
Expanding permutation statistics
as sums of permutation patterns

Petter Br�and�en
Stockholm University

Anders Claesson
Reykjavik University

1 / 23



Permutations/patterns as functions

Think of � 2 S as a function � : S! N that counts
occurrences of �

Example

I 1 = j � j

I 21 = inv
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Statistics as linear combinations of patterns

Any function

stat : S! C

may be represented uniquely as a (typically in�nite) sum

stat =
X
�2S

�(�)�

where f�(�)g�2S � C

Example

lmax =
X
�2S

�(j�j)=1

(�1)j�j�1� = 1� 21 + 231 + 321� � � �
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The incidence algebra I(P )

Let Q be a locally �nite poset.

The incidence algebra, I(Q), is the C-algebra of all functions
Q�Q! C with multiplication

(FG)(x; z) =
X

x�y�z

F (x; y)G(y; z)

and identity

�(x; y) =

(
1 if x = y;

0 if x 6= y
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The incidence algebra I(S)

I De�ne � � � in S if �(�) > 0

I De�ne P 2 I(S) by P (�; �) = �(�)

� 1 12 21 123 132 213 231 312 321 : : :

� 1 1 1 1 1 1 1 1 1 1 : : :
1 0 1 2 2 3 3 3 3 3 3 : : :
12 0 0 1 0 3 2 2 1 1 0 : : :
21 0 0 0 1 0 1 1 2 2 3 : : :
123 0 0 0 0 1 0 0 0 0 0 : : :
132 0 0 0 0 0 1 0 0 0 0 : : :
213 0 0 0 0 0 0 1 0 0 0 : : :
231 0 0 0 0 0 0 0 1 0 0 : : :
312 0 0 0 0 0 0 0 0 1 0 : : :
321 0 0 0 0 0 0 0 0 0 1 : : :
...

...
...

...
...

...
...

...
...

...
...

. . .
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The incidence algebra I(S)

I De�ne � � � in S if �(�) > 0

I De�ne P 2 I(S) by P (�; �) = �(�)

P is invertible because P (�; �) = 1.

Therefore, for any stat : S! C, there are unique scalars
f�(�)g�2S � C such that

stat =
X
�2S

�(�)�: (1)

Indeed, I(S) acts on the right of CS by

(f � F )(�) =
X
���

f(�)F (�; �):

Thus (1) i� stat = � � P i� � = stat �P�1.
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lmax = 1� 21 + 231 + 321� � � �

Why?

des; maj; exc; �x; : : :

How do we expand them?

6 / 23



lmax = 1� 21 + 231 + 321� � � �

Why?

des; maj; exc; �x; : : :

How do we expand them?

6 / 23



Mesh patterns

A mesh pattern is a pair

p = (�;R) with � 2 Sk and R � [0; k]� [0; k]

Example

p =
�
3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g

�

=

7 / 23



Mesh patterns

A mesh pattern is a pair

p = (�;R) with � 2 Sk and R � [0; k]� [0; k]

Example

p =
�
3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g

�

=

7 / 23



Mesh patterns

A mesh pattern is a pair

p = (�;R) with � 2 Sk and R � [0; k]� [0; k]

Example

p =
�
3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g

�

=

7 / 23



Mesh patterns

A mesh pattern is a pair

p = (�;R) with � 2 Sk and R � [0; k]� [0; k]

Example

p =
�
3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g

�

=

7 / 23



Mesh patterns

A mesh pattern is a pair

p = (�;R) with � 2 Sk and R � [0; k]� [0; k]

Example

p =
�
3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g

�

=

7 / 23



Mesh patterns

A mesh pattern is a pair

p = (�;R) with � 2 Sk and R � [0; k]� [0; k]

Example

p =
�
3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g

�

=

7 / 23



Mesh patterns

A mesh pattern is a pair

p = (�;R) with � 2 Sk and R � [0; k]� [0; k]

Example

p =
�
3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g

�

=

7 / 23



What is an occurrence of a mesh pattern?

p = (�;R) : S! N

p(� ) is

I the number of \classical" occurrences of � in � such that

I no elements of � are in the shaded regions de�ned by R
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What is an occurrence of a mesh pattern?

p = (�;R) : S! N

p(� ) is

I the number of \classical" occurrences of � in � such that

I no elements of � are in the shaded regions de�ned by R

Example (Chayne Homsberger)

# consecutive adjacent entries in � = 
+

!
(� )
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p = (�;R) 2 Sk � [0; k]2

classic: R = ;

barred: R = f(i� 1; �(i)� 1)g 3�5241 =

segment: R = [1; k � 1]2 ddes =

dashed/vincular: R = [ vertical strips 23-1 =

bivincular: R = [
vertical and
horizontal strips
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The reciprocity theorem

Theorem (Reciprocity)

For any mesh pattern p = (�;R) we have

p =
X
�2S

(�1)j�j�j�jp?(�)�

De�nition (Dual pattern)

For p = (�;R) let p? = (�;Rc) , where Rc = [0; j�j]2 nR:

 !?
=
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We can now explain why

lmax = 1� 21 + 231 + 321� � � �

We have lmax = and

� �?

= .

Thus

lmax =
X
�2S

�(�)�

where

�(�) = (�1)j�j�1 (�)

=

(
(�1)j�j�1 if �(j�j) = 1;

0 otherwise
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Also,

des = 21� 231� 312� 321 + � � �

We have des = and

� �?

= .

Thus

des =
X
�2S

�(�)�

where

�(�) = (�1)j�j (�)

=

(
(�1)j�j if �(1) > �(j�j);

0 otherwise
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Babson and Steingr��msson classi�ed Mahonian statistics using
patterns. For instance

maj = (21) + (1-32) + (2-31) + (3-21)

= + + +

Thus we may write maj =
P

�2S �(�)� where

(�1)j � j�( � ) = � � �

This last expression simpli�es to

�(�) =

8>>>>><
>>>>>:

1 if � = 21

(�1)n if �(2) < �(n) < �(1)

(�1)n+1 if �(1) < �(n) < �(2)

0 otherwise

where n = j�j
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If a1 : : : an 2 Sn, then ai is called a strong �xed point if

I j < i =) aj < ai and

I j > i =) aj > ai.

Let

I s�x(� ) = # strong �xed points of �

I ss�x(� ) = # strong �xed points of � r (skew s�x)

Theorem

s�x =
X
�

(�1)j�j�1 ss�x(�)�

Proof.

s�x = and ss�x =
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x

j

Q2(�;x) Q1(�;x)

Q4(�;x)Q3(�;x)

Q1(�;x) = f�(i) : i > j; �(i) > x g

Q2(�;x) = f�(i) : i < j; �(i) > x g

Q3(�;x) = f�(i) : i < j; �(i) < x g

Q4(�;x) = f�(i) : i > j; �(i) < x g

The point x in � is

I a �xed point if jQ2(�;x)j = jQ4(�;x)j

I an excedance if jQ4(�;x)j > jQ2(�;x)j
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A corollary to the reciprocity theorem

Recall that P (�; � ) = �(� ).

Theorem (Inverse)

The inverse of P in I(S) is given by

P�1(�; � ) = (�1)j� j�j�jP (�; � )

Proof.
For � 2 Sk, let p = (�; [0; k]� [0; k]). Then p? = (�; ;) and

p(� ) =
X
�2S

(�1)j�j�j�jp?(�)�(� ) (reciprocity)

Thus

�(�; � ) =
X

�����

(�1)j�j�j�jP (�; �)P (�; � )
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By the inverse theorem (but not trivially):

�x =
X
�

0
@(�1)j�j�1 X

x2SSF(�)

 
j�j � 1

x� 1

!1
A�

exc =
X
�

0
@(�1)j�j�2 X

x2SSF(�)

 
j�j � 2

x� 2

!1
A�

where SSF(�) is the set of skew strong �xed points in �

17 / 23



Alternating permutations and the Euler numbers

A permutation � 2 Sn is said to be alternating if

�(1) > �(2) < �(3) > �(4) < � � �

Alternating permutations are those that avoid

; and

In 1879, Andr�e showed that the number of alternating
permutations in Sn is the Euler number En given byX

n�0

Enx
n=n! = secx+ tanx:
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Simsun permutations

A permutation � 2 Sn is simsun if for all i 2 [1; n], after
removing the i largest letters of �, the remaining word has no
double descents.

A permutation is simsun if and only if it avoids the pattern

simsun =

The number of simsun permutations in Sn is En+1.
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Andr�e permutations

Andr�e permutations of various kinds were introduced by Foata
and Sch�utzenberger and further studied by Foata and Strehl.

If � 2 Sn and x = �(i) 2 [1; n] let �(x); �(x) � [1; n] be de�ned
as follows. Let �(0) = �(n+ 1) = �1.

I �(x) = f�(k) : j0 < k < ig where
j0 = maxfj : j < i and �(j) < �(i)g, and

I �(x) = f�(k) : i < k < j1g where
j1 = minfj : i < j and �(j) < �(i)g.

Then � is an Andr�e permutation of the �rst kind if

max�(x) � max �(x)

for all x 2 [1; n], where max ; = �1.

In particular, � has no double descents and �(n) = n.
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Andr�e permutations

Fact: There are exactly En Andr�e permutations in Sn.

Theorem
Let � 2 Sn. Then � is an Andr�e permutation of the �rst

kind if and only if it avoids

and = andr�e

Corollary

Sn(andr�e) = En+1

21 / 23



A Wilf-equivalence

Corollary

The two patterns

simsun = and andr�e =

are Wilf-equivalent

Moreover, these are the only essentially di�erent patterns in
this Wilf-class
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We have barely scratched the surface.

For n = 3 we have

# patterns = 393216

# 2 element sets of patterns = 77309214720

# 3 element sets of patterns = 10133021852303360

# 4 element sets of patterns = 996108980402440273920

...

p = (�;R) 2 Sk � [0; k]2

Restrict R?

I R as a relation: reexive, symmetric, transitive, . . .

I R as a digraph: acyclic, rooted tree, tournament, . . .
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