Pairings on Bit Strings

Eva Yuping Deng

Thank Catherine Yan

Dalian University of Technology

August 13, 2010

Pairing

A pairing on the set $\{(10)^n\} = \{1, 0, 1, 0 \cdots, 1, 0\}$ is a collection of n pairs such that each 1 must pair to a 0. We use Π_n denote the set of all pairings on $\{(10)^n\}$.

Pairing

A pairing on the set $\{(10)^n\} = \{1, 0, 1, 0 \cdots, 1, 0\}$ is a collection of n pairs such that each 1 must pair to a 0. We use Π_n denote the set of all pairings on $\{(10)^n\}$.

Given a pairing $\pi \in \Pi_n$, we can represent π by a graph with 2n points, whose edge set consists of arcs connecting 1 and 0. For example, the figure illustrates a pairing

Figure: A pairing on $\{(10)^{11}\}$

Crossing

Define a crossing as a pair of crossing arcs in the graph of π . We sort the crossing into 4 types:

call it a crossing of type A;

call it a crossing of type B;

call it a crossing of type C;

call it a crossing of type D.

 $cr_A(\pi) = 4$,

 $cr_A(\pi) = 4$,

 $cr_A(\pi) = 4$,

 $cr_A(\pi) = 4$, $cr_B(\pi) = 2$,

 $cr_A(\pi) = 4$, $cr_B(\pi) = 2$, $cr_C(\pi) = 4$, $cr_D(\pi) = 4$

Nesting

Similarly, we define a nesting as a pair of arcs covered one by another in the graph of π . We also sort the nesting into 4 types:

 $ne_A(\pi) = 1$,

 $ne_A(\pi) = 1$, $ne_B(\pi) = 1$,

 $ne_A(\pi) = 1$, $ne_B(\pi) = 1$, $ne_C(\pi) = 4$, $ne_D(\pi) = 1$.

A Dyck path of semilength n is a path on the plane from the origin (0,0) to (2n,0) consisting of up steps and down steps such that the path does not go across the x-axis.

A Dyck path of semilength n is a path on the plane from the origin (0,0) to (2n,0) consisting of up steps and down steps such that the path does not go across the x-axis.

The height of a step is defined as the higher y coordinate of the step. For a Dyck path P, the height of P is defined to be the maximum height of all its steps.

A Dyck path of semilength n is a path on the plane from the origin (0,0) to (2n,0) consisting of up steps and down steps such that the path does not go across the x-axis.

The height of a step is defined as the higher y coordinate of the step. For a Dyck path P, the height of P is defined to be the maximum height of all its steps.

In this paper, we will consider the Dyck path with labeling on its up steps.

We will construct a bijection ϕ between pairings on $\{(10)^n\}$ and labeled Dyck paths of semilength n, where the labeling scheme is: for an up step of hight i, it could be labeled by 0, 1, 2, \cdots , or $\lfloor \frac{i-1}{2} \rfloor$, called $\lfloor \frac{i-1}{2} \rfloor$ the maximal label.

(I) For a pairing $\pi \in \Pi_n$, each opener corresponds to an up step, and each closer corresponds to a down step.

(I) For a pairing $\pi \in \Pi_n$, each opener corresponds to an up step, and each closer corresponds to a down step.

(I) For a pairing $\pi \in \Pi_n$, each opener corresponds to an up step, and each closer corresponds to a down step.

(II) If the opener of an arc ω is 1(0), and the arc crosses with m arcs whose openers are 1(0) and located on the left of ω , then we label the corresponding up step with m.

(I) For a pairing $\pi \in \Pi_n$, each opener corresponds to an up step, and each closer corresponds to a down step.

(II) If the opener of an arc ω is 1(0), and the arc crosses with m arcs whose openers are 1(0) and located on the left of ω , then we label the corresponding up step with m.

Deng (DUT)

3

(日) (同) (三) (三)

∃ →

• • • • • • • •

æ

Theorem

 ϕ is a bijection between pairings on $\{(10)^n\}$ and labeled Dyck paths of semilength n, where the labeling scheme is: for an up step of hight i, it could be labeled by $0, 1, 2, \dots$, or $\lfloor \frac{i-1}{2} \rfloor$. Furthermore, for any pairings π , we have

$$cr_A(\pi) + ne_A(\pi) = \sum$$
 maximal label $cr_A(\pi) = \sum$ label

where the sum over all up steps of odd level on $\phi(\pi)$.

$$cr_B(\pi) + ne_B(\pi) = \sum$$
 maximal label $cr_B(\pi) = \sum$ label

where the sum over all up steps of even level on $\phi(\pi)$.

Deng (DUT)

Corollary

The bijection ϕ on pairings preserves openers and closers and interchange the crossings and nestings of type A and B.

We derive immediately the following equality.

$$\sum x^{cr_A(\pi)} y^{cr_B(\pi)} p^{ne_A(\pi)} q^{ne_B(\pi)} = \sum x^{ne_A(\pi)} y^{ne_B(\pi)} p^{cr_A(\pi)} q^{cr_B(\pi)}$$

where the sums over all pairings with the openers sets $(\mathcal{O}_1, \mathcal{O}_0)$ and closers sets $(\mathcal{C}_1, \mathcal{C}_0)$. Q: How about the crossing and nesting of type C and D? If we write down the position of each 0 which is connected to 1 in order, then we can obtain a permutation. So the total number of pairings on the set $\{(10)^n\}$ is n!.

If we write down the position of each 0 which is connected to 1 in order, then we can obtain a permutation. So the total number of pairings on the set $\{(10)^n\}$ is n!.

 $\pi=2\ 3\ 1\ 7\ 6\ 10\ 4\ 11\ 8\ 5\ 9$

If we write down the position of each 0 which is connected to 1 in order, then we can obtain a permutation. So the total number of pairings on the set $\{(10)^n\}$ is n!.

 $\pi=2\ 3\ 1\ 7\ 6\ 10\ 4\ 11\ 8\ 5\ 9$

Q: Which statistics do the crossing and nesting of type A, B, C and D correspond to?

Pairings without crossing of type A and set partition

The pairings without crossing of type A is corresponding to the set partition on [n], and the crossing of type B on pairing is corresponding to the crossing on set partition.

Pairings without crossing of type A and set partition

The pairings without crossing of type A is corresponding to the set partition on [n], and the crossing of type B on pairing is corresponding to the crossing on set partition.

Deng (DUT)

1. For the pairing, how about k-crossing and k-nesting of type A,B,C and D.

1. For the pairing, how about k-crossing and k-nesting of type A, B, C and D.

2. For the set $\{(1100)^n\}$, and each 1 must pair to a 0, how about the property for the pairings?

Note that, the number of non-crossing pairings on the set $\{(1100)^n\}$ is

$$\frac{1}{2n+1}\binom{3n}{n}$$

Thank You

→ < Ξ >

æ

A B > 4
B > 4
B