\{D(x)=\{y<x\}: x \in P\}$ may be linearly ordered by inclusion.

$(2+2)$-free posets

A partially ordered set $\left(P, \leq_{P}\right)$ is called $(\mathbf{2}+\mathbf{2})$-free if it contains no induced sub-poset isomorphic to $(\mathbf{2}+\mathbf{2})=$! !

Such posets arise as interval orders:

Theorem 1 (Not ours!)
A poset P is $(\mathbf{2}+\mathbf{2})$-free iff the collection of strict order ideals $\{D(x)=\{y<x\}: x \in P\}$ may be linearly ordered by inclusion.

Clearly $D(a) \subseteq D(c) \subseteq D(e) \subseteq D(b) \subseteq D(d)$.
Let \mathcal{P}_{n} the the collection of all different $(\mathbf{2}+\mathbf{2})$-free posets on n elements.

All posets in \mathcal{P}_{4} :

Integer matrices \mapsto ascent sequences

$$
M=\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in \operatorname{lnt}_{9}
$$

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right)$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, 1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, 1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, 1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, 1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, 3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, 3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, 3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, 0,3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, x_{4}, 0,3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 &
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, 2,0,3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 0 \\
0 & 2
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, 2,0,3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, x_{3}, 2,0,3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\Gamma(M)=\left(x_{1}, x_{2}, 1,2,0,3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
(1) \\
\Gamma(M)=\left(x_{1}, 1,1,2,0,3,1,1,1\right)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

$$
\begin{gathered}
\emptyset \\
\Gamma(M)=(0,1,1,2,0,3,1,1,1)
\end{gathered}
$$

Integer matrices \mapsto ascent sequences

Is it always that easy?!

Integer matrices \mapsto ascent sequences

No!

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{lllllll}
1 & 0 & 0 & \mathbf{1} & 0 & 0 & \mathbf{1} \\
0 & 1 & 0 & \mathbf{1} & 1 & 0 & \mathbf{1} \\
0 & 0 & 1 & \mathbf{2} & 1 & 1 & \mathbf{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 1 & 0 & 1 & 0 & \mathbf{1} \\
0 & 0 & 1 & 1 & 1 & \mathbf{2} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Integer matrices \mapsto ascent sequences

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & \mathbf{1} \\
0 & 1 & 0 & 1 & 0 & \mathbf{1} \\
0 & 0 & 1 & 1 & 1 & \mathbf{2} \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$$
x=\left(x_{1}, \ldots, x_{8}\right) ?
$$

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$x=$?

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$x_{8}=2$

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$x_{7}=1$
$x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, 2\right)$

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$$
\begin{aligned}
& x_{6}=1 \\
& x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, 1,2\right)
\end{aligned}
$$

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$x_{4}=1$
$x=\left(x_{1}, x_{2}, x_{3}, x_{4}, 3,1,1,2\right)$

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$$
x_{2}=1
$$

$$
x=\left(x_{1}, x_{2}, 0,1,3,1,1,2\right)
$$

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

$(2+2)$-free posets \mapsto ascent sequences

How can one decompose such posets?
There are 3 rules ...

Partition matrices

$$
\left[\begin{array}{cccc}
\{1,2,3\} & \emptyset & \{5,7,8\} & \{9\} \\
\emptyset & \{4\} & \{6\} & \{11\} \\
\emptyset & \emptyset & \emptyset & \{13\} \\
\emptyset & \emptyset & \emptyset & \{10,12\}
\end{array}\right]
$$

Definition 2

A partition matrix on $\{1, \ldots, n\}$ is an upper triangular matrix whose elements are sets such that
(i) each column and row contain at least one non-empty set;
(ii) the non-empty sets partition $\{1, \ldots, n\}$;
(iii) $\operatorname{col}(i)<\operatorname{col}(j) \Longrightarrow i<j$,
where $\operatorname{col}(i)$ denotes the column in which i is a member.
Let Par_{n} be the set of all such matrices.

Partition matrices

Par $_{3}$:

$$
\left.\begin{array}{ccc}
{[\{1,2,3\}}
\end{array}\right]\left[\begin{array}{cc}
\{1,2\} & \emptyset \\
\emptyset & \{3\}
\end{array}\right] \quad\left[\begin{array}{cc}
\{1\} & \{2\} \\
\emptyset & \{3\}
\end{array}\right]
$$

Given $A \in \operatorname{Par}_{n}$ and $\ell \in\{1, \ldots, n\}$, let $x_{\ell}=\min \left(A_{\star i}\right)-1$ where i is the row containing ℓ and $\min \left(A_{\star i}\right)$ is the smallest entry in column i of A. Define

$$
\Lambda(A)=\left(x_{1}, \ldots, x_{n}\right)
$$

Some properties

Theorem 3
$\Lambda: \operatorname{Par}_{n} \rightarrow \mathcal{I}_{n}$ is a bijection

Proposition 4

The statistic dim on Par_{n} is Eulerian.

Theorem 5
Let Mono_{n} be the set of matrices in Par_{n} which satisfy:
(iv) $\operatorname{row}(i)<\operatorname{row}(j) \Longrightarrow i<j$.

Then
$\Lambda\left(\mathrm{Mono}_{n}\right)=$ non-decreasing inversion tables in \mathcal{I}_{n}, \mid Mono $_{n} \mid=$ nth Catalan number.

Diagonal partition matrices

Let $\operatorname{RLE}(w)$ denote the run-length encoding of the inversion table w. For example,

$$
\operatorname{RLE}(0,0,0,0,1,1,0,2,3,3)=(0,4)(1,2)(0,1)(2,1)(3,2)
$$

A sequence of positive integers $\left(u_{1}, \ldots, u_{k}\right)$ which sum to n is called an integer composition of n and we write this as $\left(u_{1}, \ldots, u_{k}\right) \models n$.
Theorem 6
The set of diagonal matrices in Par_{n} is the image under Λ of
$\left\{w \in \mathcal{I}_{n}:\left(u_{1}, \ldots, u_{k}\right) \models n\right.$ and $\left.\operatorname{RLE}(w)=\left(p_{0}, u_{1}\right) \ldots\left(p_{k-1}, u_{k}\right)\right\}$,
where $p_{0}=0, p_{1}=u_{1}, p_{2}=u_{1}+u_{2}, p_{3}=u_{1}+u_{2}+u_{3}$, etc.

Bidiagonal partition matrices

Let BiPar_{n} be the set of bidiagonal matrices in Par_{n} and

$$
f(x, q)=\sum_{n \geq 0} \sum_{A \in \operatorname{BiPar}_{n}} q^{\operatorname{dim}(A)} x^{n}
$$

Theorem 7

$$
f(x, q)=\frac{2 x^{3}-(q+5) x^{2}+(q+4) x-1}{2\left(q^{2}+q+1\right) x^{3}-\left(q^{2}+4 q+5\right) x^{2}+2(q+2) x-1} .
$$

Note that
$f(x, 1)=\left|\mathfrak{S}_{\mathrm{n}}(3214,2143,24135,41352,14352,13542,13524)\right|$, the collection of permutations sortable by two pop-stacks in parallel, see Atkinson \& Sack 1999.

Composition matrices

$$
\left[\begin{array}{cccc}
\{1,4\} & \emptyset & \{5,7,8\} & \{9\} \\
\emptyset & \{2,3\} & \{6\} & \{11\} \\
\emptyset & \emptyset & \emptyset & \{13\} \\
\emptyset & \emptyset & \emptyset & \{10,12\}
\end{array}\right]
$$

Definition 8

A composition matrix on $\{1, \ldots, n\}$ is an upper triangular matrix whose elements are sets such that
(i) each column and row contain at least one non-empty set,
(ii) the non-empty sets partition $\{1, \ldots, n\}$.

Let Comp $_{n}$ be the set of all such matrices.

Composition matrices

$$
\mathrm{Comp}_{2}=\left\{[\{1,2\}],\left[\begin{array}{cc}
\{1\} & \emptyset \\
& \{2\}
\end{array}\right],\left[\begin{array}{cc}
\{2\} & \emptyset \\
& \{1\}
\end{array}\right]\right\} .
$$

Composition matrices \mapsto ascent seq \times set partition

Bijection $f: \mathrm{Comp}_{n} \rightarrow(a, E)$

$$
A=\left[\begin{array}{ccc}
\{3,8\} & \{6\} & \emptyset \\
\emptyset & \{2,5,7\} & \emptyset \\
\emptyset & \emptyset & \{1,4\}
\end{array}\right] .
$$

We have

$$
\operatorname{Card}(A)=\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right] ; \quad T_{\operatorname{Card}(A)}=\left[\begin{array}{ccc}
1 & 3 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

and

$$
\begin{aligned}
f(A) & =(\Gamma(\operatorname{Card}(A)), E(A)) \\
& =((0,0,1,1,1,0,2,2),\{3,8\}\{2,5,7\}\{6\}\{1,4\}) .
\end{aligned}
$$

Labeled $(2+2)$-free posets \mapsto ascent seq \times set partition

The unlabeled poset corresponding to P has ascent sequence $(0,0,1,1,1,0,2,2)$. There are four runs in this ascent sequence. The first run of two 0 s inserts the elements 3 and 8 , so we have $X_{1}=\{3,8\}$. Next the run of three 1 s inserts elements 2,5 and 7 , so $X_{2}=\{2,5,7\}$. The next run is a run containing a single 0 , and the element inserted is 6 , so $X_{3}=\{6\}$. The final run of two 2 s inserts elements 1 and 4 , so $X_{4}=\{1,4\}$. Hence

$$
\psi(P)=((0,0,1,1,1,0,2,2),\{3,8\}\{2,5,7\}\{6\}\{1,4\})
$$

Some properties of composition matrices

- Non-decreasing ascent sequences \times set partition \Leftrightarrow Parking functions
- There are $k!S(n, k)$ diagonal composition matrices $A \in \mathrm{Comp}_{n}$ with $\operatorname{dim}(A)=k$.
- Let BiComp_{n} be the set of bidiagonal matrices in Comp_{n}. Then

$$
\sum_{n \geq 0} \sum_{A \in \operatorname{BiComp}_{n}} q^{\operatorname{dim}(A)} \frac{x^{n}}{n!}=\frac{q e^{2 x}-q e^{x}-1}{(1-q) q e^{2 x}+2 q^{2} e^{x}-q^{2}-q-1}
$$

Number of labeled $(2+2)$-free posets

From the original paper the g.f. for the number of (2+2)-free posets was shown to be

$$
\begin{aligned}
P(t) & =\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-(1-t)^{i}\right) \\
& =1+t+2 t^{2}+5 t^{3}+15 t^{4}+53 t^{5}+217 t^{6}+O\left(t^{7}\right) .
\end{aligned}
$$

The exponential generating function for $(2+2)$-free posets is

$$
\begin{aligned}
L(t) & =\sum_{n \geq 0} \prod_{i=1}^{n}\left(1-e^{-t i}\right) \\
& =1+t+3 \frac{t^{2}}{2!}+19 \frac{t^{3}}{3!}+207 \frac{t^{4}}{4!}+3451 \frac{t^{5}}{5!}+81663 \frac{t^{6}}{6!}+O\left(t^{8}\right)
\end{aligned}
$$

