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VC-dimension

Set systems

VC-dimension of a family C of sets over [n] = {1, . . . , n}:
size of the largest subset of [n] shattered by C

Sauer’s lemma: VCdim(C) = k ⇒ |C| ≤ O(nk)

Sets of permutations

P . . . set of n-permutations

P has VC-dimension k if k is the largest number for which
there is a k -tuple of elements such that restriction of
permutations of P on these elements gives all
k -permutations

In other words: For every (k + 1)-tuple of elements, some
(k + 1)-permutation is missing (is avoided).
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Forbidden Permutation Questions

All (k + 1)-tuples of elements avoid the same permutation.

Theorem (Marcus, Tardos(2004), using result of Klazar (2000))

The number of n-permutations avoiding a fixed permutation is
2Θ(n).

Was a long–standing conjecture of Stanley and Wilf.
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Permutation Sets Arising in Discrete Geometry

Arrangements of pseudolines

In how many different ways can we place a new one?

Placement ↔ permutation of the pseudolines
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Permutation Sets Arising in Discrete Geometry

Arrangements of pseudolines

In how many different ways can we place a new one?

Placement ↔ permutation of the pseudolines

Fix the leftmost point −→ VC-dimension is 2
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Graph drawing

Upper bound on the number of weakly nonisomorphic
complete topological graphs (Kynčl, 2010+)
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Bounds on the Size of Sets of VC-dimension k

Theorem (Raz 2000)

Any set P of n-permutations with VC-dimension 2 has size
2O(n).

Theorem (Our Main Result)

For a fixed k ≥ 3, a set P of n-permutations with VC-dimension
k has size 2O(n log⋆(n)).
There is a set P of n-permutations with VC-dimension 3 and
size α(n)Ω(n) .

Matrix point of view

permutations → permutation matrices

each (k + 1)-tuple of columns avoids some
(k + 1)-permutation matrix
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Proof of the Upper Bound — Flattening

Same as one step in Alon, Friedgut (1999)
Contract layers of n/h(n) consecutive rows of P ∈ P →
h(n) × n function matrix F .
Each of the layers → permutation matrices P1 . . . Ph(n).

F and Pi ’s uniquely determine P.
Set of F ’s has VC-dimension at most k .
For each F , sets of P1’s, P2’s . . . have VC-dimension at
most k .
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Flat Function Matrices

h(n) := cn/ log6(n)

Lemma

A set F of h(n) × n function matrices with VC-dimension k has
size 2O(n).

Thus, by induction, a set of n-permutation matrices with
VC-dimension k has size 2O(n log⋆(n)).
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Proof of Lemma - Basic Idea

Similar to Raz (2000)

M . . . h(n) × n (0, 1)-matrix with 1’s on positions where
some matrix of F has 1

|M| . . . size of M . . . number of 1-entries

v(M) := |M|/n

Decreasing v(M) while not decreasing |F| too much
. . . find 1-entries not contained in many function matrices.

End when v(M) = O(1) and so |F ′| ≤ v(M)n = 2O(n)

Simple case: column with at least v(M) log2(n) 1-entries
. . . remove half of its 1-entries
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Finding 1-entries to Remove

No column has more than v(M) log2(n) 1-entries.

Thus Ω(n/log2(n)) columns have at least v(M)/2 1-entries

Find a large set of (k + 1)-splittable columns . . . k + 1
layers; each of the columns has a 1-entry in each layer.
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Finding 1-entries to Remove — Splittable Columns

Lemma (Nivasch 2009)

Let M be an m × n matrix with at least v ≥ vd ,k 1-entries in
each column. If n ≥ cd ,ksmαd(m)k−2, then M contains an
(k + 1)-splittable s-tuple of columns.

s ≥ log2(n)
S . . . m × s matrix consisting of the splittable s-tuple of
columns of M
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Finding 1-entries to Remove — Criss-crossing

Take i-tuple of columns of S.

Assign one layer to each of the columns, pairwise distinct.

Consider function matrices that visit the assigned layer in
each of the columns.

The i-tuple of columns is criss-crossed if, for each
assignment of one layer to each column, the number of
function matrices is at least |F|/n2i .

No criss-crossed (k + 1)-tuple of columns - all
(k + 1)-permutation matrices would appear.
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Finding 1-entries to Remove

Criss-crossed i-tuple of columns, but no (i + 1)-tuple.
For each of the remaining columns, take the assignment
due to which it cannot be added to the i-tuple.
Constant number (

(k+1
i+1

)

(i + 1)!) of different assignments.
Take the most frequent assignment, fix its 1-entries (i. e.,
remove all the other 1’s) in the first i columns and remove
the ones in the assigned layer of all the possible last
columns.
Ω(log2(n)) removed 1’s; |F| → |F|/(2n2i)
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Forbidden matrices
Sketch of the proof

Extremal Problems on Forbidden Matrices

(0, 1)-matrices
Matrix A contains l × k matrix B if the 1-entries of B appear
in the intersection of some k -tuple of columns and some
l-tuple of rows of A.

B =





0 0 1 0
1 0 0 1
0 1 0 0



 A =

















0 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

















Otherwise A avoids B
f (n; B) ... maximum number of 1-entries in an n × n matrix
A avoiding B
B is forbidden
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Forbidden matrices
Sketch of the proof

Spectrum of Growth Rates

f (n; B) =

Θ(n3/2) for B =
(

1 1
1 1

)

(Turán-type result)

Θ(n log(n)) for B =
(

1 1 0
1 0 1

)

(Füredi, 1990)

Θ(n log(n) log log(n)) for a 4 × 5 acyclic pattern (Pettie,
2010)

Θ(nα(n)) for B =
(

0 1 0 1
1 0 1 0

)

(Füredi and Hajnal, 1992, from
DS-sequences)

O(n2αO(1)(n)) if B is a function matrix . . . exactly 1 1-entry in
each column (from generalized DS-sequences)

Θ(n) if B is a permutation matrix (Marcus and Tardos,
2004)
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Different Forbidden Matrices

Different (k + 1)-tuples of columns can have a different
forbidden matrix

Forbidden matrices are permutation

Reformulation: No (k + 1)-tuple of columns contains all
(k + 1)-permutation matrices

Is fk (n) linear?

YES if k ≤ 2 (Raz 2000)

NO if k ≥ 3

Theorem
For every k ≥ 3 :

Ω(nα(n)) ≤ fk (n) ≤ O(n2αO(1)(n)).
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Forbidden matrices
Sketch of the proof

Superlinear Lower Bound

Lemma

If A contains P1 =

(

•

•

•

•

)

and P2 =

(

•

•

•

•

)

on the same

quadruple of columns, then it contains DS3 =

(

•

•

•

•

)

Proof.

If the second row of P1 is higher than the second row of the

other matrix, then we find
(

•

•

•

•

)

, otherwise
(

•

•

•

•

)

Corollary

A with Θ(nα(n)) 1-entries avoiding DS3 has no quadruple of
columns with all permutation matrices.
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Superlinear Lower Bound

Lemma

If A contains P1 =

(

•

•

•

•

)

and one of
(

•

•

•

•

)

,
(

•

• •

•

)

on

the same quadruple of columns, then it contains DS3 =

(

•

•

•

•

)

Proof.

If the second row of P1 is higher than the second row of the

other matrix, then we find
(

•

•

•

•

)

, otherwise
(

•

•

•

•

)

Corollary

A with Θ(nα(n)) 1-entries avoiding DS3 has no quadruple of
columns with all permutation matrices.
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Forbidden matrices
Sketch of the proof

Quasilinear Upper Bound

If A contains k2 × k matrix KIk =
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, then the

k -tuple of columns contains all permutation matrices.

O(n2αO(1)(n)) 1-entries

On the other hand, if some k2-tuple of columns of A
contains all permutation matrices, then it contains KIk .
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Forbidden matrices
Sketch of the proof

Back to VC-dimension — Lower Bound Construction

Take A with Θ(nα(n)) 1-entries that avoids DS3 =

(

•

•

•

•

)

.

All but cn/α(n) rows empty.
Half of its columns have at least c′α(n) 1’s each.
Contains at least (c′α(n))n/2 function matrices of size
cn/α(n) × n/2.
Expand each row of the function matrices with the diagonal
matrix → permutation matrices.
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Correctness of the Construction

Resulting permutation matrix could be obtained from at
most

(n/2+cn/α(n)
cn/α(n)

)

= 2O(n) different function matrices.

Thus we have α(n)Ω(n) permutation matrices.
VC-dimension is 3

Assume that the resulting permutation matrices contain on

some quadruple of columns both P1 =

(

•

•

•

•

)

and

P2 =

(

•

•

•

•

)

Then we find in A on this quadruple of columns: P1 and one

of
(

•

•

•

•

)

,
(

•

• •

•

)

This is impossible since A avoids DS3 =

(

•

•

•

•

)

.
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