Expanding permutation statistics as sums of permutation patterns

Petter Brändén Stockholm University

Anders Claesson Reykjavik University Permutations/patterns as functions

Think of $\pi \in \mathfrak{S}$ as a function $\pi : \mathfrak{S} \to \mathbb{N}$ that counts occurrences of π

Example

- ▶ $1 = |\cdot|$
- ▶ 21 = inv

Statistics as linear combinations of patterns Any function

stat : $\mathfrak{S} \to \mathbb{C}$

may be represented uniquely as a (typically infinite) sum

$$ext{stat} = \sum_{\pi \in \mathfrak{S}} \lambda(\pi) \pi$$

where $\{\lambda(\pi)\}_{\pi\in\mathfrak{S}}\subset\mathbb{C}$

Example

$$\lim_{\pi \in \mathfrak{S} \atop \pi(|\pi|)=1} \pi = 1 - 21 + 231 + 321 - \cdots$$

The incidence algebra I(P)

Let Q be a locally finite poset.

The incidence algebra, I(Q), is the \mathbb{C} -algebra of all functions $Q \times Q \to \mathbb{C}$ with multiplication

$$(FG)(x,z) = \sum_{x \leq y \leq z} F(x,y) G(y,z)$$

and identity

$$\delta(x,y) = egin{cases} 1 & ext{if } x = y, \ 0 & ext{if } x
eq y \end{cases}$$

The incidence algebra $I(\mathfrak{S})$

- Define $\pi \leq \sigma$ in \mathfrak{S} if $\pi(\sigma) > 0$
- ▶ Define $P \in I(\mathfrak{S})$ by $P(\pi, \sigma) = \pi(\sigma)$

	ε	1	12	21	123	132	213	231	312	321	
ϵ	1	1	1	1	1	1	1	1	1	1	
1	0	1	2	2	3	3	3	3	3	3	
12	0	0	1	0	3	2	2	1	1	0	
21	0	0	0	1	0	1	1	2	2	3	
123	0	0	0	0	1	0	0	0	0	0	
132	0	0	0	0	0	1	0	0	0	0	
213	0	0	0	0	0	0	1	0	0	0	
231	0	0	0	0	0	0	0	1	0	0	
312	0	0	0	0	0	0	0	0	1	0	
321	0	0	0	0	0	0	0	0	0	1	
•	•	:	•	•	•		•		•	•	۰.

The incidence algebra $I(\mathfrak{S})$

• Define
$$\pi \leq \sigma$$
 in \mathfrak{S} if $\pi(\sigma) > 0$

▶ Define $P \in I(\mathfrak{S})$ by $P(\pi, \sigma) = \pi(\sigma)$

P is invertible because $P(\pi, \pi) = 1$.

Therefore, for any stat : $\mathfrak{S} \to \mathbb{C}$, there are unique scalars $\{\lambda(\sigma)\}_{\sigma \in \mathfrak{S}} \subset \mathbb{C}$ such that

$$\operatorname{stat} = \sum_{\sigma \in \mathfrak{S}} \lambda(\sigma) \sigma.$$
 (1)

Indeed, $I(\mathfrak{S})$ acts on the right of $\mathbb{C}^{\mathfrak{S}}$ by

$$(f * F)(\pi) = \sum_{\sigma \leq \pi} f(\sigma) F(\sigma, \pi).$$

Thus (1) iff stat = $\lambda * P$ iff $\lambda = \text{stat} * P^{-1}$.

$lmax = 1 - 21 + 231 + 321 - \cdots$ Why?

$lmax = 1 - 21 + 231 + 321 - \cdots$ Why?

des, maj, exc, fix, ...

How do we expand them?

A mesh pattern is a pair

 $p=(\pi,R)$ with $\pi\in\mathfrak{S}_k$ and $R\subseteq[0,k] imes[0,k]$

Example

 $p = (3241, \{(0,2), (1,3), (1,4), (4,2), (4,3)\})$

A mesh pattern is a pair

 $p=(\pi,R)$ with $\pi\in\mathfrak{S}_k$ and $R\subseteq[0,k] imes[0,k]$

Example

 $p = (3241, \{(0,2), (1,3), (1,4), (4,2), (4,3)\})$

A mesh pattern is a pair

 $p=(\pi,R)$ with $\pi\in\mathfrak{S}_k$ and $R\subseteq[0,k] imes[0,k]$

Example

 $p = (3241, \{(0, 2), (1, 3), (1, 4), (4, 2), (4, 3)\})$

A mesh pattern is a pair

 $p=(\pi,R)$ with $\pi\in\mathfrak{S}_k$ and $R\subseteq[0,k] imes[0,k]$

Example

 $p = (3241, \{(0,2), (1,3), (1,4), (4,2), (4,3)\})$

A mesh pattern is a pair

 $p=(\pi,R)$ with $\pi\in\mathfrak{S}_k$ and $R\subseteq[0,k] imes[0,k]$

Example

$$p = (3241, \{(0,2), (1,3), (1,4), (4,2), (4,3)\})$$

A mesh pattern is a pair

 $p=(\pi,R)$ with $\pi\in\mathfrak{S}_k$ and $R\subseteq[0,k] imes[0,k]$

Example

 $p = (3241, \{(0,2), (1,3), (1,4), (4,2), (4,3)\})$

A mesh pattern is a pair

 $p=(\pi,R)$ with $\pi\in\mathfrak{S}_k$ and $R\subseteq[0,k] imes[0,k]$

Example

 $p = (3241, \{(0,2), (1,3), (1,4), (4,2), (4,3)\})$

$$p=(\pi,R):\mathfrak{S}
ightarrow\mathbb{N}$$

 $p(\tau)$ is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

$$p=(\pi,R):\mathfrak{S} o\mathbb{N}$$

p(au) is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

Example

$$p=(\pi,R):\mathfrak{S} o\mathbb{N}$$

p(au) is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

Example

$$p=(\pi,R):\mathfrak{S} o\mathbb{N}$$

p(au) is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

Example

$$p=(\pi,R):\mathfrak{S} o\mathbb{N}$$

p(au) is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

Example

$$p(24351) = p\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array}\right) = 3$$

$$p=(\pi,R):\mathfrak{S}
ightarrow\mathbb{N}$$

p(au) is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

Example

$$p=(\pi,R):\mathfrak{S}
ightarrow\mathbb{N}$$

p(au) is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

Example

$$p=(\pi,R):\mathfrak{S} o\mathbb{N}$$

p(au) is

- ▶ the number of "classical" occurrences of π in τ such that
- no elements of au are in the shaded regions defined by R

Example

$$p=(\pi,R):\mathfrak{S}
ightarrow\mathbb{N}$$

 $p(\tau)$ is

- ▶ the number of "classical" occurrences of π in τ such that
- ▶ no elements of τ are in the shaded regions defined by R

Example (Chayne Homsberger)

consecutive adjacent entries in au =

$$\left(\boxed{2} + \boxed{2} \right) (au)$$

$$p = (\pi, R) \in \mathfrak{S}_k \times [0, k]^2$$

classic: $R = \emptyset$
barred: $R = \{(i - 1, \pi(i) - 1)\}$
segment: $R = [1, k - 1]^2$
dashed/vincular: $R = \bigcup$ vertical strips
bivincular: $R = \bigcup$ vertical and
horizontal strips

The reciprocity theorem

Theorem (Reciprocity) For any mesh pattern $p = (\pi, R)$ we have

$$p = \sum_{\sigma \in \mathfrak{S}} (-1)^{|\sigma| - |\pi|} p^\star(\sigma) \sigma$$

Definition (Dual pattern) For $p = (\pi, R)$ let $p^{\star} = (\pi, R^c)$, where $R^c = [0, |\pi|]^2 \setminus R$:

The reciprocity theorem

Theorem (Reciprocity) For any mesh pattern $p = (\pi, R)$ we have

$$p = \sum_{\sigma \in \mathfrak{S}} (-1)^{|\sigma| - |\pi|} p^{\star}(\sigma) \sigma$$

Definition (Dual pattern) For $p = (\pi, R)$ let $p^* = (\pi, R^c)$, where $R^c = [0, |\pi|]^2 \setminus R$:

We can now explain why

$$lmax = 1 - 21 + 231 + 321 - \cdots$$

We have
$$lmax = 4$$
 and $(4)^* = 4$.
Thus

$$ext{lmax} = \sum_{\sigma \in \mathfrak{S}} \lambda(\sigma) \sigma$$

where

$$egin{aligned} \lambda(\sigma) &= (-1)^{|\sigma|-1} & (\sigma) \ &= egin{cases} (-1)^{|\sigma|-1} & ext{if } \sigma(|\sigma|) = 1, \ 0 & ext{otherwise} \end{aligned}$$

Also,

$$des = 21 - 231 - 312 - 321 + \cdots$$

$$ext{des} = \sum_{\sigma \in \mathfrak{S}} \lambda(\sigma) \sigma$$

where

Babson and Steingrímsson classified Mahonian statistics using patterns. For instance

Thus we may write $\operatorname{maj} = \sum_{\pi \in \mathfrak{S}} \lambda(\pi) \pi$ where

$$(-1)^{|\cdot|}\lambda(\cdot) = - - - -$$

This last expression simplifies to

$$\lambda(\pi) = egin{cases} 1 & ext{if } \pi = 21 \ (-1)^n & ext{if } \pi(2) < \pi(n) < \pi(1) \ (-1)^{n+1} & ext{if } \pi(1) < \pi(n) < \pi(2) \ 0 & ext{otherwise} \end{cases}$$

where $n=|\pi|$

If $a_1 \ldots a_n \in \mathfrak{S}_n$, then a_i is called a strong fixed point if

- $\blacktriangleright j < i \implies a_j < a_i$ and
- $\blacktriangleright j > i \implies a_j > a_i.$

If $a_1 \ldots a_n \in \mathfrak{S}_n$, then a_i is called a strong fixed point if

$$ightarrow j < i \implies a_j < a_i$$
 and

$$\blacktriangleright j > i \implies a_j > a_i.$$

Let

- $\operatorname{sfix}(\tau) = \#$ strong fixed points of τ
- $\operatorname{ssfix}(\tau) = \#$ strong fixed points of τ^r (skew sfix)

If $a_1 \ldots a_n \in \mathfrak{S}_n$, then a_i is called a strong fixed point if

$$ightarrow j < i \implies a_j < a_i$$
 and

$$\blacktriangleright j > i \implies a_j > a_i.$$

Let

- $\operatorname{sfix}(\tau) = \#$ strong fixed points of τ
- ► $\operatorname{ssfix}(\tau) = \#$ strong fixed points of τ^r (skew sfix)

Theorem

$$\mathrm{sfix} = \sum_{\pi} (-1)^{|\pi|-1} \mathrm{ssfix}(\pi) \pi$$

Proof.

$$sfix = 2$$
 and $ssfix = 7$

The point x in π is

- a fixed point if $|Q_2(\pi;x)| = |Q_4(\pi;x)|$
- ▶ an excedance if $|Q_4(\pi; x)| > |Q_2(\pi; x)|$

A corollary to the reciprocity theorem

Recall that $P(\pi, \tau) = \pi(\tau)$.

Theorem (Inverse)

The inverse of P in $I(\mathfrak{S})$ is given by

$$P^{-1}(\pi, au) = (-1)^{| au| - |\pi|} P(\pi, au)$$

A corollary to the reciprocity theorem

Recall that $P(\pi, \tau) = \pi(\tau)$.

Theorem (Inverse)

The inverse of P in $I(\mathfrak{S})$ is given by

$$P^{-1}(\pi, au) = (-1)^{| au| - |\pi|} P(\pi, au)$$

Proof.

For $\pi \in \mathfrak{S}_k,$ let $p = (\pi, [0, k] imes [0, k]).$ Then $p^\star = (\pi, \emptyset)$ and

$$p(au) = \sum_{\sigma \in \mathfrak{S}} (-1)^{|\sigma| - |\pi|} p^{\star}(\sigma) \sigma(au)$$
 (reciprocity)

Thus

$$\delta(\pi, au) = \sum_{\pi \leq \sigma \leq au} (-1)^{|\sigma| - |\pi|} P(\pi,\sigma) P(\sigma, au)$$

By the inverse theorem (but not trivially):

$$\begin{split} \mathrm{fix} &= \sum_{\pi} \left((-1)^{|\pi|-1} \sum_{x \in \mathrm{SSF}(\pi)} \binom{|\pi|-1}{x-1} \right) \pi \\ \mathrm{exc} &= \sum_{\pi} \left((-1)^{|\pi|-2} \sum_{x \in \mathrm{SSF}(\pi)} \binom{|\pi|-2}{x-2} \right) \pi \end{split}$$

where $SSF(\pi)$ is the set of skew strong fixed points in π

Alternating permutations and the Euler numbers

A permutation $\pi \in \mathfrak{S}_n$ is said to be alternating if

 $\pi(1) > \pi(2) < \pi(3) > \pi(4) < \cdots$

Alternating permutations are those that avoid

In 1879, André showed that the number of alternating permutations in \mathfrak{S}_n is the Euler number E_n given by

$$\sum_{n\geq 0} E_n x^n/n! = \sec x + \tan x$$

Simsun permutations

A permutation $\pi \in \mathfrak{S}_n$ is simsun if for all $i \in [1, n]$, after removing the *i* largest letters of π , the remaining word has no double descents.

A permutation is simsun if and only if it avoids the pattern

The number of simsun permutations in \mathfrak{S}_n is E_{n+1} .

André permutations

André permutations of various kinds were introduced by Foata and Schützenberger and further studied by Foata and Strehl.

If $\pi \in \mathfrak{S}_n$ and $x = \pi(i) \in [1, n]$ let $\lambda(x), \rho(x) \subseteq [1, n]$ be defined as follows. Let $\pi(0) = \pi(n+1) = -\infty$.

►
$$\lambda(x) = \{\pi(k) : j_0 < k < i\}$$
 where
 $j_0 = \max\{j : j < i \text{ and } \pi(j) < \pi(i)\}$, and
► $a(x) = \{\pi(k) : i < k < i\}$ where

$$ho_{i}
ho_{i}(x) = \{\pi(k): i < k < j_{1}\} ext{ where } j_{1} = \min\{j: i < j ext{ and } \pi(j) < \pi(i)\}.$$

Then π is an André permutation of the first kind if

$$\max\lambda(x)\leq \max
ho(x)$$

for all $x \in [1, n]$, where $\max \emptyset = -\infty$. In particular, π has no double descents and $\pi(n) = n$.

André permutations

André permutations of various kinds were introduced by Foata and Schützenberger and further studied by Foata and Strehl.

If $\pi \in \mathfrak{S}_n$ and $x = \pi(i) \in [1, n]$ let $\lambda(x), \rho(x) \subseteq [1, n]$ be defined as follows. Let $\pi(0) = \pi(n+1) = -\infty$.

►
$$\lambda(x) = \{\pi(k) : j_0 < k < i\}$$
 where
 $j_0 = \max\{j : j < i \text{ and } \pi(j) < \pi(i)\}, \text{ and}$

$$ho(x) = \{\pi(k) : i < k < j_1\} ext{ where } j_1 = \min\{j : i < j ext{ and } \pi(j) < \pi(i)\}.$$

Then π is an André permutation of the first kind if

$$\max\lambda(x)\leq \max
ho(x)$$

for all $x \in [1, n]$, where $\max \emptyset = -\infty$. In particular, π has no double descents and $\pi(n) = n$.

André permutations

Fact: There are exactly E_n André permutations in \mathfrak{S}_n .

Theorem

Let $\pi \in \mathfrak{S}_n$. Then π is an André permutation of the first kind if and only if it avoids

Corollary

 $\mathfrak{S}_n(\mathfrak{andr}\mathfrak{e}) = E_{n+1}$

A Wilf-equivalence

Corollary

The two patterns

 $are \ Wilf-equivalent$

A Wilf-equivalence

Corollary

The two patterns

are Wilf-equivalent

Moreover, these are the only essentially different patterns in this Wilf-class

We have barely scratched the surface.

For n = 3 we have # patterns = 393216 # 2 element sets of patterns = 77309214720 # 3 element sets of patterns = 10133021852303360 # 4 element sets of patterns = 996108980402440273920

:

$$p=(\pi,R)\in\mathfrak{S}_k imes[0,k]^2$$

Restrict R?

- ▶ *R* as a relation: reflexive, symmetric, transitive, ...
- ▶ *R* as a digraph: acyclic, rooted tree, tournament, ...