Simple permutations in permutation classes

* * *

A polynomial algorithm for deciding the finiteness of the number of simple permutations in permutation classes

Frédérique Bassino¹, <u>Mathilde Bouvel</u>², Adeline Pierrot², Dominique Rossin³

Permutation Patterns 2010, August 9 - 13, Dartmouth College

- 1: LIPN, Université Paris 13 and CNRS
- 2: LIAFA, Université Paris Diderot and CNRS
- 3: LIX, École Polytechnique and CNRS

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	

Outline

1 Introduction

- Context of the study
- Definitions
- 2 Sketch of the procedure
 - Patterns on permutations and factors on words
 - Computing pinwords
 - Automata recognizing pinword languages
 - Assembling the algorithm
- 3 Perspectives

Context	Definitions	Patterns and factors	Pinwords	Automata 0000	Algorithm 0000	Perspectives O

Introduction

- Context of the study
- Definitions

Mathilde Bouvel Simple permutations in permutation classes

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Permutation:
$$\sigma = \sigma(1)\sigma(2)\ldots\sigma(n) = \sigma_1\sigma_2\ldots\sigma_n \in S_n$$

Pattern: $\pi \in S_k$ is a pattern of $\sigma \in S_n$ if $\exists 1 \le i_1 < \ldots < i_k \le n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . Denoted $\pi \le \sigma$.

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Permutation:
$$\sigma = \sigma(1)\sigma(2)\ldots\sigma(n) = \sigma_1\sigma_2\ldots\sigma_n \in S_n$$

Pattern: $\pi \in S_k$ is a pattern of $\sigma \in S_n$ if $\exists \ 1 \le i_1 < \ldots < i_k \le n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . Denoted $\pi \le \sigma$.

Mathilde Bouvel Simple permutations in permutation classes

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000	0000000	0000	000	0000	0000		
Introduction: Context of the study							

Permutation:
$$\sigma = \sigma(1)\sigma(2)\ldots\sigma(n) = \sigma_1\sigma_2\ldots\sigma_n \in S_n$$

Pattern: $\pi \in S_k$ is a pattern of $\sigma \in S_n$ if $\exists 1 \le i_1 < \ldots < i_k \le n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . Denoted $\pi \le \sigma$.

Mathilde Bouvel Simple permutations in permutation classes

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Permutation:
$$\sigma = \sigma(1)\sigma(2)\ldots\sigma(n) = \sigma_1\sigma_2\ldots\sigma_n \in S_n$$

Pattern: $\pi \in S_k$ is a pattern of $\sigma \in S_n$ if $\exists 1 \le i_1 < \ldots < i_k \le n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . Denoted $\pi \le \sigma$.

Permutation Class: Set C downward closed for \leq . Characterized by its **basis** $B: C = Av(B) = \{\sigma : \forall \beta \in B, \beta \not\leq \sigma\}$. The (finite or infinite) basis is an antichain and is unique:

$$B = \{\beta \notin \mathcal{C} : \forall \pi \leq \beta \text{ such that } \pi \neq \beta, \pi \in \mathcal{C} \}.$$

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Permutation:
$$\sigma = \sigma(1)\sigma(2)\ldots\sigma(n) = \sigma_1\sigma_2\ldots\sigma_n \in S_n$$

Pattern: $\pi \in S_k$ is a pattern of $\sigma \in S_n$ if $\exists 1 \le i_1 < \ldots < i_k \le n$ such that $\sigma_{i_1} \ldots \sigma_{i_k}$ is order-isomorphic to π . Denoted $\pi \le \sigma$.

Permutation Class: Set C downward closed for \leq . Characterized by its **basis** $B: C = Av(B) = \{\sigma : \forall \beta \in B, \beta \not\leq \sigma\}$. The (finite or infinite) basis is an antichain and is unique:

$$B = \{\beta \notin \mathcal{C} : \forall \pi \leq \beta \text{ such that } \pi \neq \beta, \pi \in \mathcal{C} \}.$$

Enumeration of class C = Av(B), with **finite** basis *B*:

closed formula for $c_n = |S_n \cap C|$ generating function $\sum c_n z^n$...

NB: Enumeration without being given the basis is less frequent.

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Permutation classes and generating functions

Enumerating class C by its generating function $C(z) = \sum c_n z^n$ Structure of $C \hookrightarrow$ Equations on $C(z) \hookrightarrow$ Properties of C(z)

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Permutation classes and generating functions

Enumerating class C by its generating function $C(z) = \sum c_n z^n$ Structure of $C \hookrightarrow$ Equations on $C(z) \hookrightarrow$ Properties of C(z)

Example: C = Av(231)

- Sequence $c_n = \frac{1}{n+1} \binom{2n}{n}$
- Algebraic generating function $C(z) = \frac{1-\sqrt{1-4z}}{2z}$

Proof:

 $\sigma \in \mathcal{C} \cap S_n \Leftrightarrow \exists k \in [0..n-1] \text{ s.t. } \sigma = \sigma_L n \sigma_R$ with $\sigma_L \in \mathcal{C}$ on [1..k]and $\sigma_R \in \mathcal{C}$ on [k+1..n-1] $\Rightarrow C(z) = 1 + zC(z)^2$ σ_R

 σ_{I}

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Permutation classes and generating functions

Enumerating class C by its generating function $C(z) = \sum c_n z^n$ Structure of $C \hookrightarrow$ Equations on $C(z) \hookrightarrow$ Properties of C(z)

Example: C = Av(231)• Sequence $c_n = \frac{1}{n+1} {2n \choose n}$

• Algebraic generating function $C(z) = \frac{1-\sqrt{1-4z}}{2z}$

Proof:

 $\sigma \in \mathcal{C} \cap S_n \Leftrightarrow \exists k \in [0..n-1] \text{ s.t. } \sigma = \sigma_L n \sigma_R$ with $\sigma_L \in \mathcal{C}$ on [1..k]and $\sigma_R \in \mathcal{C}$ on [k+1..n-1] $\Rightarrow C(z) = 1 + zC(z)^2$

Properties of the generating function \equiv **Structure** of the class

 σ_R

 σ_I

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

A general sufficient condition for algebricity

Thm [Albert, Atkinson '05] C contains finitely many simple permutations $\Rightarrow C$ is finitely based and has an algebraic generating function.

Sketch of the proof

Use substitution decomposition of permutations (\equiv represent uniquely every permutation by its decomposition tree)

Recursive structure of the permutations in C (\equiv Tree grammar)

- \Rightarrow System of equations satisfied by the generating function C(z)
 - \Rightarrow Algebricity of the generating function

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
00000							
Introduction: Context of the study							

Finite number of simple permutations: decision

Thm [Brignall, Ruškuc, Vatter '08] For a class C = Av(B) with finite basis B, it is decidable whether C contains a finite number of simple permutations.

Sketch of the proof

 ${\mathcal C}$ contains infinitely many simple permutations iff ${\mathcal C}$ contains:

- 1. either infinitely many parallel alternations
- 2. or infinitely many wedge simple permutations
- 3. or infinitely many proper pin-permutations

	Decision procedure	Complexity
1. and 2. :	pattern matching of patterns	Polynomial
	of size 3 or 4 in the $\beta \in B$.	
3. :	Decidability with automata	Decidable
	techniques on pinwords	2ExpTime

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000						
Introduction:	Context of the stu	dy				

Main result: polynomial-time decision

Thm

For a class C = Av(B) with finite basis B, it is polynomial to check whether C contains a finite number of simple permutations.

NB: Result known for wreath-closed classes since PP2009

With $n = \max\{|\beta| : \beta \in B\}$ and k = number of patterns in B, the complexity is: Steps 1. and 2.: $\mathcal{O}(k \cdot n \log n)$ Step 3.: $\mathcal{O}(n^{3k})$ **NB:** Step 3. in the previous procedure: $\mathcal{O}(2^{n \cdot k \cdot 2^n})$

Tools for the proof

- Substitution decomposition
- Encoding by pinwords and automata techniques
- Previous results on the class of pin-permutations

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	000000	0000	000	0000	0000	
Introduction:	Definitions					

Substitution for permutations

Substitution or inflation : $\sigma = \pi[\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}].$

Example : Here,
$$\pi = 132$$
, and
$$\begin{cases} \alpha^{(1)} = 21 = \textcircled{\bullet} \\ \alpha^{(2)} = 132 = \textcircled{\bullet} \\ \alpha^{(3)} = 1 = \textcircled{\bullet} \end{cases}$$

Hence
$$\sigma = 132[21, 132, 1] = 214653$$
.

Mathilde Bouvel

Context	Definitions ○●○○○○○	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

Simple permutations

Interval (or **block**) = set of elements of σ whose positions **and** values form intervals of integers **Example**: 5746 is an interval of 2574613

Simple permutation = permutation that has no interval, except the trivial intervals: 1, 2, ..., n and σ Example: 3174625 is simple.

The smallest simple: 12,21,2413,3142

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	000000					
Introduction:	Definitions					

Substitution decomposition of permutations

Thm [AA '05]: Every $\sigma \neq 1$ is uniquely decomposed as • $\oplus [\alpha^{(1)}, \ldots, \alpha^{(k)}]$, where the $\alpha^{(i)}$ are \oplus -indecomposable • \ominus [$\alpha^{(1)}, \ldots, \alpha^{(k)}$], where the $\alpha^{(i)}$ are \ominus -indecomposable • $\pi[\alpha^{(1)}, \ldots, \alpha^{(k)}]$, where π is simple of size k > 4**NB**: $\oplus = 12...$ and $\ominus = k...21$, for any $k \ge 2$ **Example**: Decomposition tree of **Decomposition tree**: $\sigma = 10\,13\,12\,11\,14\,1\,18\,19\,20\,21\,17\,16\,15\,4\,8\,3\,2\,9\,5\,6\,7$ Recursively defined as $T_1 = \bullet$ 3142 and 24153 $T_{\sigma} =$ $\pi/\oplus/\ominus$ $T_{\alpha(1)}$ $T_{\alpha(2)}$ \cdots $T_{\alpha(k)}$

Mathilde Bouvel

Mathilde Bouvel

Mathilde Bouvel

Mathilde Bouvel

Mathilde Bouvel

Mathilde Bouvel

Mathilde Bouvel

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Introduction:	Definitions					

Mathilde Bouvel

Context	Definitions 000●000	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction:	Definitions					

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction:	Definitions					

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction:	Definitions					

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction:	Definitions					

U = up

Mathilde Bouvel

Simple permutations in permutation classes

U p3

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Introduction: Definitions						

$$U = up$$

 $R = right$

U R p₃ p₄

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Introduction: Definitions						

U R D $p_3 p_4 p_5$

$$U = up$$

 $R = right$
 $D = down$

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

Mathilde Bouvel
Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

R U R D 3 U R p₂ p₃ p₄ p₅ p₆ p₇ p₈

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

2 1 U R D 3 U R P1 P2 P3 P4 P5 P6 P7 P8 Ambiguous encoding

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction: Definitions						

U = up R = right	2	1
D = down L = left	3	4

NB: Pinwords = words with no factor in $\{L, R\} \cdot \{L, R\} \cup \{U, D\} \cdot \{U, D\}$

Ambiguous encoding

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	0000000					
Introduction:	Definitions					

U = up R = right	2	1
D = down L = left	3	4

NB: Pinwords = words with no factor in $\{L, R\} \cdot \{L, R\} \cup \{U, D\} \cdot \{U, D\}$

Strict pinwords: the only numeral is the first letter.

- Encode proper pin representations.
- But proper pin representations are encoded **not only** by strict pinwords!

Mathilde Bouvel

Context	Definitions 00000●0	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

The class of pin-permutations

Fact: Not every permutation admits (proper) pin representations.

Def: Pin-permutation = that has a pin representation.

Def: Proper pin-permutation = that has a proper pin representation.

Context	Definitions 00000●0	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

The class of pin-permutations

Fact: Not every permutation admits (proper) pin representations.

Def: Pin-permutation = that has a pin representation.

Def: Proper pin-permutation = that has a proper pin representation.

Thm: Pin-permutations are a permutation class (but proper pin-permutations are not).

Context	Definitions 00000●0	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives
Introduction:	Definitions					

The class of pin-permutations

Fact: Not every permutation admits (proper) pin representations.

Def: Pin-permutation = that has a pin representation.

Def: Proper pin-permutation = that has a proper pin representation.

Thm: Pin-permutations are a permutation class (but proper pin-permutations are not).

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
	000000					
Introduction:	Definitions					

Several pin representations for a single pin-permutation

Context	Definitions 000000●	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

- σ a pin-permutation of S_n :
 - \blacksquare at least one and possibly many pin representations of σ
 - at least one and possibly many pinwords (at most 8ⁿ)

Context	Definitions 000000●	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

- σ a proper pin-permutation of S_n :
 - \blacksquare at least one and possibly many proper pin representations of σ
 - at least one and possibly many strict pinwords (at most 2^{n+2})

Context	Definitions 000000●	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives O
Introduction:	Definitions					

- σ a proper pin-permutation of S_n :
 - \blacksquare at least one and possibly many proper pin representations of σ
 - at least one and possibly many strict pinwords (at most 2^{n+2})
 - Every proper pin-permutations is encoded by at least one and at most 2ⁿ⁺² strict pinwords.
 - Every strict pinword encodes a **proper** pin-permutation.

Hence: Infinitely many proper pin-permutations in C \Leftrightarrow infinitely many strict pinwords encoding permutations in C

Context	Definitions	Patterns and factors ●○○○	Pinwords	Automata	Algorithm 0000	Perspectives O
Proof: Pattern	s on permutations	and factors on words				

Proof of the main result

Thm

For a class C = Av(B) with finite basis B, it is polynomial to check whether C contains a finite number of simple permutations.

Lemma

For a class C = Av(B) with finite basis *B*, it is polynomial to check whether *C* contains a finite number of proper pin-permutations.

- Patterns on permutations and factors on words
- Computing pinwords
- Automata recognizing pinword languages
- Assembling the algorithm

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Proof: Patterr	ns on permutation	s and factors on words				

How to read permutation patterns in pinwords

 \forall (proper pin-)permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \nleq \sigma$

Mathilde Bouvel Simple permutations in permutation classes

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
		0000					
Proof: Patterns on permutations and factors on words							

How to read permutation patterns in pinwords

 \forall (proper pin-)permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \nleq \sigma$

Thm [BRV '08] $\beta \in B, \sigma$ a (proper) pin-permutation, w a (strict) pinword of σ . $\beta \leq \sigma$ iff β is a pin-permutation and \exists a pinword u encoding β s.t. $u \leq w$

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Proof: Patterns on permutations and factors on words						

How to read permutation patterns in pinwords

 \forall (proper pin-)permutation σ : $\sigma \in \mathcal{C} = Av(B)$ iff $\forall \beta \in B, \beta \not\leq \sigma$ Thm [BRV '08] $\beta \in B$, σ a (proper) pin-permutation, w a (strict) pinword of σ . $\beta < \sigma$ iff β is a pin-permutation and \exists a pinword *u* encoding β s.t. $u \prec w$ **Def** $u = u^{(1)} \dots u^{(j)}$ with each $u^{(i)}$ strict pinword. $u \prec w$ when $w = v^{(1)}w^{(1)} \dots v^{(j)}w^{(j)}v^{(j+1)}$ s.t. $\forall i \in \{1, \dots, j\}$: • if $w^{(i)}$ begins with a numeral then $w^{(i)} = u^{(i)}$ • if $w^{(i)}$ begins with a direction, then • $v^{(i)}$ is nonempty • the first letter of $w^{(i)}$ corresponds to a point lying in the guadrant specified by the first letter of $u^{(i)}$

and all letters except the first one in $u^{(i)}$ and $w^{(i)}$ agree

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm 0000	Perspectives
Proof: Patterns on permutations and factors on words						

Replace numerals by directions \Rightarrow factors instead of "almost factors"

 $\phi: u = u_1 u_2 \dots u_n \text{ strict pinword } \mapsto \phi(u) \in \mathcal{M} \text{ with}$ $\mathcal{M} = \{L, R, U, D\}^* \text{ with no factor in } \{L, R\} \cup \{U, D\} \cup \{U, D\}$

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Proof: Patterns on permutations and factors on words						

Replace numerals by directions \Rightarrow factors instead of "almost factors"

 $\phi: u = u_1 u_2 \dots u_n \text{ strict pinword } \mapsto \phi(u) \in \mathcal{M} \text{ with}$ $\mathcal{M} = \{L, R, U, D\}^* \text{ with no factor in } \{L, R\} \cup \{U, D\} \cup \{U, D\}$

$\varphi(u) = u_0 u_1 u_2 \cdots u_n$ with $u_0 u_1$ given	$u(u) = u'_0 u'_1 u_2 \dots u_n$ with $u'_0 u'_1$ given	by
--	---	----

<i>u</i> ₁	<i>u</i> ₂	$u_0' u_1'$
	D or $U(\uparrow)$	UR
1	L or $R (\leftrightarrow)$	RU
	ϵ	$\{UR, RU\}$

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
		0000				
Proof: Patterns on permutations and factors on words						

Replace numerals by directions \Rightarrow factors instead of "almost factors"

 $\phi: u = u_1 u_2 \dots u_n \text{ strict pinword } \mapsto \phi(u) \in \mathcal{M} \text{ with}$ $\mathcal{M} = \{L, R, U, D\}^* \text{ with no factor in } \{L, R\} \cup \{U, D\} \cup \{U, D\}$

<i>u</i> ₁	<i>u</i> ₂	$u_0' u_1'$
	D or $U(\uparrow)$	UR
1	L or $R (\leftrightarrow)$	RU
	ϵ	$\{UR, RU\}$

<i>u</i> ₁	<i>u</i> ₂	$u'_{0}u'_{1}$
2	\uparrow or \leftrightarrow or ϵ	$\subseteq \{UL, LU\}$
3	\uparrow or \leftrightarrow or ϵ	$\subseteq \{DL, LD\}$
4	\uparrow or \leftrightarrow or ϵ	$\subseteq \{RD, DR\}$

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
00000	0000000	0000	000	0000	0000	
Proof: Patterns on permutations and factors on words						

Replace numerals by directions \Rightarrow factors instead of "almost factors"

 $\phi: u = u_1 u_2 \dots u_n \text{ strict pinword } \mapsto \phi(u) \in \mathcal{M} \text{ with}$ $\mathcal{M} = \{L, R, U, D\}^* \text{ with no factor in } \{L, R\} \cup \{U, D\} \cup \{U, D\}$

$$\phi(u) = u'_0 u'_1 u_2 \dots u_n$$
 with $u'_0 u'_1$ given by

<i>u</i> ₁	<i>u</i> ₂	$u_0' u_1'$
	D or $U(\uparrow)$	UR
1	L or $R (\leftrightarrow)$	RU
	ϵ	$\{UR, RU\}$

<i>u</i> ₁	<i>u</i> ₂	$u'_{0}u'_{1}$
2	\uparrow or \leftrightarrow or ϵ	$\subseteq \{UL, LU\}$
3	\uparrow or \leftrightarrow or ϵ	$\subseteq \{DL, LD\}$
4	\uparrow or \leftrightarrow or ϵ	$\subseteq \{RD, DR\}$

For strict pinwords, $u \leq w$ iff (some $x \in$) $\phi(u)$ is a factor of $\phi(w)$ (See also PP2009)

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
Proof: Pattern	ns on permutation	ns and factors on words	0000	0000	0000	

Patterns as piecewise factors of ϕ (pinwords)

Thm

For *u* a pinword and *w* a strict pinword, $u \leq w$ iff $\phi(w) \in \mathcal{L}(u)$

Def For $u = u^{(1)}u^{(2)} \dots u^{(j)}$ with each $u^{(i)}$ strict pinword, $\mathcal{L}(u) = \Sigma^* \phi(u^{(1)})\Sigma^* \phi(u^{(2)}) \dots \Sigma^* \phi(u^{(j)})\Sigma^*$ with $\Sigma = \{L, R, U, D\}$

 $\mathcal{L}(u) =$ words that contain $\phi(u) = (\phi(u^{(1)}), \phi(u^{(2)}), \dots, \phi(u^{(j)}))$ as "piecewise factor"

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives		
		0000						
Proof: Patterns on permutations and factors on words								

Patterns as piecewise factors of ϕ (pinwords)

Thm

For *u* a pinword and *w* a strict pinword, $u \leq w$ iff $\phi(w) \in \mathcal{L}(u)$

Def For $u = u^{(1)}u^{(2)} \dots u^{(j)}$ with each $u^{(i)}$ strict pinword, $\mathcal{L}(u) = \Sigma^* \phi(u^{(1)})\Sigma^* \phi(u^{(2)}) \dots \Sigma^* \phi(u^{(j)})\Sigma^*$ with $\Sigma = \{L, R, U, D\}$

 $\mathcal{L}(u) =$ words that contain $\phi(u) = (\phi(u^{(1)}), \phi(u^{(2)}), \dots, \phi(u^{(j)}))$ as "piecewise factor"

Thm

 $\beta \in B$, σ a proper pin-permutation, w a strict pinword of σ . $\beta \leq \sigma$ iff β is a pin-permutation and \exists a pinword uencoding β s.t. $\phi(w) \in \mathcal{L}(u)$

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives		
			000					
Proof: Computing pinwords of any pin-permutation								

One step further: computing pinwords of $\beta \in B$

So far:

 \forall proper pin-permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \nleq \sigma$

 $\begin{array}{l} \beta \in B, \ \sigma \ \text{a proper pin-permutation}, \ w \ \text{a strict pinword of } \sigma. \\ \beta \not\leq \sigma \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or for all pinwords } u \\ \quad \text{encoding } \beta, \ \phi(w) \not\in \mathcal{L}(u) \end{array}$

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives		
00000	0000000	0000	000	0000	0000			
Proof: Computing pinwords of any pin-permutation								

One step further: computing pinwords of $\beta \in B$

So far:

 \forall proper pin-permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \not\leq \sigma$

 $\begin{array}{l} \beta \in B, \ \sigma \ \text{a proper pin-permutation}, \ w \ \text{a strict pinword of } \sigma. \\ \beta \not\leq \sigma \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or for all pinwords } u \\ \quad \text{encoding } \beta, \ \phi(w) \not\in \mathcal{L}(u) \end{array}$

Next step:

When $\beta \in B$ is a pin-permutation, find its pinwords. \hookrightarrow Use the characterization of pin-permutations of [BBR09]

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives		
			000					
Proof. Computing sinusate of one sin somewhating								

Characterization of the pin-permutation class

The set \mathcal{P} of decomposition trees of pin-permutations satisfies:

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives		
			000					
Proof: Computing ninwords of any nin-nermutation								

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives
Proof: Compu	ting pinwords of a	ny pin-permutation	000	0000	0000	

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Mathilde Bouvel Simple permutations in permutation classes
 Context
 Definitions
 Patterns and factors
 Pinwords
 Automata
 Algorithm
 Perspectives

 0000
 000000
 0000
 000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives		
			000					
Proof: Computing pinwords of any pin-permutation								

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Mathilde Bouvel

 Context
 Definitions
 Patterns and factors
 Pinwords
 Automata
 Algorithm
 Perspectives

 0000
 000000
 0000
 000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives		
00000	0000000	0000	000	0000	0000			
Proof: Computing pinwords of any pin-permutation								

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

If σ satisfies Condition . . .

Proof: Technical...and many cases... Analyze the behavior of a pin representation w.r.t. the block of σ

Context	Definitions	Patterns and factors	Pinwords	Automata ●000	Algorithm 0000	Perspectives			
Proof: Autom	Proof: Automata recognizing pinword languages								

One more step: automata recognizing $\bigcup_{u \in P(\beta)} \mathcal{L}(u), \beta \in B$

So far:

 \forall proper pin-permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \nleq \sigma$

 β pin-permutation $\mapsto P(\beta) = \text{set of pinwords encoding } \beta$

 $\begin{array}{l} \beta \in B, \ \sigma \ \text{a proper pin-permutation}, \ w \ \text{a strict pinword of } \sigma. \\ \beta \not\leq \sigma \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or} \\ \phi(w) \not\in \cup_{u \in P(\beta)} \mathcal{L}(u) \end{array}$

Context	Definitions	Patterns and factors	Pinwords	Automata ●000	Algorithm 0000	Perspectives			
Proof: Autom	Proof: Automata recognizing pinword languages								

One more step: automata recognizing $\cup_{u \in P(\beta)} \mathcal{L}(u), \beta \in B$

So far:

 \forall proper pin-permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \nleq \sigma$

 β pin-permutation \mapsto $P(\beta)$ = set of pinwords encoding β

 $\begin{array}{l} \beta \in B, \ \sigma \ \text{a proper pin-permutation}, \ w \ \text{a strict pinword of } \sigma. \\ \beta \not\leq \sigma \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or} \\ \phi(w) \not\in \cup_{u \in P(\beta)} \mathcal{L}(u) \end{array}$

Next step: When $\beta \in B$ is a pin-permutation, describe the language $\bigcup_{u \in P(\beta)} \mathcal{L}(u)$ by a **deterministic** automaton

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords 000	Automata ○●○○	Algorithm 0000	Perspectives O	
Proof: Automata recognizing pinword languages							

Determinism and mirror languages

- As before, use the recursive characterization of the pin-permutation class:
- \hookrightarrow For each shape of tree of a pin-permutation σ , compute a deterministic automaton recognizing $\mathcal{L}(\sigma) = \bigcup_{u \in P(\sigma)} \mathcal{L}(u)$.
| Context | Definitions | Patterns and factors | Pinwords
000 | Automata
○●○○ | Algorithm
0000 | Perspectives
O |
|--------------|--------------------|----------------------|------------------------|------------------|-------------------|--------------------------|
| Proof: Autom | ata recognizing p | inword languages | | | | |

Determinism and mirror languages

- As before, use the recursive characterization of the pin-permutation class:
- \hookrightarrow For each shape of tree of a pin-permutation σ , compute a deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)} = \bigcup_{u \in \mathcal{P}(\sigma)} \overleftarrow{\mathcal{L}(u)}$.

Context	Definitions	Patterns and factors	Pinwords 000	Automata ○●○○	Algorithm 0000	Perspectives
Proof: Autom	ata recognizing p	inword languages				

Determinism and mirror languages

- As before, use the recursive characterization of the pin-permutation class:
- \hookrightarrow For each shape of tree of a pin-permutation σ , compute a deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)} = \bigcup_{u \in P(\sigma)} \overleftarrow{\mathcal{L}(u)}$.

Why the mirror?

- Common suffixes in pinwords of $P(\sigma)$
- But several choices for the beginning of $u \in P(\sigma)$
- $\, \hookrightarrow \,$ Reading for the end allows determinism

Determinism is key to have a polynomial complexity.

Context	Definitions	Patterns and factors	Pinwords 000	Automata ○●○○	Algorithm 0000	Perspectives
Proof: Autom	ata recognizing p	pinword languages				

Determinism and mirror languages

- As before, use the recursive characterization of the pin-permutation class:
- \hookrightarrow For each shape of tree of a pin-permutation σ , compute a deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)} = \bigcup_{u \in P(\sigma)} \overleftarrow{\mathcal{L}(u)}$.

Why the mirror?

- Common suffixes in pinwords of $P(\sigma)$
- But several choices for the beginning of $u \in P(\sigma)$
- $\, \hookrightarrow \,$ Reading for the end allows determinism

Determinism is key to have a polynomial complexity.

Recall that
$$\mathcal{L}(u) = \Sigma^* \phi(u^{(1)}) \Sigma^* \phi(u^{(2)}) \dots \Sigma^* \phi(u^{(j)}) \Sigma^*$$

Mathilde Bouvel

Recursive construction on the shape of the tree of σ :

Example: For $\sigma = (\sigma, \sigma)$, i.e. σ a simple pin-permutation Compute $P(\sigma)$ (at most 64 pinwords, strict or quasi-strict) $\overleftarrow{\mathcal{L}(\sigma)} =$ words with a **factor** in $\{\overleftarrow{\phi(u)} : u \in P(\sigma)\}$ **NB**: small extension of ϕ to quasi-strict pin-words **Aho-Corasick**: linear-time construction of a deterministic automaton \mathcal{A}_{σ} recognizing $\overleftarrow{\mathcal{L}(\sigma)}$

Recursive construction on the shape of the tree of σ :

Mathilde Bouvel

Mathilde Bouvel Simple permutations in permutation classes

Recursive construction on the shape of the tree of σ :

If σ satisfies Condition (2*H*1) then $P(\sigma) = P_0 \cup P_1 \cup P_2$, with ... \Rightarrow Add shortcuts to marked states of $\mathcal{A}(T_{i_0})$, corresponding to words added to $P(\sigma)$

Mathilde Bouvel

Mathilde Bouvel Simple permutations in permutation classes

 $\frac{A^{(1)}(\xi_1) \odot A^{(1)}(\xi_2)}{1) A^{(\beta)}(\xi_2)} \xrightarrow{A^{(1)}(\xi_2)} A^{(1)}(\xi_2)$

 $\mathcal{A}^{(\beta)}(\xi_{\alpha}\downarrow_{1})$

 $\delta_{\mathcal{A}}^{(1)}(\xi_{2})$

 $A^{(1)}(\xi_2)$

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm	Perspectives	
				0000			

Proof: Automata recognizing pinword languages

Complexity of the construction

	Time complexity	Size of \mathcal{A}_{σ}
Non recursive cases	up to $\mathcal{O}(n^3)$	up to $\mathcal{O}(n^3)$
Recursive cases	up to $\mathcal{O}(n^2)$	up to $\mathcal{O}(n^2)$
	+ recursive computation	+ recursive size

Thm For any pin-permutation σ , we can build a deterministic automaton \mathcal{A}_{σ} recognizing $\overleftarrow{\mathcal{L}(\sigma)} = \bigcup_{u \in P(\sigma)} \overleftarrow{\mathcal{L}(u)}$ Complexity (time and space): $\mathcal{O}(n^3)$ where $n = |\sigma|$

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm ●000	Perspectives O
Proof: Assembling the algorithm						

Almost there

So far:

 \forall proper pin-permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \nleq \sigma$

 β pin-permutation $\mapsto P(\beta) = \text{set of pinwords encoding } \beta$

 $\begin{array}{l} \beta \in B, \ \sigma \ \text{a proper pin-permutation}, \ w \ \text{a strict pinword of } \sigma. \\ \beta \not\leq \sigma \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or } \phi(w) \not\in \cup_{u \in P(\beta)} \mathcal{L}(u) \\ \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or } \phi(w) \ \text{is not accepted by } \mathcal{A}_{\beta} \end{array}$

Context	Definitions	Patterns and factors	Pinwords 000	Automata 0000	Algorithm ●000	Perspectives O
Proof: Assembling the algorithm						

Almost there

So far:

 \forall proper pin-permutation σ : $\sigma \in C = Av(B)$ iff $\forall \beta \in B, \beta \nleq \sigma$

 β pin-permutation \mapsto $P(\beta) =$ set of pinwords encoding β

 $\begin{array}{l} \beta \in \mathcal{B}, \ \sigma \ \text{a proper pin-permutation}, \ w \ \text{a strict pinword of } \sigma. \\ \beta \not\leq \sigma \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or } \phi(w) \not\in \cup_{u \in \mathcal{P}(\beta)} \mathcal{L}(u) \\ \quad \text{iff} \quad \beta \ \text{is not a pin-permutation or } \phi(w) \ \text{is not accepted by } \mathcal{A}_{\beta} \end{array}$

Final step:

• Build the automaton accepting the language of words of the form $\phi(w)$ (for *w* strict pinword) that are not accepted by any \mathcal{A}_{β} (for $\beta \in B$ and β pin-permutation)

• Test the finiteness of the corresponding language

Mathilde Bouvel

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm ○●○○	Perspectives ○
Proof: Assembling the algorithm						

The missing first step

Find the pin-permutations $\beta \in B!$

Algorithm to test if a simple permutation σ is a pin-permutation

- using properties of pin representation in [BBR '09]
- \hookrightarrow linear-time procedure

Algorithm to test if a permutation σ is a pin-permutation:

- \blacksquare compute the decomposition tree of σ
- test whether its shape corresponds to pin-permutation trees
- check that the simple permutations in the tree are pin-permutations
- \hookrightarrow linear-time procedure

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm ○○●○	Perspectives	
Proof: Assembling the algorithm							

Goal: Check the finiteness of the number of proper pin-permutations in C = Av(B), i.e. check the finiteness of the number of strict pinwords encoding permutations in C

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm ○○●○	Perspectives
Proof: Assemb	ling the algorithm					

Goal: Check the finiteness of the number of proper pin-permutations in C = Av(B), i.e. check the finiteness of the number of ϕ (strict pinwords) encoding permutations in C

Context	Definitions	Patterns and factors	Pinwords 000	Automata	Algorithm ○○●○	Perspectives
Proof: Assemb	ling the algorithm					

Goal: Check the finiteness of the number of proper pin-permutations in C = Av(B), i.e. check the finiteness of the number of ϕ (strict pinwords) encoding permutations in C

Procedure:

- Find the pin-permutations $\beta \in B$
- Compute the automata \mathcal{A}_{eta}
- Compute the automaton $\mathcal{A} = (\cup \mathcal{A}_{eta})^c \cap \mathcal{A}(\mathcal{M})$
- NB Use product construction for union to preserve determinism
- Test whether L(A) is infinite i.e. whether A contains a cycle

Context	Definitions	Patterns and factors	Pinwords 000	Automata	Algorithm ○○●○	Perspectives
Proof: Assemb	ling the algorithm					

Goal: Check the finiteness of the number of proper pin-permutations in C = Av(B), i.e. check the finiteness of the number of ϕ (strict pinwords) encoding permutations in C

Procedure:

- Find the pin-permutations $\beta \in B$
- Compute the automata \mathcal{A}_{eta}
- Compute the automaton $\mathcal{A} = (\cup \mathcal{A}_{\beta})^{c} \cap \mathcal{A}(\mathcal{M})$

NB Use product construction for union to preserve determinism

• Test whether L(A) is infinite i.e. whether A contains a cycle

Complexity: $\mathcal{O}(n^{3k})$ in time and space where $n = \max\{|\beta| : \beta \in B\}$ and k = number of patterns in B

Context	Definitions	Patterns and factors	Pinwords	Automata	Algorithm ○○○●	Perspectives ○				
Proof: Assembling the algorithm										
N 4 - '										

Thm There is a $\mathcal{O}(k \cdot n \log n)$ procedure to test whether $\mathcal{C} = Av(B)$ contains finitely many parallel alternations (resp. wedge simple permutations).

Thm There is a $\mathcal{O}(n^{3k})$ procedure to test whether $\mathcal{C} = Av(B)$ contains finitely proper pin-permutations

Thm There is a $\mathcal{O}(n^{3k})$ procedure to test whether $\mathcal{C} = Av(B)$ contains finitely simple permutations (which is a sufficient condition for C(z) to be algebraic)

Mathilde Bouvel

iviain result

Context 00000	Definitions	Patterns and factors	Pinwords 000	Automata 0000	Algorithm 0000	Perspectives •
Perspectives						

Conclusion

So far:

- Finite number of simple permutations in C: sufficient condition for C(z) to be algebraic
- Polynomial procedure to test this condition

Next step:

- \blacksquare Compute the set of simple permutations in ${\mathcal C}$
- \hookrightarrow [AA '05] gives a procedure, but very high complexity
 - Compute the generating function C(z)
- \hookrightarrow Provide an algorithm from the proof of [AA '05]

Further perspectives:

- Random generation in (wreath-closed) permutation classes
- Implementation in a library