Pairings on Bit Strings

Eva Yuping Deng
Thank Catherine Yan
Dalian University of Technology

August 13, 2010

Pairing

A pairing on the set $\left\{(10)^{n}\right\}=\{1,0,1,0 \cdots, 1,0\}$ is a collection of n pairs such that each 1 must pair to a 0 . We use Π_{n} denote the set of all pairings on $\left\{(10)^{n}\right\}$.

Pairing

A pairing on the set $\left\{(10)^{n}\right\}=\{1,0,1,0 \cdots, 1,0\}$ is a collection of n pairs such that each 1 must pair to a 0 . We use Π_{n} denote the set of all pairings on $\left\{(10)^{n}\right\}$.
Given a pairing $\pi \in \Pi_{n}$, we can represent π by a graph with $2 n$ points, whose edge set consists of arcs connecting 1 and 0 . For example, the figure illustrates a pairing

Figure: A pairing on $\left\{(10)^{11}\right\}$

Opener and closer

In a pairing graph, the opener means the left-hand end point of the arc, the closer means the right-hand endpoint of the arc.

Opener and closer

In a pairing graph, the opener means the left-hand end point of the arc, the closer means the right-hand endpoint of the arc.

Opener and closer

In a pairing graph, the opener means the left-hand end point of the arc, the closer means the right-hand endpoint of the arc.

Opener and closer

In a pairing graph, the opener means the left-hand end point of the arc, the closer means the right-hand endpoint of the arc.

Crossing

Define a crossing as a pair of crossing arcs in the graph of π. We sort the crossing into 4 types:

call it a crossing of type A;

call it a crossing of type B;

call it a crossing of type C;

call it a crossing of type D.

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

$1 \begin{array}{lllllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$c r_{A}(\pi)=4$,

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$c r_{A}(\pi)=4$,

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$c r_{A}(\pi)=4$,

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

$c r_{A}(\pi)=4, c r_{B}(\pi)=2$,

Crossing

We use $c r_{A}(\pi), c r_{B}(\pi), c r_{C}(\pi)$ and $c r_{D}(\pi)$ to denote the number of crossings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$c r_{A}(\pi)=4, c r_{B}(\pi)=2, c r_{C}(\pi)=4, c r_{D}(\pi)=4$

Nesting

Similarly, we define a nesting as a pair of arcs covered one by another in the graph of π. We also sort the nesting into 4 types:

call it a nesting of type A;

call it a nesting of type C;

call it a nesting of type D.

Nesting

We use $n e_{A}(\pi), n e_{B}(\pi), n e_{C}(\pi)$ and $n e_{D}(\pi)$ denote the number of nestings of type A, B, C and D in π, respectively.

Nesting

We use $n e_{A}(\pi), n e_{B}(\pi), n e_{C}(\pi)$ and $n e_{D}(\pi)$ denote the number of nestings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$

Nesting

We use $n e_{A}(\pi), n e_{B}(\pi), n e_{C}(\pi)$ and $n e_{D}(\pi)$ denote the number of nestings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$n e_{A}(\pi)=1$,

Nesting

We use $n e_{A}(\pi), n e_{B}(\pi), n e_{C}(\pi)$ and $n e_{D}(\pi)$ denote the number of nestings of type A, B, C and D in π, respectively.

$1 \begin{array}{llllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$n e_{A}(\pi)=1, n e_{B}(\pi)=1$,

Nesting

We use $n e_{A}(\pi), n e_{B}(\pi), n e_{C}(\pi)$ and $n e_{D}(\pi)$ denote the number of nestings of type A, B, C and D in π, respectively.

$1 \begin{array}{lllllllllllllllllllll} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array} 0$
$n e_{A}(\pi)=1, n e_{B}(\pi)=1, n e_{C}(\pi)=4, n e_{D}(\pi)=1$.

Labeled Dyck paths

A Dyck path of semilength n is a path on the plane from the origin $(0,0)$ to $(2 n, 0)$ consisting of up steps and down steps such that the path does not go across the x-axis.

Labeled Dyck paths

A Dyck path of semilength n is a path on the plane from the origin $(0,0)$ to $(2 n, 0)$ consisting of up steps and down steps such that the path does not go across the x-axis.
The height of a step is defined as the higher y coordinate of the step. For a Dyck path P, the height of P is defined to be the maximum height of all its steps.

Labeled Dyck paths

A Dyck path of semilength n is a path on the plane from the origin $(0,0)$ to $(2 n, 0)$ consisting of up steps and down steps such that the path does not go across the x-axis.
The height of a step is defined as the higher y coordinate of the step. For a Dyck path P, the height of P is defined to be the maximum height of all its steps.
In this paper, we will consider the Dyck path with labeling on its up steps.
We will construct a bijection ϕ between pairings on $\left\{(10)^{n}\right\}$ and labeled Dyck paths of semilength n, where the labeling scheme is: for an up step of hight i, it could be labeled by $0,1,2, \cdots$, or $\left\lfloor\frac{i-1}{2}\right\rfloor$, called $\left\lfloor\frac{i-1}{2}\right\rfloor$ the maximal label.

Bijection ϕ

(I) For a pairing $\pi \in \Pi_{n}$, each opener corresponds to an up step, and each closer corresponds to a down step.

Bijection ϕ

(I) For a pairing $\pi \in \Pi_{n}$, each opener corresponds to an up step, and each closer corresponds to a down step.

Bijection ϕ

(I) For a pairing $\pi \in \Pi_{n}$, each opener corresponds to an up step, and each closer corresponds to a down step.
(II) If the opener of an arc ω is 1(0), and the arc crosses with m arcs whose openers are $1(0)$ and located on the left of ω, then we label the corresponding up step with m.

Bijection ϕ

(I) For a pairing $\pi \in \Pi_{n}$, each opener corresponds to an up step, and each closer corresponds to a down step.
(II) If the opener of an arc ω is 1(0), and the arc crosses with m arcs whose openers are $1(0)$ and located on the left of ω, then we label the corresponding up step with m.

Bijection ϕ^{-1}

Bijection ϕ^{-1}

Property of the bijection ϕ

Theorem

ϕ is a bijection between pairings on $\left\{(10)^{n}\right\}$ and labeled Dyck paths of semilength n, where the labeling scheme is: for an up step of hight i, it could be labeled by $0,1,2, \cdots$, or $\left\lfloor\frac{i-1}{2}\right\rfloor$.
Furthermore, for any pairings π, we have

$$
\begin{aligned}
c r_{A}(\pi)+n e_{A}(\pi) & =\sum \text { maximal label } \\
c r_{A}(\pi) & =\sum \text { label }
\end{aligned}
$$

where the sum over all up steps of odd level on $\phi(\pi)$.

$$
\begin{aligned}
c r_{B}(\pi)+n e_{B}(\pi) & =\sum \text { maximal label } \\
c r_{B}(\pi) & =\sum \text { label }
\end{aligned}
$$

where the sum over all up steps of even level on $\phi(\pi)$.

Property of the bijection ϕ

Corollary

The bijection ϕ on pairings preserves openers and closers and interchange the crossings and nestings of type A and B.

We derive immediately the following equality.

$$
\sum x^{c r_{A}(\pi)} y^{c r_{B}(\pi)} p^{n e_{A}(\pi)} q^{n e_{B}(\pi)}=\sum x^{n e_{A}(\pi)} y^{n e_{B}(\pi)} p^{c r_{A}(\pi)} q^{c r_{B}(\pi)}
$$

where the sums over all pairings with the openers sets $\left(\mathcal{O}_{1}, \mathcal{O}_{0}\right)$ and closers sets $\left(\mathcal{C}_{1}, \mathcal{C}_{0}\right)$.
Q: How about the crossing and nesting of type C and D ?

Pairings and permutations

If we write down the position of each 0 which is connected to 1 in order, then we can obtain a permutation. So the total number of pairings on the set $\left\{(10)^{n}\right\}$ is $n!$.

Pairings and permutations

If we write down the position of each 0 which is connected to 1 in order, then we can obtain a permutation. So the total number of pairings on the set $\left\{(10)^{n}\right\}$ is n !.

$\begin{array}{lllllllllllllllllllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11\end{array}$

$$
\pi=2317610411859
$$

Pairings and permutations

If we write down the position of each 0 which is connected to 1 in order, then we can obtain a permutation. So the total number of pairings on the set $\left\{(10)^{n}\right\}$ is $n!$.

$\begin{array}{lllllllllllllllllllllll}1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 & 8 & 8 & 9 & 9 & 10 & 10 & 11 & 11\end{array}$

$$
\pi=2317610411859
$$

Q: Which statistics do the crossing and nesting of type A, B, C and D correspond to?

Pairings without crossing of type A and set partition

The pairings without crossing of type A is corresponding to the set partition on $[n]$, and the crossing of type B on pairing is corresponding to the crossing on set partition.

Pairings without crossing of type A and set partition

The pairings without crossing of type A is corresponding to the set partition on $[n]$, and the crossing of type B on pairing is corresponding to the crossing on set partition.

Further work

1. For the pairing, how about k-crossing and k-nesting of type A, B, C and D.

Further work

1. For the pairing, how about k-crossing and k-nesting of type A, B, C and D.
2. For the set $\left\{(1100)^{n}\right\}$, and each 1 must pair to a 0 , how about the property for the pairings?
Note that, the number of non-crossing pairings on the set $\left\{(1100)^{n}\right\}$ is

$$
\frac{1}{2 n+1}\binom{3 n}{n}
$$

Thank You

