On the size of sets of permutations with bounded VC-dimension

Josef Cibulka and Jan Kynčl

Department of Applied Mathematics
Charles University, Prague
11 August 2010 / PP 2010

VC-dimension

Set systems

- VC-dimension of a family \mathcal{C} of sets over $[n]=\{1, \ldots, n\}$: size of the largest subset of $[n]$ shattered by \mathcal{C}
- Sauer's lemma: $\operatorname{VCdim}(\mathcal{C})=\mathrm{k} \Rightarrow|\mathcal{C}| \leq \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$

Sets of permutations

- $\mathcal{P} \ldots$ set of n-permutations
- \mathcal{P} has VC-dimension k if k is the largest number for which there is a k-tuple of elements such that restriction of permutations of \mathcal{P} on these elements gives all k-permutations
- In other words: For every $(k+1)$-tuple of elements, some $(k+1)$-permutation is missing (is avoided).

Forbidden Permutation Questions

- All $(k+1)$-tuples of elements avoid the same permutation.

Theorem (Marcus, Tardos(2004), using result of Klazar (2000))

The number of n-permutations avoiding a fixed permutation is $2^{\Theta(n)}$.

- Was a long-standing conjecture of Stanley and Wilf.

Permutation Sets Arising in Discrete Geometry

Arrangements of pseudolines

- In how many different ways can we place a new one?
- Placement \leftrightarrow permutation of the pseudolines

Permutation Sets Arising in Discrete Geometry

Arrangements of pseudolines

- In how many different ways can we place a new one?
- Placement \leftrightarrow permutation of the pseudolines
- Fix the leftmost point \longrightarrow VC-dimension is 2

Graph drawing

- Upper bound on the number of weakly nonisomorphic complete topological graphs (Kynčl, 2010+)

Bounds on the Size of Sets of VC-dimension k

Theorem (Raz 2000)

Any set \mathcal{P} of n-permutations with VC-dimension 2 has size $2^{O(n)}$.

Theorem (Our Main Result)

For a fixed $k \geq 3$, a set \mathcal{P} of n-permutations with VC-dimension k has size $2^{O\left(n \log ^{\star}(n)\right)}$.
There is a set \mathcal{P} of n-permutations with VC-dimension 3 and size $\alpha(n)^{\Omega(n)}$.

Matrix point of view

- permutations \rightarrow permutation matrices
- each $(k+1)$-tuple of columns avoids some $(k+1)$-permutation matrix

Proof of the Upper Bound - Flattening

- Same as one step in Alon, Friedgut (1999)
- Contract layers of $n / h(n)$ consecutive rows of $P \in \mathcal{P} \rightarrow$ $h(n) \times n$ function matrix F.
- Each of the layers \rightarrow permutation matrices $P_{1} \ldots P_{h(n)}$.
- F and P_{i} 's uniquely determine P.
- Set of F 's has VC-dimension at most k.
- For each F, sets of P_{1} 's, P_{2} 's ... have VC-dimension at most k.

Flat Function Matrices

- $h(n):=c n / \log ^{6}(n)$

Lemma

A set \mathcal{F} of $h(n) \times n$ function matrices with VC-dimension k has size $2^{O(n)}$.

- Thus, by induction, a set of n-permutation matrices with VC-dimension k has size $2^{O\left(n \log ^{\star}(n)\right)}$.

Proof of Lemma - Basic Idea

- Similar to Raz (2000)
- M . . $h(n) \times n(0,1)$-matrix with 1's on positions where some matrix of \mathcal{F} has 1
- $|M| \ldots$ size of $M \ldots$ number of 1 -entries
- $v(M):=|M| / n$
- Decreasing $v(M)$ while not decreasing $|\mathcal{F}|$ too much ... find 1-entries not contained in many function matrices.
- End when $v(M)=O(1)$ and so $\left|\mathcal{F}^{\prime}\right| \leq v(M)^{n}=2^{O(n)}$
- Simple case: column with at least $v(M) \log ^{2}(n) 1$-entries ... remove half of its 1 -entries

Finding 1-entries to Remove

- No column has more than $v(M) \log ^{2}(n) 1$-entries.
- Thus $\Omega\left(n / \log ^{2}(n)\right)$ columns have at least $v(M) / 2$ 1-entries
- Find a large set of $(k+1)$-splittable columns $\ldots k+1$ layers; each of the columns has a 1-entry in each layer.

Finding 1-entries to Remove - Splittable Columns

Lemma (Nivasch 2009)

Let M be an $m \times n$ matrix with at least $v \geq v_{d, k} 1$-entries in each column. If $n \geq c_{d, k} s m \alpha_{d}(m)^{k-2}$, then M contains an ($k+1$)-splittable s-tuple of columns.

- $s \geq \log ^{2}(n)$
- $S \ldots m \times s$ matrix consisting of the splittable s-tuple of columns of M

Finding 1 -entries to Remove - Criss-crossing

- Take i-tuple of columns of S.
- Assign one layer to each of the columns, pairwise distinct.
- Consider function matrices that visit the assigned layer in each of the columns.
- The i-tuple of columns is criss-crossed if, for each assignment of one layer to each column, the number of function matrices is at least $|\mathcal{F}| / n^{2 i}$.
- No criss-crossed ($k+1$)-tuple of columns - all $(k+1)$-permutation matrices would appear.

Finding 1 -entries to Remove

- Criss-crossed i-tuple of columns, but no $(i+1)$-tuple.
- For each of the remaining columns, take the assignment due to which it cannot be added to the i-tuple.
- Constant number $\binom{k+1}{i+1}(i+1)$!) of different assignments.
- Take the most frequent assignment, fix its 1 -entries (i. e., remove all the other 1's) in the first i columns and remove the ones in the assigned layer of all the possible last columns.
- $\Omega\left(\log ^{2}(n)\right)$ removed 1's; $\quad|\mathcal{F}| \rightarrow|\mathcal{F}| /\left(2 n^{2 i}\right)$

Extremal Problems on Forbidden Matrices

- $(0,1)$-matrices
- Matrix A contains $I \times k$ matrix B if the 1-entries of B appear in the intersection of some k-tuple of columns and some l-tuple of rows of A.

$$
B=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \quad A=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- Otherwise A avoids B
- $f(n ; B) \ldots$ maximum number of 1 -entries in an $n \times n$ matrix A avoiding B
- B is forbidden

Spectrum of Growth Rates

$f(n ; B)=$

- $\Theta\left(n^{3 / 2}\right)$ for $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ (Turán-type result)
- $\Theta(n \log (n))$ for $B=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ (Füredi, 1990)
- $\Theta(n \log (n) \log \log (n))$ for a 4×5 acyclic pattern (Pettie, 2010)
- $\Theta(n \alpha(n))$ for $B=\left(\begin{array}{llll}0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0\end{array}\right)$ (Füredi and Hajnal, 1992, from DS-sequences)
- $O\left(n 2^{\alpha^{O(1)}(n)}\right)$ if B is a function matrix ... exactly 11 -entry in each column (from generalized DS-sequences)
- $\Theta(n)$ if B is a permutation matrix (Marcus and Tardos, 2004)

Different Forbidden Matrices

- Different $(k+1)$-tuples of columns can have a different forbidden matrix
- Forbidden matrices are permutation
- Reformulation: No $(k+1)$-tuple of columns contains all $(k+1)$-permutation matrices
- Is $f_{k}(n)$ linear?
- YES if $k \leq 2$ (Raz 2000)
- NO if $k \geq 3$

Theorem

For every $k \geq 3$
$\Omega(n \alpha(n)) \leq f_{k}(n) \leq O\left(n 2^{\alpha^{O(1)}(n)}\right)$

Different Forbidden Matrices

- Different $(k+1)$-tuples of columns can have a different forbidden matrix
- Forbidden matrices are permutation
- Reformulation: No $(k+1)$-tuple of columns contains all $(k+1)$-permutation matrices
- Is $f_{k}(n)$ linear?
- YES if $k \leq 2$ (Raz 2000)
- NO if $k \geq 3$

$\Omega(n \alpha(n)) \leq f_{k}(n) \leq O\left(n 2^{\alpha^{O(1)}(n)}\right)$

Different Forbidden Matrices

- Different $(k+1)$-tuples of columns can have a different forbidden matrix
- Forbidden matrices are permutation
- Reformulation: No $(k+1)$-tuple of columns contains all $(k+1)$-permutation matrices
- Is $f_{k}(n)$ linear?
- YES if $k \leq 2$ (Raz 2000)
- NO if $k \geq 3$

Theorem

For every $k \geq 3$:

$$
\Omega(n \alpha(n)) \leq f_{k}(n) \leq O\left(n 2^{\alpha^{O(1)}(n)}\right)
$$

Superlinear Lower Bound

Lemma

If A contains $P_{1}=\left(. \bullet^{\bullet}\right)$ and $P_{2}=(\bullet \bullet \bullet)$ on the same quadruple of columns, then it contains $D S_{3}=\left(\bullet_{\bullet}^{\bullet}\right)$

Proof.

If the second row of P_{1} is higher than the second row of the other matrix, then we find $\binom{\bullet}{\bullet}$, otherwise $\left(\bullet_{\bullet}^{\bullet}\right)$

Corollary

A with $\Theta(n \alpha(n)) 1$-entries avoiding $D S_{3}$ has no quadruple of columns with all permutation matrices.

Superlinear Lower Bound

Lemma

If A contains $P_{1}=\left(.^{\bullet}\right)$ and one of $\left(\bullet^{\bullet}, \bullet\right),\left(\bullet^{\bullet}\right.$ •) on the same quadruple of columns, then it contains $D S_{3}=\left(\bullet_{\bullet}^{\bullet}\right)$

Proof.

If the second row of P_{1} is higher than the second row of the other matrix, then we find $(\stackrel{\bullet}{\bullet})$, otherwise (\bullet)

Corollary

A with $\Theta(n \alpha(n)) 1$-entries avoiding $D S_{3}$ has no quadruple of columns with all permutation matrices.

Quasilinear Upper Bound

- If A contains $k^{2} \times k$ matrix $K I_{k}=$

k-tuple of columns contains all permutation matrices.
- $O\left(n 2^{\alpha^{O(1)}(n)}\right) 1$-entries
- On the other hand, if some k^{2}-tuple of columns of A contains all permutation matrices, then it contains $K l_{k}$.

Back to VC-dimension - Lower Bound Construction

- Take A with $\Theta(n \alpha(n)) 1$-entries that avoids $D S_{3}=\left(\ddots_{\bullet}^{\bullet}\right)$.
- All but $c n / \alpha(n)$ rows empty.
- Half of its columns have at least $c^{\prime} \alpha(n)$ 1's each.
- Contains at least $\left(c^{\prime} \alpha(n)\right)^{n / 2}$ function matrices of size $c n / \alpha(n) \times n / 2$.
- Expand each row of the function matrices with the diagonal matrix \rightarrow permutation matrices.

Correctness of the Construction

- Resulting permutation matrix could be obtained from at most $\binom{n / 2+c n / \alpha(n)}{c n / \alpha(n)}=2^{O(n)}$ different function matrices.
- Thus we have $\alpha(n)^{\Omega(n)}$ permutation matrices.
- VC-dimension is 3
- Assume that the resulting permutation matrices contain on some quadruple of columns both $P_{1}=\left(\bullet^{\bullet}\right)$ and $P_{2}=(\bullet \bullet \bullet)$
- Then we find in A on this quadruple of columns: P_{1} and one of $(\bullet \bullet \bullet),(\bullet \bullet \bullet)$
- This is impossible since A avoids $D S_{3}=\left(\bullet_{\bullet}^{\bullet}\right)$.

