Expanding permutation statistics as sums of permutation patterns

Petter Brändén
Stockholm University
Anders Claesson
Reykjavik University

Permutations/patterns as functions

Think of $\pi \in \mathfrak{S}$ as a function $\pi: \mathfrak{S} \rightarrow \mathbb{N}$ that counts occurrences of π

Example

- $1=|\cdot|$
- $21=\mathrm{inv}$

Statistics as linear combinations of patterns

Any function

$$
\text { stat : } \mathfrak{S} \rightarrow \mathbb{C}
$$

may be represented uniquely as a (typically infinite) sum

$$
\text { stat }=\sum_{\pi \in \mathfrak{G}} \lambda(\pi) \pi
$$

where $\{\lambda(\pi)\}_{\pi \in \mathfrak{S}} \subset \mathbb{C}$
Example

$$
\operatorname{lmax}=\sum_{\substack{\pi \in \mathfrak{S} \\ \pi(| | \pi \mid)=1}}(-1)^{|\pi|-1} \pi=1-21+231+321-\cdots
$$

The incidence algebra $I(P)$

Let Q be a locally finite poset.
The incidence algebra, $I(Q)$, is the \mathbb{C}-algebra of all functions $Q \times Q \rightarrow \mathbb{C}$ with multiplication

$$
(F G)(x, z)=\sum_{x \leq y \leq z} F(x, y) G(y, z)
$$

and identity

$$
\delta(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}
$$

The incidence algebra $I(\mathfrak{S})$

- Define $\pi \leq \sigma$ in \mathfrak{S} if $\pi(\sigma)>0$
- Define $P \in I(\mathfrak{S})$ by $P(\pi, \sigma)=\pi(\sigma)$

```
\epsilon
```

ϵ	1	1	1	1	1	1	1	1	1	1	\ldots
1	0	1	2	2	3	3	3	3	3	3	\ldots
12	0	0	1	0	3	2	2	1	1	0	\ldots
21	0	0	0	1	0	1	1	2	2	3	\ldots
123	0	0	0	0	1	0	0	0	0	0	\ldots
132	0	0	0	0	0	1	0	0	0	0	\ldots
213	0	0	0	0	0	0	1	0	0	0	\ldots
231	0	0	0	0	0	0	0	1	0	0	\ldots
312	0	0	0	0	0	0	0	0	1	0	\ldots
321	0	0	0	0	0	0	0	0	0	1	\ldots
\vdots	\ddots										

The incidence algebra $I(\mathfrak{S})$

- Define $\pi \leq \sigma$ in \mathfrak{S} if $\pi(\sigma)>0$
- Define $P \in I(\mathfrak{S})$ by $P(\pi, \sigma)=\pi(\sigma)$
P is invertible because $P(\pi, \pi)=1$.
Therefore, for any stat: $\mathfrak{S} \rightarrow \mathbb{C}$, there are unique scalars $\{\lambda(\sigma)\}_{\sigma \in \mathfrak{S}} \subset \mathbb{C}$ such that

$$
\begin{equation*}
\text { stat }=\sum_{\sigma \in \mathfrak{S}} \lambda(\sigma) \sigma . \tag{1}
\end{equation*}
$$

Indeed, $I(\mathbb{S})$ acts on the right of $\mathbb{C}^{\mathfrak{S}}$ by

$$
(f * F)(\pi)=\sum_{\sigma \leq \pi} f(\sigma) F(\sigma, \pi)
$$

Thus (1) iff stat $=\lambda * P$ iff $\lambda=\operatorname{stat} * P^{-1}$.
$\operatorname{lmax}=1-21+231+321-\cdots$
Why?

$\operatorname{lmax}=1-21+231+321-\cdots$

Why?

des, maj, exc, fix, ...
How do we expand them?

Mesh patterns

A mesh pattern is a pair

$$
p=(\pi, R) \text { with } \pi \in \mathfrak{S}_{k} \text { and } R \subseteq[0, k] \times[0, k]
$$

Example

$$
p=(3241,\{(0,2),(1,3),(1,4),(4,2),(4,3)\})
$$

Mesh patterns

A mesh pattern is a pair

$$
p=(\pi, R) \text { with } \pi \in \mathfrak{S}_{k} \text { and } R \subseteq[0, k] \times[0, k]
$$

Example

$$
p=(3241,\{(0,2),(1,3),(1,4),(4,2),(4,3)\})
$$

Mesh patterns

A mesh pattern is a pair

$$
p=(\pi, R) \text { with } \pi \in \mathfrak{S}_{k} \text { and } R \subseteq[0, k] \times[0, k]
$$

Example

$$
p=(3241,\{(0,2),(1,3),(1,4),(4,2),(4,3)\})
$$

Mesh patterns

A mesh pattern is a pair

$$
p=(\pi, R) \text { with } \pi \in \mathfrak{S}_{k} \text { and } R \subseteq[0, k] \times[0, k]
$$

Example

$$
p=(3241,\{(0,2),(1,3),(1,4),(4,2),(4,3)\})
$$

Mesh patterns

A mesh pattern is a pair

$$
p=(\pi, R) \text { with } \pi \in \mathfrak{S}_{k} \text { and } R \subseteq[0, k] \times[0, k]
$$

Example

$$
p=(3241,\{(0,2),(1,3),(1,4),(4,2),(4,3)\})
$$

Mesh patterns

A mesh pattern is a pair

$$
p=(\pi, R) \text { with } \pi \in \mathfrak{S}_{k} \text { and } R \subseteq[0, k] \times[0, k]
$$

Example

$$
p=(3241,\{(0,2),(1,3),(1,4),(4,2),(4,3)\})
$$

Mesh patterns

A mesh pattern is a pair

$$
p=(\pi, R) \text { with } \pi \in \mathfrak{S}_{k} \text { and } R \subseteq[0, k] \times[0, k]
$$

Example

$$
p=(3241,\{(0,2),(1,3),(1,4),(4,2),(4,3)\})
$$

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example
With $p=(1,\{(0,1)\})=\mathbb{Z}_{\emptyset}$ we have

$$
p(24351)=p\left(\right)=3
$$

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example
With $p=(1,\{(0,1)\})=\mathbb{Z}_{\emptyset}$ we have

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example
With $p=(1,\{(0,1)\})=\mathbb{Z}_{\bullet}$ we have

$$
p(24351)=p\left(\begin{array}{c|c|c|c}
\text { U/WNA } & \bullet & \\
\hline & \bullet & & \\
\hline \bullet & \cdot & \\
\hline & & & \ddots \\
\hline & & & \bullet
\end{array}\right)=3
$$

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example
With $p=(1,\{(0,1)\})=\bigcup_{\square}$ we have

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example
With $p=(1,\{(0,1)\})=\bigcup_{\emptyset}$ we have

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example
With $p=(1,\{(0,1)\})=\mathbb{Z}_{\square}$ we have

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example
With $p=(1,\{(0,1)\})=\mathbb{Z}_{\bullet}$ we have

$$
p(24351)=p\left(\begin{array}{l|l|l|l}
\hline & & \ddots & \\
\hline & \bullet & 1 & \\
\hline & \bullet & & \\
\hline \bullet & & & \\
\hline & & & \bullet
\end{array}\right)=3
$$

What is an occurrence of a mesh pattern?

$p=(\pi, R): \mathfrak{S} \rightarrow \mathbb{N}$
$p(\tau)$ is

- the number of "classical" occurrences of π in τ such that
- no elements of τ are in the shaded regions defined by R

Example (Chayne Homsberger)
\# consecutive adjacent entries in $\tau=$

$$
(\pi / \mathbb{K}
$$

$$
p=(\pi, R) \in \mathfrak{S}_{k} \times[0, k]^{2}
$$

classic: $\quad R=\emptyset$

barred: $\quad R=\{(i-1, \pi(i)-1)\}$ segment: $\quad R=[1, k-1]^{2}$
dashed/vincular: $\quad R=\cup$ vertical strips
bivincular: $\quad R=\cup \begin{aligned} & \text { vertical and } \\ & \text { horizontal strips }\end{aligned}$
$35241=\frac{\ddagger \cdot}{\ddagger}$
ddes $=$
$23-1=\frac{1}{7}$

The reciprocity theorem

Theorem (Reciprocity)
For any mesh pattern $p=(\pi, R)$ we have

$$
p=\sum_{\sigma \in \mathfrak{S}}(-1)^{|\sigma|-|\pi|} p^{\star}(\sigma) \sigma
$$

Definition (Dual pattern)
For $p=(\pi, R)$ let $p^{\star}=\left(\pi, R^{c}\right)$, where $R^{c}=[0,|\pi|]^{2} \backslash R$:

The reciprocity theorem

Theorem (Reciprocity)
For any mesh pattern $p=(\pi, R)$ we have

$$
p=\sum_{\sigma \in \mathfrak{S}}(-1)^{|\sigma|-|\pi|} p^{\star}(\sigma) \sigma
$$

Definition (Dual pattern)
For $p=(\pi, R)$ let $p^{\star}=\left(\pi, R^{c}\right)$, where $R^{c}=[0,|\pi|]^{2} \backslash R$:

We can now explain why

$$
\operatorname{lmax}=1-21+231+321-\cdots
$$

We have $\operatorname{lmax}=\mathbb{Z} \|_{\bullet}$ and $\left(\mathbb{V} \|_{\bullet}\right)^{\star}=W /$.
Thus

$$
\operatorname{lmax}=\sum_{\sigma \in \mathfrak{S}} \lambda(\sigma) \sigma
$$

where

$$
\begin{aligned}
\lambda(\sigma) & =(-1)^{|\sigma|-1} \pi / \text { /n }(\sigma) \\
& = \begin{cases}(-1)^{|\sigma|-1} & \text { if } \sigma(|\sigma|)=1, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Also,

$$
\operatorname{des}=21-231-312-321+\cdots
$$

 Thus

$$
\operatorname{des}=\sum_{\sigma \in \mathfrak{S}} \lambda(\sigma) \sigma
$$

where

$$
\begin{aligned}
\lambda(\sigma) & =(-1)^{|\sigma|} \text { 纤 }(\sigma) \\
& = \begin{cases}(-1)^{|\sigma|} & \text { if } \sigma(1)>\pi(|\sigma|), \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Babson and Steingrímsson classified Mahonian statistics using patterns. For instance

$$
\begin{aligned}
\operatorname{maj} & =(21)+(1-32)+(2-31)+(3-21) \\
& =\frac{5}{3}+\frac{5}{3}+
\end{aligned}
$$

Thus we may write $\operatorname{maj}=\sum_{\pi \in \mathfrak{S}} \lambda(\pi) \pi$ where

This last expression simplifies to

$$
\lambda(\pi)= \begin{cases}1 & \text { if } \pi=21 \\ (-1)^{n} & \text { if } \pi(2)<\pi(n)<\pi(1) \\ (-1)^{n+1} & \text { if } \pi(1)<\pi(n)<\pi(2) \\ 0 & \text { otherwise }\end{cases}
$$

where $n=|\pi|$

If $a_{1} \ldots a_{n} \in \mathfrak{S}_{n}$, then a_{i} is called a strong fixed point if

- $j<i \Longrightarrow a_{j}<a_{i}$ and
- $j>i \Longrightarrow a_{j}>a_{i}$.

If $a_{1} \ldots a_{n} \in \mathfrak{S}_{n}$, then a_{i} is called a strong fixed point if

- $j<i \Longrightarrow a_{j}<a_{i}$ and
- $j>i \Longrightarrow a_{j}>a_{i}$.

Let

- $\operatorname{sfix}(\tau)=$ \# strong fixed points of τ
- $\operatorname{ssfix}(\tau)=\#$ strong fixed points of τ^{r}

If $a_{1} \ldots a_{n} \in \mathfrak{S}_{n}$, then a_{i} is called a strong fixed point if

- $j<i \Longrightarrow a_{j}<a_{i}$ and
- $j>i \Longrightarrow a_{j}>a_{i}$.

Let

- $\operatorname{sfix}(\tau)=$ \# strong fixed points of τ
- $\operatorname{ssfix}(\tau)=\#$ strong fixed points of τ^{r}

Theorem

$$
\operatorname{sfix}=\sum_{\pi}(-1)^{|\pi|-1} \operatorname{ssfix}(\pi) \pi
$$

Proof.

$$
\text { sfix }=\mathbb{U}_{/ 2} \quad \text { and } \quad \mathrm{ssfix}=\mathbb{Z}
$$

$$
\begin{aligned}
& Q_{1}(\pi ; x)=\{\pi(i): i>j, \pi(i)>x\} \\
& Q_{2}(\pi ; x)=\{\pi(i): i<j, \pi(i)>x\} \\
& Q_{3}(\pi ; x)=\{\pi(i): i<j, \pi(i)<x\} \\
& Q_{4}(\pi ; x)=\{\pi(i): i>j, \pi(i)<x\}
\end{aligned}
$$

The point x in π is

- a fixed point if $\left|Q_{2}(\pi ; x)\right|=\left|Q_{4}(\pi ; x)\right|$
- an excedance if $\left|Q_{4}(\pi ; x)\right|>\left|Q_{2}(\pi ; x)\right|$

A corollary to the reciprocity theorem

Recall that $P(\pi, \tau)=\pi(\tau)$.
Theorem (Inverse)
The inverse of P in $I(\mathfrak{S})$ is given by

$$
P^{-1}(\pi, \tau)=(-1)^{|\tau|-|\pi|} P(\pi, \tau)
$$

A corollary to the reciprocity theorem

Recall that $P(\pi, \tau)=\pi(\tau)$.
Theorem (Inverse)
The inverse of P in $I(\mathfrak{S})$ is given by

$$
P^{-1}(\pi, \tau)=(-1)^{|\tau|-|\pi|} P(\pi, \tau)
$$

Proof.
For $\pi \in \mathfrak{S}_{k}$, let $p=(\pi,[0, k] \times[0, k])$. Then $p^{\star}=(\pi, \emptyset)$ and

$$
p(\tau)=\sum_{\sigma \in \mathfrak{S}}(-1)^{|\sigma|-|\pi|} p^{\star}(\sigma) \sigma(\tau) \quad \quad \text { (reciprocity) }
$$

Thus

$$
\delta(\pi, \tau)=\sum_{\pi \leq \sigma \leq \tau}(-1)^{|\sigma|-|\pi|} P(\pi, \sigma) P(\sigma, \tau)
$$

By the inverse theorem (but not trivially):

$$
\begin{aligned}
& \text { fix }=\sum_{\pi}\left((-1)^{|\pi|-1} \sum_{x \in \operatorname{SSF}(\pi)}\binom{|\pi|-1}{x-1}\right) \pi \\
& \operatorname{exc}=\sum_{\pi}\left((-1)^{|\pi|-2} \sum_{x \in \operatorname{SSF}(\pi)}\binom{|\pi|-2}{x-2}\right) \pi
\end{aligned}
$$

where $\operatorname{SSF}(\pi)$ is the set of skew strong fixed points in π

Alternating permutations and the Euler numbers

A permutation $\pi \in \mathfrak{S}_{n}$ is said to be alternating if

$$
\pi(1)>\pi(2)<\pi(3)>\pi(4)<\cdots
$$

Alternating permutations are those that avoid

In 1879, André showed that the number of alternating permutations in \mathfrak{S}_{n} is the Euler number E_{n} given by

$$
\sum_{n \geq 0} E_{n} x^{n} / n!=\sec x+\tan x
$$

Simsun permutations

A permutation $\pi \in \mathfrak{S}_{n}$ is simsun if for all $i \in[1, n]$, after removing the i largest letters of π, the remaining word has no double descents.

A permutation is simsun if and only if it avoids the pattern

The number of simsun permutations in \mathfrak{S}_{n} is E_{n+1}.

André permutations

André permutations of various kinds were introduced by Foata and Schützenberger and further studied by Foata and Strehl.
If $\pi \in \mathfrak{S}_{n}$ and $x=\pi(i) \in[1, n]$ let $\lambda(x), \rho(x) \subseteq[1, n]$ be defined as follows. Let $\pi(0)=\pi(n+1)=-\infty$.

- $\lambda(x)=\left\{\pi(k): j_{0}<k<i\right\}$ where

$$
j_{0}=\max \{j: j<i \text { and } \pi(j)<\pi(i)\}, \text { and }
$$

- $\rho(x)=\left\{\pi(k): i<k<j_{1}\right\}$ where

$$
j_{1}=\min \{j: i<j \text { and } \pi(j)<\pi(i)\} .
$$

Then π is an André permutation of the first kind if

$$
\max \lambda(x) \leq \max \rho(x)
$$

for all $x \in[1, n]$, where $\max \emptyset=-\infty$.
In particular, π has no double descents and $\pi(n)=n$.

André permutations

André permutations of various kinds were introduced by Foata and Schützenberger and further studied by Foata and Strehl.
If $\pi \in \mathfrak{S}_{n}$ and $x=\pi(i) \in[1, n]$ let $\lambda(x), \rho(x) \subseteq[1, n]$ be defined as follows. Let $\pi(0)=\pi(n+1)=-\infty$.

- $\lambda(x)=\left\{\pi(k): j_{0}<k<i\right\}$ where

$$
j_{0}=\max \{j: j<i \text { and } \pi(j)<\pi(i)\}, \text { and }
$$

- $\rho(x)=\left\{\pi(k): i<k<j_{1}\right\}$ where

$$
j_{1}=\min \{j: i<j \text { and } \pi(j)<\pi(i)\} .
$$

Then π is an André permutation of the first kind if

$$
\max \lambda(x) \leq \max \rho(x)
$$

for all $x \in[1, n]$, where $\max \emptyset=-\infty$.
In particular, π has no double descents and $\pi(n)=n$.

André permutations

Fact: There are exactly E_{n} André permutations in \mathfrak{S}_{n}.
Theorem
Let $\pi \in \mathfrak{S}_{n}$. Then π is an André permutation of the first kind if and only if it avoids

Corollary

$$
\mathfrak{S}_{n}(\mathfrak{a n d r e ́})=E_{n+1}
$$

A Wilf-equivalence

Corollary
The two patterns

and

are Wilf-equivalent

A Wilf-equivalence

Corollary
The two patterns

are Wilf-equivalent

Moreover, these are the only essentially different patterns in this Wilf-class

We have barely scratched the surface.
For $n=3$ we have
\# patterns $=393216$
\# 2 element sets of patterns $=77309214720$
\# 3 element sets of patterns $=10133021852303360$
\# 4 element sets of patterns $=996108980402440273920$
$p=(\pi, R) \in \mathfrak{S}_{k} \times[0, k]^{2}$
Restrict R ?

- R as a relation: reflexive, symmetric, transitive, ...
- R as a digraph: acyclic, rooted tree, tournament, ...

