Enumerating permutations containing few copies of 321 and 3412

Dan Daly
Southeast Missouri State University

August 12, 2010
Permutation Patterns 2010
Dartmouth College

Outline

(1) Motivation
(2) Connections between permutation patterns and reduced decompositions.
(3) New Results

Definition

A permutation is Boolean if it avoids 321 and 3412.

Definition

A permutation is Boolean if it avoids 321 and 3412.

Theorem (Fan 1996, West 1998)
The number of permutations that avoid 321 and 3412 is $F_{2 n-1}$ where F_{k} is the $k^{\text {th }}$ Fibonacci number.

Theorem (Egge 2003)

The number of involutions in S_{n} which avoid 3412 and contain exactly one copy of 321 is

$$
\frac{2(n-1) F_{n}-n F_{n-1}}{5}
$$

Theorem (Egge 2003)

The number of involutions in S_{n} which avoid 3412 and contain exactly one copy of 321 is

$$
\frac{2(n-1) F_{n}-n F_{n-1}}{5}
$$

Question: What can we say about permutations that contain one or two copies of 321 and/or 3412?

Theorem (Egge 2003)

The number of involutions in S_{n} which avoid 3412 and contain exactly one copy of 321 is

$$
\frac{2(n-1) F_{n}-n F_{n-1}}{5}
$$

Question: What can we say about permutations that contain one or two copies of 321 and/or 3412?
To do more, we will use the relationship between permutation patterns and reduced decompositions.
S_{n} is generated by transpositions $s_{i}=(i, i+1)$ where $1 \leq i \leq n-1$.
S_{n} is generated by transpositions $s_{i}=(i, i+1)$ where $1 \leq i \leq n-1$.

Definition

Let $\pi \in S_{n}$. If $\pi=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ is an expression for π of minimal length, then $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a reduced decomposition for π.
S_{n} is generated by transpositions $s_{i}=(i, i+1)$ where $1 \leq i \leq n-1$.

Definition

Let $\pi \in S_{n}$. If $\pi=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ is an expression for π of minimal length, then $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a reduced decomposition for π.
$s_{1} s_{2} s_{1}=(12)(23)(12)$
S_{n} is generated by transpositions $s_{i}=(i, i+1)$ where $1 \leq i \leq n-1$.

Definition

Let $\pi \in S_{n}$. If $\pi=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ is an expression for π of minimal length, then $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a reduced decomposition for π.
$s_{1} s_{2} s_{1}=(12)(23)(12)=321$.
S_{n} is generated by transpositions $s_{i}=(i, i+1)$ where $1 \leq i \leq n-1$.

Definition

Let $\pi \in S_{n}$. If $\pi=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ is an expression for π of minimal length, then $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ is a reduced decomposition for π.
$s_{1} s_{2} s_{1}=(12)(23)(12)=321$.
$(1,2,1)$ is a reduced decomposition for 321 .

Reduced decompositions are not unique! Given a r.d. for π, one can obtain another reduced decomposition through the use of braid moves.

Reduced decompositions are not unique! Given a r.d. for π, one can obtain another reduced decomposition through the use of braid moves.

Braid Moves:
$(i, j)=(j, i)$ when $|i-j|>1$.
$(i, i+1, i)=(i+1, i, i+1) \forall i$.

Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced decomposition of π with no repeated elements.

Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced decomposition of π with no repeated elements.

Example
$(2,3,4,1)=(23)(34)(45)(12)=31452$ avoids 321 and 3412.

Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced decomposition of π with no repeated elements.

Example

$(2,3,4,1)=(23)(34)(45)(12)=31452$ avoids 321 and 3412.
$(2,3,4,2)=(23)(34)(45)(23)=14352$ contains 321 and avoids 3412.

Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced decomposition of π with no repeated elements.

Example

$(2,3,4,1)=(23)(34)(45)(12)=31452$ avoids 321 and 3412.
$(2,3,4,2)=(23)(34)(45)(23)=14352$ contains 321 and avoids 3412.

Definition

A consecutive substring of a reduced decomposition is called a factor of the reduced decomposition.

Question: What do repeated elements in reduced decompositions tell us about avoidance of 321 and 3412?

Question: What do repeated elements in reduced decompositions tell us about avoidance of 321 and 3412 ?

Theorem

$\pi \in S_{n}$ has a reduced decomposition with exactly one element repeated if and only if π avoids 3412 and contains exactly one 321 pattern or π avoids 321 and contains exactly one 3412 pattern.

Question: What do repeated elements in reduced decompositions tell us about avoidance of 321 and 3412?

Theorem

$\pi \in S_{n}$ has a reduced decomposition with exactly one element repeated if and only if π avoids 3412 and contains exactly one 321 pattern or π avoids 321 and contains exactly one 3412 pattern. More specifically,

- π contains exactly one 321 pattern and avoids 3412 if and only if π has a reduced decomposition with $(i, i+1, i)$ as a factor for some $i \in\{1, \ldots n-2\}$ and no other repetitions.

Question: What do repeated elements in reduced decompositions tell us about avoidance of 321 and 3412 ?

Theorem

$\pi \in S_{n}$ has a reduced decomposition with exactly one element repeated if and only if π avoids 3412 and contains exactly one 321 pattern or π avoids 321 and contains exactly one 3412 pattern. More specifically,

- π contains exactly one 321 pattern and avoids 3412 if and only if π has a reduced decomposition with $(i, i+1, i)$ as a factor for some $i \in\{1, \ldots n-2\}$ and no other repetitions.
- π contains exactly one 3412 pattern and avoids 321 if and only if π has a reduced decomposition with $(i, i-1, i+1, i]$ as a factor for some $i \in\{2, \ldots n-2\}$ and no other repetitions.

Examples

- 25314 has r.d. $(4,1,2,3,2)$
$((2,3,2)$ is of the form $(i, i+1, i)$, so there must be a 321.$)$

Examples

- 25314 has r.d. ($4,1,2,3,2$)
$((2,3,2)$ is of the form $(i, i+1, i)$, so there must be a 321.$)$

Examples

- 25314 has r.d. ($4,1,2,3,2$)
$((2,3,2)$ is of the form $(i, i+1, i)$, so there must be a 321.$)$
- 34152 has r.d. $(2,1,3,2,4)$
([2132] is of the form $[i(i-1)(i+1) i]$, so there must be a 3412.)

Examples

- 25314 has r.d. $(4,1,2,3,2)$
$((2,3,2)$ is of the form $(i, i+1, i)$, so there must be a 321.$)$
- 34152 has r.d. (2, 1, 3, 2, 4)
([2132] is of the form $[i(i-1)(i+1) i]$, so there must be a 3412.)

Theorem

The number of permutations in $A v_{n}(3412)$ that contain exactly one 321 is equal to the number of permutations in $A v_{n+1}(321)$ that contain exactly one 3412.

Theorem

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 is

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}
$$

where F_{m} is the $m^{\text {th }}$ Fibonacci number.

Theorem

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 is

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}
$$

where F_{m} is the $m^{\text {th }}$ Fibonacci number.
Closed Form:

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}=\frac{2(2 n-5) F_{2 n-6}+(7 n-16) F_{2 n-5}}{5}
$$

Theorem

The number of permutations in S_{n} that avoid 3412 and contain exactly one 321 is

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}
$$

where F_{m} is the $m^{\text {th }}$ Fibonacci number.
Closed Form:

$$
\sum_{i=1}^{n-2} F_{2 i} F_{2(n-i-1)}=\frac{2(2 n-5) F_{2 n-6}+(7 n-16) F_{2 n-5}}{5}
$$

Generating Function:

$$
\frac{x^{3}}{\left(1-3 x+x^{2}\right)^{2}}
$$

n	3	4	5	6	7	8	9
	1	6	25	90	300	954	2939

(OEIS A001871)

What next?

What next?
Can generalize to one of two possibilities:
(1) One element repeated three times and no other repetitions.

What next?
Can generalize to one of two possibilities:
(1) One element repeated three times and no other repetitions.
(2) Two elements each repeated once and no other repetitions.

What next?
Can generalize to one of two possibilities:
(1) One element repeated three times and no other repetitions.
(2) Two elements each repeated once and no other repetitions.

Theorem

If \mathbf{s} is a reduced decomposition with exactly one element occurring three times and no other repetitions, then there exists a reduced decomposition \mathbf{t} equivalent to \mathbf{s} with precisely two elements each repeated once and no other repetitions.

Consider reduced decompositions with two elements each repeated once and no other repetitions.

Consider reduced decompositions with two elements each repeated once and no other repetitions.

If a permutation has a reduced decomposition with exactly one element repeated and no other repetitions, we can use braid moves to minimize the length of the factor in between the repeated elements to either $(i, i+1, i)$ or $(i, i+1, i-1, i)$ for some i.

Consider reduced decompositions with two elements each repeated once and no other repetitions.

If a permutation has a reduced decomposition with exactly one element repeated and no other repetitions, we can use braid moves to minimize the length of the factor in between the repeated elements to either $(i, i+1, i)$ or $(i, i+1, i-1, i)$ for some i.

What are the possible "minimal" factors for permutations with two repetitions?

Definition

If $\mathbf{s}=\left(i_{1}, \ldots, i_{m}\right)$ is a reduced decomposition of $\pi \in S_{n}$ then a repetition factor of \mathbf{s} is a factor $\left(i_{j}, \ldots, i_{k}\right)$ of \mathbf{s} with $1 \leq j<k \leq m$ such that all elements that occur more than once in \mathbf{s} occur in the factor $\left(i_{j}, \ldots i_{k}\right)$.

Definition

If $\mathbf{s}=\left(i_{1}, \ldots, i_{m}\right)$ is a reduced decomposition of $\pi \in S_{n}$ then a repetition factor of \mathbf{s} is a factor $\left(i_{j}, \ldots, i_{k}\right)$ of \mathbf{s} with $1 \leq j<k \leq m$ such that all elements that occur more than once in \mathbf{s} occur in the factor $\left(i_{j}, \ldots i_{k}\right)$.

Definition

Let $\mathbf{s}=\left(i_{1} \ldots i_{m}\right)$ be a reduced decomposition. A repetition factor ($i_{j}, \ldots i_{k}$) is minimal if $v-u$ is minimal among all equivalent reduced decompositions for \mathbf{s}.

Definition

If $\mathbf{s}=\left(i_{1}, \ldots, i_{m}\right)$ is a reduced decomposition of $\pi \in S_{n}$ then a repetition factor of \mathbf{s} is a factor $\left(i_{j}, \ldots, i_{k}\right)$ of \mathbf{s} with $1 \leq j<k \leq m$ such that all elements that occur more than once in \mathbf{s} occur in the factor $\left(i_{j}, \ldots i_{k}\right)$.

Definition

Let $\mathbf{s}=\left(i_{1} \ldots i_{m}\right)$ be a reduced decomposition. A repetition factor ($i_{j}, \ldots i_{k}$) is minimal if $v-u$ is minimal among all equivalent reduced decompositions for \mathbf{s}.

Example

$(1,2,3,4,2)$ has repetition factor $(2,3,4,2)$, but since $(1,2,3,4,2)$ is equivalent to $(1,2,3,2,4)$ the repetition factor is not minimal.

Definition

If $\mathbf{s}=\left(i_{1}, \ldots, i_{m}\right)$ is a reduced decomposition of $\pi \in S_{n}$ then a repetition factor of \mathbf{s} is a factor $\left(i_{j}, \ldots, i_{k}\right)$ of \mathbf{s} with $1 \leq j<k \leq m$ such that all elements that occur more than once in \mathbf{s} occur in the factor $\left(i_{j}, \ldots i_{k}\right)$.

Definition

Let $\mathbf{s}=\left(i_{1} \ldots i_{m}\right)$ be a reduced decomposition. A repetition factor ($i_{j}, \ldots i_{k}$) is minimal if $v-u$ is minimal among all equivalent reduced decompositions for \mathbf{s}.

Example

$(1,2,3,4,2)$ has repetition factor $(2,3,4,2)$, but since $(1,2,3,4,2)$ is equivalent to $(1,2,3,2,4)$ the repetition factor is not minimal.
$(2,3,2)$ is a minimal repetition factor.

Definition

A minimal repetition factor $\left(i_{1}, \ldots i_{k}\right)$ with two repetitions is entangled if it is not equivalent to a factor of the form $(p, \ldots, p, \ldots, q, \ldots, q)$. A minimal repetition factor with two repetitions is unentangled if it is equivalent to a factor of the form $(p, \ldots, p, \ldots, q, \ldots, q)$.

Classification of Entangled Factors

Entangled Factors of Length 5

- $(i, i-1, i+1, i, i+1)$
$(2,1,3,2,3) \rightarrow 3421$
- $(i+1, i, i+1, i-1, i)$
$(3,2,3,1,2) \rightarrow 4312$
- $(i+1, i, i-1, i, i+1)$
$(3,2,1,2,3) \rightarrow 4231$

Classification of Entangled Factors

Entangled Factors of Length >5

Length 6

- $(i, i-1, i+1, i, i+2, i+1)$
$(2,1,3,2,4,3) \rightarrow 34512$
- $(i+1, i+2, i, i+1, i-1, i)$
$(3,4,2,3,1,2) \rightarrow 45123$
- $(i, i-1, i+1, i+2, i+1, i)$
$(2,1,3,4,3,2) \rightarrow 35142$
- $(i+1, i+2, i, i-1, i, i+1)$
$(3,4,2,1,2,3) \rightarrow 42513$

Length 7

- $(i, i-1, i+2, i+1, i+3, i+2, i) \quad(2,1,4,3,5,4,2) \rightarrow 351624$

Theorem

A factor of a reduced decomposition with exactly two repeated elements has a subfactor that is equivalent to one of the previous entangled factors or has a subfactor that is of the form $(p, \ldots, p, \ldots, q, \ldots, q)$. In particular, any entangled factor is equivalent to one that has been previously listed.

Want: Connection between reduced decompositions with two elements each repeated once and no other repetitions and pattern conditions involving 321 and 3412.

Want: Connection between reduced decompositions with two elements each repeated once and no other repetitions and pattern conditions involving 321 and 3412.

Focus on the case of permutations containing exactly 2321 patterns and avoiding 3412. There are similar results for containing exactly one 321 and exactly one 3412 pattern and for containing exactly two 3412 patterns and avoiding 321.

A permutation in $A v_{n}(3412)$ can contain exactly two 321 patterns by sharing:

- 2 elements: $\{3421,4312,4231\}$

A permutation in $A v_{n}$ (3412) can contain exactly two 321 patterns by sharing:

- 2 elements: $\{3421,4312,4231\}$
- 1 element: $\{32541,52143\}$

A permutation in $A v_{n}(3412)$ can contain exactly two 321 patterns by sharing:

- 2 elements: $\{3421,4312,4231\}$
- 1 element: $\{32541,52143\}$
- 0 elements: $\{321654,326154,421653\}$

Theorem

π has a reduced decomposition with a factor of the form
(1) $(i, i-1, i+1, i, i+1)$
(2) $(i+1, i, i+1, i-1, i)$
(3) $(i+1, i, i-1, i, i+1)$
and no other repetitions if and only if π has exactly two 321 patterns of the corresponding form
(1) 3421
(2) 4312
(3) 4231
and avoids 3412.

Theorem

π has a reduced decomposition with a factor of the form
(1) $(i, i-1, i+1, i, i+1)$
(2) $(i+1, i, i+1, i-1, i)$
(3) $(i+1, i, i-1, i, i+1)$
and no other repetitions if and only if π has exactly two 321 patterns of the corresponding form
(1) 3421
(2) 4312
(3) 4231
and avoids 3412.
Note: this takes care of the entangled factors for this case. What about the unentangled factors?

Theorem

$\pi \in S_{n}$ has a reduced decomposition with a factor of the form
(1) $(i, i+1, i, i+2, i+3, \ldots, i+k, i+k+1, i+k)$
(2) $(i, i+1, i, i-1, i-2, \ldots, i-k, i-k-1, i-k)$
and no other repetitions if and only if π has exactly two 321 patterns of the form
(1) 32541
(2) 52143
and avoids 3412.

Theorem

$\pi \in S_{n}$ has a reduced decomposition with a factor of the form
(1) $(i, i+1, i, i+2, i+3, \ldots, i+k, i+k+1, i+k)$
(2) $(i, i+1, i, i-1, i-2, \ldots, i-k, i-k-1, i-k)$
and no other repetitions if and only if π has exactly two 321 patterns of the form
(1) 32541
(2) 52143
and avoids 3412.

Example

$(2,3,2,4,5,6,7,6)$ gives the permutation 14356872

Theorem

$\pi \in S_{n}$ has a reduced decomposition with a factor of the form
(1) $(i, i+1, i, i+2, i+3, \ldots, i+k, i+k+1, i+k)$
(2) $(i, i+1, i, i-1, i-2, \ldots, i-k, i-k-1, i-k)$
and no other repetitions if and only if π has exactly two 321 patterns of the form
(1) 32541
(2) 52143
and avoids 3412.

Example

$(2,3,2,4,5,6,7,6)$ gives the permutation 14356872

Theorem

$\pi \in S_{n}$ has a reduced decomposition with a factor of the form $(i, i+1, i, j, j+1, j)$ where $|i-j|>2$ and no other repetitions if and only if π has exactly two 321 patterns of the form 321654, 326154 or 421653 and avoids 3412.

Theorem

The following quantities are equal:

- $\mid\left\{\pi \in S_{n}\right.$:
π avoids 3412 and contains exactly two 321 patterns of the form 3421\}|
- | $\left\{\pi \in S_{n}\right.$:
π avoids 3412 and contains exactly two 321 patterns of the form 4312\}|
- $\mid\left\{\pi \in S_{n}\right.$:
π avoids 3412 and contains exactly two 321 patterns of the form 4231\}|
- $\sum_{i=1}^{n-3} F_{2 i} F_{2(n-i-2)}$ where F_{m} is the $m^{\text {th }}$ Fibonacci number

Theorem

The following quantities are equal:

- |\{ $\pi \in A v_{n}(3412)$:
π contains exactly two 321 patterns of the form 32541\}|
- $\mid\left\{\pi \in A v_{n}(3412)\right.$:
π contains exactly two 321 patterns of the form 52143\}|
-

$$
\sum_{k=3}^{n-2}\left(\sum_{j=1}^{n-k-1} F_{2 j} F_{2(n-j-k)}\right)
$$

where F_{m} is the $m^{\text {th }}$ Fibonacci number

Let

$$
f(a)=F_{2 a+1}+2 \sum_{m=1}^{a} F_{2(a-m)+1}+(a-2)+\sum_{m=1}^{a-2}(a-m-1) F_{2 m+1}
$$

Let

$$
f(a)=F_{2 a+1}+2 \sum_{m=1}^{a} F_{2(a-m)+1}+(a-2)+\sum_{m=1}^{a-2}(a-m-1) F_{2 m+1}
$$

Theorem

The number of permutations in $A v_{n}(3412)$ containing exactly two 321 patterns sharing no elements is

$$
\sum_{k=4}^{n-2} f(k-3)\left(\sum_{m=1}^{n-k-1} F_{2 m} F_{2(n-m-k)}\right)
$$

Theorem

The number of permutations in $A v_{n}(3412)$ that contain exactly two 321 patterns is

$$
\begin{gathered}
3 \sum_{k=1}^{n-3} F_{2 k} F_{2(n-k-2)}+2 \sum_{k=3}^{n-2}\left(\sum_{j=1}^{n-k-1} F_{2 j} F_{2(n-j-k)}\right)+ \\
\sum_{k=4}^{n-2} f(k-3)\left(\sum_{m=1}^{n-k-1} F_{2 m} F_{2(n-m-k)}\right)
\end{gathered}
$$

n	4	5	6	7	8	9	10	11	12
	3	20	92	363	1317	4530	15012	48391	152674

Theorem

The number of permutations in S_{n} that contain exactly one 321 pattern and exactly one 3412 pattern is

$$
\begin{aligned}
& 2 \sum_{k=1}^{n-4} F_{2 k} F_{2(n-k-3)}+4 \sum_{k=4}^{n-2}\left(\sum_{j=1}^{n-k-1} F_{2 j} F_{2(n-j-k)}\right)+ \\
& 2 \sum_{k=5}^{n-2} f(k-4)\left(\sum_{m=1}^{n-k-1} F_{2 m} F_{2(n-m-k)}\right)
\end{aligned}
$$

n	5	6	7	8	9	10	11	12
	2	16	84	366	1434	5244	18268	61382

Theorem

The number of permutations in $A v_{n}(321)$ that contain exactly two 3412 patterns is

$$
\begin{gathered}
\sum_{k=1}^{n-5} F_{2 k} F_{2(n-k-4)}+2 \sum_{k=5}^{n-2}\left(\sum_{j=1}^{n-k-1} F_{2 j} F_{2(n-j-k)}\right)+ \\
\sum_{k=6}^{n-2} f(k-5)\left(\sum_{m=1}^{n-k-1} F_{2 m} F_{2(n-m-k)}\right)
\end{gathered}
$$

n	6	7	8	9	10	11	12
	1	8	42	183	717	2622	9134

Thank you!

