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Definition

A permutation is Boolean if it avoids 321 and 3412.

Theorem (Fan 1996, West 1998)

The number of permutations that avoid 321 and 3412 is F2n−1

where Fk is the kth Fibonacci number.
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Theorem (Egge 2003)

The number of involutions in Sn which avoid 3412 and contain
exactly one copy of 321 is

2(n − 1)Fn − nFn−1

5

Question: What can we say about permutations that contain one
or two copies of 321 and/or 3412?
To do more, we will use the relationship between permutation
patterns and reduced decompositions.
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Sn is generated by transpositions si = (i , i + 1) where
1 ≤ i ≤ n − 1.

Definition

Let π ∈ Sn. If π = si1si2 . . . sik is an expression for π of minimal
length, then (i1, i2, . . . , ik) is a reduced decomposition for π.

s1s2s1 = (12)(23)(12) = 321.
(1, 2, 1) is a reduced decomposition for 321.
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Reduced decompositions are not unique! Given a r.d. for π, one
can obtain another reduced decomposition through the use of braid
moves.

Braid Moves:
(i , j) = (j , i) when |i − j | > 1.
(i , i + 1, i) = (i + 1, i , i + 1) ∀i .
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Theorem (Tenner 2007)

π avoids 321 and 3412 if and only if there exists a reduced
decomposition of π with no repeated elements.

Example

(2, 3, 4, 1) = (23)(34)(45)(12) = 31452 avoids 321 and 3412.
(2, 3, 4, 2) = (23)(34)(45)(23) = 14352 contains 321 and avoids
3412.

Definition

A consecutive substring of a reduced decomposition is called a
factor of the reduced decomposition.
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Question: What do repeated elements in reduced decompositions
tell us about avoidance of 321 and 3412?

Theorem

π ∈ Sn has a reduced decomposition with exactly one element
repeated if and only if π avoids 3412 and contains exactly one 321
pattern or π avoids 321 and contains exactly one 3412 pattern.
More specifically,

π contains exactly one 321 pattern and avoids 3412 if and
only if π has a reduced decomposition with (i , i + 1, i) as a
factor for some i ∈ {1, . . . n − 2} and no other repetitions.

π contains exactly one 3412 pattern and avoids 321 if and
only if π has a reduced decomposition with (i , i − 1, i + 1, i ] as
a factor for some i ∈ {2, . . . n − 2} and no other repetitions.
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Examples

25314 has r.d. (4, 1, 2, 3, 2)
((2, 3, 2) is of the form (i , i + 1, i), so there must be a 321.)
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Theorem

The number of permutations in Avn(3412) that contain exactly
one 321 is equal to the number of permutations in Avn+1(321)
that contain exactly one 3412.

Dan Daly



Theorem

The number of permutations in Sn that avoid 3412 and contain
exactly one 321 is

n−2∑
i=1

F2iF2(n−i−1)

where Fm is the mth Fibonacci number.

Closed Form:

n−2∑
i=1

F2iF2(n−i−1) =
2(2n − 5)F2n−6 + (7n − 16)F2n−5

5

Generating Function:
x3

(1− 3x + x2)2
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n 3 4 5 6 7 8 9

1 6 25 90 300 954 2939

(OEIS A001871)
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What next?

Can generalize to one of two possibilities:

1 One element repeated three times and no other repetitions.

2 Two elements each repeated once and no other repetitions.

Theorem

If s is a reduced decomposition with exactly one element occurring
three times and no other repetitions, then there exists a reduced
decomposition t equivalent to s with precisely two elements each
repeated once and no other repetitions.
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Consider reduced decompositions with two elements each repeated
once and no other repetitions.

If a permutation has a reduced decomposition with exactly one
element repeated and no other repetitions, we can use braid moves
to minimize the length of the factor in between the repeated
elements to either (i , i + 1, i) or (i , i + 1, i − 1, i) for some i .

What are the possible ”minimal” factors for permutations with two
repetitions?
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Definition

If s = (i1, . . . , im) is a reduced decomposition of π ∈ Sn then a
repetition factor of s is a factor (ij , . . . , ik) of s with
1 ≤ j < k ≤ m such that all elements that occur more than once
in s occur in the factor (ij , . . . ik).

Definition

Let s = (i1 . . . im) be a reduced decomposition. A repetition factor
(ij , . . . ik) is minimal if v − u is minimal among all equivalent
reduced decompositions for s.

Example

(1, 2, 3, 4, 2) has repetition factor (2, 3, 4, 2), but since (1, 2, 3, 4, 2)
is equivalent to (1, 2, 3, 2, 4) the repetition factor is not minimal.
(2, 3, 2) is a minimal repetition factor.
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Definition

A minimal repetition factor (i1, . . . ik) with two repetitions is
entangled if it is not equivalent to a factor of the form
(p, . . . , p, . . . , q, . . . , q). A minimal repetition factor with two
repetitions is unentangled if it is equivalent to a factor of the form
(p, . . . , p, . . . , q, . . . , q).
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Classification of Entangled Factors

Entangled Factors of Length 5

(i , i − 1, i + 1, i , i + 1) (2, 1, 3, 2, 3)→ 3421

(i + 1, i , i + 1, i − 1, i) (3, 2, 3, 1, 2)→ 4312

(i + 1, i , i − 1, i , i + 1) (3, 2, 1, 2, 3)→ 4231

Dan Daly



Classification of Entangled Factors

Entangled Factors of Length > 5

Length 6

(i , i − 1, i + 1, i , i + 2, i + 1) (2, 1, 3, 2, 4, 3)→ 34512

(i + 1, i + 2, i , i + 1, i − 1, i) (3, 4, 2, 3, 1, 2)→ 45123

(i , i − 1, i + 1, i + 2, i + 1, i) (2, 1, 3, 4, 3, 2)→ 35142

(i + 1, i + 2, i , i − 1, i , i + 1) (3, 4, 2, 1, 2, 3)→ 42513

Length 7

(i , i −1, i + 2, i + 1, i + 3, i + 2, i) (2, 1, 4, 3, 5, 4, 2)→ 351624
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Theorem

A factor of a reduced decomposition with exactly two repeated
elements has a subfactor that is equivalent to one of the previous
entangled factors or has a subfactor that is of the form
(p, . . . , p, . . . , q, . . . , q). In particular, any entangled factor is
equivalent to one that has been previously listed.

Dan Daly



Want: Connection between reduced decompositions with two
elements each repeated once and no other repetitions and pattern
conditions involving 321 and 3412.

Focus on the case of permutations containing exactly 2 321
patterns and avoiding 3412. There are similar results for containing
exactly one 321 and exactly one 3412 pattern and for containing
exactly two 3412 patterns and avoiding 321.
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A permutation in Avn(3412) can contain exactly two 321 patterns
by sharing:

2 elements: {3421, 4312, 4231}

1 element: {32541, 52143}
0 elements: {321654, 326154, 421653}
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Theorem

π has a reduced decomposition with a factor of the form

1 (i , i − 1, i + 1, i , i + 1)

2 (i + 1, i , i + 1, i − 1, i)

3 (i + 1, i , i − 1, i , i + 1)

and no other repetitions if and only if π has exactly two 321
patterns of the corresponding form

1 3421

2 4312

3 4231

and avoids 3412.

Note: this takes care of the entangled factors for this case. What
about the unentangled factors?
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Theorem

π ∈ Sn has a reduced decomposition with a factor of the form

1 (i , i + 1, i , i + 2, i + 3, . . . , i + k , i + k + 1, i + k)

2 (i , i + 1, i , i − 1, i − 2, . . . , i − k , i − k − 1, i − k)

and no other repetitions if and only if π has exactly two 321
patterns of the form

1 32541

2 52143

and avoids 3412.

Example

(2, 3, 2, 4, 5, 6, 7, 6) gives the permutation 14356872
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Theorem

π ∈ Sn has a reduced decomposition with a factor of the form
(i , i + 1, i , j , j + 1, j) where |i − j | > 2 and no other repetitions if
and only if π has exactly two 321 patterns of the form 321654,
326154 or 421653 and avoids 3412.
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Theorem

The following quantities are equal:

|{π ∈ Sn :
π avoids 3412 and contains exactly two 321 patterns of the form 3421}|
|{π ∈ Sn :
π avoids 3412 and contains exactly two 321 patterns of the form 4312}|
|{π ∈ Sn :
π avoids 3412 and contains exactly two 321 patterns of the form 4231}|Pn−3

i=1 F2iF2(n−i−2) where Fm is the mth Fibonacci number
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Theorem

The following quantities are equal:

|{π ∈ Avn(3412) :
π contains exactly two 321 patterns of the form 32541}|
|{π ∈ Avn(3412) :
π contains exactly two 321 patterns of the form 52143}|

n−2X
k=3

(
n−k−1X

j=1

F2jF2(n−j−k))

where Fm is the mth Fibonacci number
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Let

f (a) = F2a+1 + 2
a∑

m=1

F2(a−m)+1 + (a− 2) +
a−2∑
m=1

(a−m − 1)F2m+1

Theorem

The number of permutations in Avn(3412) containing exactly two
321 patterns sharing no elements is

n−2∑
k=4

f (k − 3)(
n−k−1∑
m=1

F2mF2(n−m−k))
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Theorem

The number of permutations in Avn(3412) that contain exactly
two 321 patterns is

3
n−3∑
k=1

F2kF2(n−k−2) + 2
n−2∑
k=3

(
n−k−1∑

j=1

F2jF2(n−j−k))+

n−2∑
k=4

f (k − 3)(
n−k−1∑
m=1

F2mF2(n−m−k))

n 4 5 6 7 8 9 10 11 12

3 20 92 363 1317 4530 15012 48391 152674
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Theorem

The number of permutations in Sn that contain exactly one 321
pattern and exactly one 3412 pattern is

2
n−4∑
k=1

F2kF2(n−k−3) + 4
n−2∑
k=4

(
n−k−1∑

j=1

F2jF2(n−j−k))+

2
n−2∑
k=5

f (k − 4)(
n−k−1∑
m=1

F2mF2(n−m−k))

n 5 6 7 8 9 10 11 12

2 16 84 366 1434 5244 18268 61382
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Theorem

The number of permutations in Avn(321) that contain exactly two
3412 patterns is

n−5∑
k=1

F2kF2(n−k−4) + 2
n−2∑
k=5

(
n−k−1∑

j=1

F2jF2(n−j−k))+

n−2∑
k=6

f (k − 5)(
n−k−1∑
m=1

F2mF2(n−m−k))

n 6 7 8 9 10 11 12

1 8 42 183 717 2622 9134
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Thank you!
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