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Introduction: Context of the study

Permutation classes and their enumeration

Permutation: 0 = o(1)0(2)...0(n) = 0102...0, € S,

Pattern: m € Sy isa patternofc € S, if 31 < <...<ix <n
such that o, ...0j, is order-isomorphic to . Denoted m < 0.

?———————a(i)
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Permutation classes and their enumeration

Permutation: 0 = o(1)0(2)...0(n) = 0102...0, € S,

Pattern: m € Sy isa patternofc € S, ifd1 < <...<ix <n
such that o, ...0j, is order-isomorphic to . Denoted m < 0.

Mathilde Bouvel
Simple permutations in permutation classes



Context
©0000

Introduction: Context of the study

Permutation classes and their enumeration

Permutation: 0 = o(1)0(2)...0(n) = 0102...0, € S,
Pattern: m € Sy isa patternofc € S, if 31 < <...<ix <n

such that o ...0; is order-isomorphic to . Denoted m < 0.
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Introduction: Context of the study

Permutation classes and their enumeration

Permutation: 0 = o(1)0(2)...0(n) = 0102...0, € S,

Pattern: m € Sy isa patternofc € S, if 31 < <...<ix <n
such that o ...0; is order-isomorphic to . Denoted m < 0.

Permutation Class: Set C downward closed for <.
Characterized by its basis B: C = Av(B) = {o : V3 € B,3 £ o}.
The (finite or infinite) basis is an antichain and is unique:

B={p¢C:Vr <[ suchthatm# 3,meC}.
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Introduction: Context of the study

Permutation classes and their enumeration

Permutation: 0 = o(1)0(2)...0(n) = 0102...0, € S,
Pattern: m € Sy isa patternofc € S, if 31 < <...<ix <n
such that o ...0; is order-isomorphic to . Denoted m < 0.

Permutation Class: Set C downward closed for <.
Characterized by its basis B: C = Av(B) = {o : V3 € B,3 £ o}.
The (finite or infinite) basis is an antichain and is unique:

B={p¢C:Vr <[ suchthatm# 3,meC}.
Enumeration of class C = Av(B), with finite basis B:
m closed formula for ¢, = |S,NC| m recurrence on the ¢,'s
m generating function ) ¢c,z" m ...

NB: Enumeration without being given the basis is less frequent.
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Introduction: Context of the study

Permutation classes and generating functions

Enumerating class C by its generating function C(z) = )_ ¢,z"
Structure of C — Equations on C(z) — Properties of C(z)
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Introduction: Context of the study

Permutation classes and generating functions

Enumerating class C by its generating function C(z) = )_ ¢,z"
Structure of C — Equations on C(z) < Properties of C(z)

Example: C = Av(231)

e Sequence ¢, = n}rl (2n”)

e Algebraic generating function C(z) = #

Proof: ¢
celCnNS, < Jke[0..n—1]st. 0 =0onoR OR
with o, € C on [1..k]

and o € Con [k+1..n—1] oL

= C(z) = 1+ zC(2)?
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Introduction: Context of the study

Permutation classes and generating functions

Enumerating class C by its generating function C(z) = )_ ¢,z"
Structure of C — Equations on C(z) < Properties of C(z)

Example: C = Av(231)

e Sequence ¢, = n}rl (2n")

e Algebraic generating function C(z) = #

Proof: ¢
celCnNS, < Jke[0..n—1]st. 0 =0onoR OR
with o, € C on [1..k]

and o € Con [k+1..n—1] oL

= C(z) = 1+ zC(2)?

’ Properties of the generating function = Structure of the class‘
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Introduction: Context of the study

A general sufficient condition for algebricity

Thm [Albert, Atkinson '05]
C contains finitely many simple permutations
= C is finitely based and has an algebraic generating function.

Sketch of the proof

Use substitution decomposition of permutations (= represent
uniquely every permutation by its decomposition tree)

Recursive structure of the permutations in C (= Tree grammar)
= System of equations satisfied by the generating function C(z)
= Algebricity of the generating function
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Introduction: Context of the study

Finite number of simple permutations: decision

Thm [Brignall, Ruskuc, Vatter '08]
For a class C = Av(B) with finite basis B, it is decidable whether
C contains a finite number of simple permutations.

Sketch of the proof

C contains infinitely many simple permutations iff C contains:
1. either infinitely many parallel alternations
2. or infinitely many wedge simple permutations
3. or infinitely many proper pin-permutations

Decision procedure Complexity
1. and 2. : | pattern matching of patterns | Polynomial
of size 3 or 4 in the § € B.
3. Decidability with automata Decidable
techniques on pinwords 2ExpTime
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Introduction: Context of the study

Main result: polynomial-time decision

Thm
For a class C = Av(B) with finite basis B, it is polynomial to
check whether C contains a finite number of simple permutations.

NB: Result known for wreath-closed classes since PP2009

With n = max{|3| : § € B} and k = number of patterns in B,
the complexity is:  Steps 1. and 2.: O(k - nlog n)
Step 3.: O(n3K)

NB: Step 3. in the previous procedure: O(2™k2")

Tools for the proof
m Substitution decomposition
m Encoding by pinwords and automata techniques
m Previous results on the class of pin-permutations
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Introduction: Definitions

Substitution for permutations

Substitution or inflation : o = 7[a(}), a®) ... oK.
o) =21= Eﬁ
Example : Here, 7 =132, and * o
a® =132="e
al® =1=[e
¢ ... 2 [ ]
° ° S 5
. &g .

Hence 0 = 132[21,132,1] =214653.
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Introduction: Definitions

Simple permutations

Interval (or block) = set of elements of o
o whose positions and values form
intervals of integers o
Example: 5746 is an interval of °
2574613 A

Simple permutation = permutation
that has no interval, except the trivial
intervals: 1,2,...,nand o °
Example: 3174625 is simple. °

The smallest simple: 12,21,2413,3142 °

Mathilde Bouvel
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Introduction: Definitions

Substitution decomposition of permutations

Thm [AA '05]: Every o (# 1) is uniquely decomposed as

m ®[aD, ..., alk)], where the a() are @-indecomposable
m ola®, ..., al¥], where the al) are ©-indecomposable
m w[a®), ... alk], where 7 is simple of size k > 4

NB: @ =12...and © = k...21, for any k > 2

Decomposition tree: Example: Decomposition tree of

Recursively deﬁned as 0 — 101312111411819202117161548329567

Ti=e 3142
and // AN
T, = EYE S¥) © 24153

PN AN AN
fotr oo o N AN VA
Simple permutations in permutation classes



Definitions
000@000

Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition
i— ([
m and P lpi
. o [
e the separation condition
P1---Pi—2 . (]
pi
® ([ J
e or the independence condition o
7 . o
= bounding box of {p1,...,pi—1} s
[ J
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition
i— ([
m and P lpi
[
e the separation condition
P1L.--Pj—2 i o
pi
® ([ J
e or the independence condition o
- .
24 = bounding box of {p1,...,pi—1} e s
[ J
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition
m and Pt . [
[
e the separation condition
P1---Pi—2 . (]
pi
® ([ J
e or the independence condition o
. ® P2
24 = bounding box of {p1,...,pi—1} e s
[ J

Mathilde Bouvel

ple permutations in permut classes



Definitions
000@000

Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition
m and Pt . [
[
e the separation condition
PL---Pi—2 . ® P3
pi
® ([ J
e or the independence condition o
. ® P2
24 = bounding box of {p1,...,pi—1} o s
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition
i— ([
m and P lpi
[
e the separation condition
PL---Pi—2 pi ® P3
1
° @ Pi
e or the independence condition o
. ® P2
24 = bounding box of {p1,...,pi—1} P s
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition
m and Pt . [
. o [
e the separation condition
PL---Pi—2 pi ® P3
1
° @ P4
e or the independence condition o
. ® P2
24 = bounding box of {p1,...,pi—1} o é
{ Ps
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition
m and Pt . [
. o [
e the separation condition
PL---Pi—2 pi ® P3
1
° @ 1 P4
e or the independence condition o
. ® P2
24 = bounding box of {p1,...,pi—1} e ®
{ Ps

Pe
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

IZ’ Example:
m the externality condition p7
m and Pt . o
. o [
e the separation condition
P1---Pi—2 pi ® P3
1
° @ ! P4
e or the independence condition o
. [ ] P2
24 = bounding box of {p1,...,pi—1} e ®
{ Ps

Pe
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies

Iz’ Example:
m the externality condition p7
m and Pi-1 py. ® Ps
Pi
. o o
e the separation condition
P1---Pi—2 . ® P3
pi
° @ | P4
e or the independence condition [/// °
. [ J P2
24 = bounding box of {p1,...,pi—1} e °
 J Ps

Pe
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Introduction: Definitions

Pin representations

Pin representation of o = sequence (p1,...,pn) s. t. each p; satisfies
Pi Example:
m the externality condition p7
m and Pi-1 p; ® Ps
1
. . ®
e the separation condition EZZ
pPL---Pi—2 . ® P3
Pi
. @ Pi
e or the independence condition o
. ® p2
224 = bounding box of {p1,...,pi—1} o ®
. . . { Ps
Proper pin representation = pin

representation where each p; satisfies &

the separation condition

Mathilde Bouvel
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Introduction: Definitions

Encoding of pin representations by pinwords
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Introduction: Definitions

Encoding of pin representations by pinwords

P1 o
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Introduction: Definitions

Encoding of pin representations by pinwords

P1 o
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Introduction: Definitions

Encoding of pin representations by pinwords

[ J
. U=up
® P3
([ ]
P1 ot
([ p2
[ ]

P3
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Introduction: Definitions

Encoding of pin representations by pinwords

[ J
o U=up
R = right
® P3 ne
@ | P4
P1 ot
{ P2
[ ]
[
UR
P3 pa
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Introduction: Definitions

Encoding of pin representations by pinwords

[ J
o U=up
R=ri
o5 right
D = down
@ | P4
P1 ot
[ J P2
([
([ Ps
URD
P3 P4 p5
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Introduction: Definitions

Encoding of pin representations by pinwords

: ° U= up 2 | 1
R = right
® P D = down
1P L = left 34
P1 o
([ J P2
([
([ Ps
Pe
URD 3
P3 P4 Ps Pe
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Introduction: Definitions

Encoding of pin representations by pinwords

b R = right 2 1
® P D = down
Rt L = left 34
P1 o
([ J P2
([
([ Ps
Pe
URD 3 U
p3 pa ps Ps P7
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Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
bl D = down
e|p o
’ L = left 314
P1 ot
(] P2
o
([ Ps

Pe

Mathilde Bouvel
Simple permutations in permutation classes



Definitions
0000800

Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
® | P3
° 0: D = down 3 4
o ° L = left
[ P2
([
([ Ps
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Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
® P3 D —d
po PYPA — down 3 | 4
°® L = left
P1 bt
[ ) P2
([
[ ] Ps

Pe
?URD 3 UR
P3 P4 P5 Pe Pr7 P8
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Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
® P3 D —d
po PYPA — down 3 | 4
°® L = left
P1 ®
[ ) P2
([
[ ] Ps

Pe

RURD3UR
P2 P3 P4 Ps Pe P7 P8

Mathilde Bouvel
Simple permutations in permutation classes



Definitions
0000800

Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
® P3 D —d
po PYPA — down 3 | 4
°® L = left
P1 ®
[ ) P2
([
[ ] Ps

Pe

S RURD3UR
P1 P2 P3 P4 P5 P6 P7 P8
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Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
® P3 D —d
o p: - Io:c"t’” 3 | 4
= le
P1 bt
o P2
L
Po o
([ Ps

Pe

21 URD3UR
P1 P2 P3 P4 P5 P6 P7 P8

Ambiguous encoding
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Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
® P3
ol D = down 3 4
o ° L = left
C. P2 NB: Pinwords = words with no factor
Po °® in {L,R}-{L,R}uU{U,D} -{U,D}
([ Ps

Pe

21 URD3UR
P1 P2 P3 P4 P5 P6 P7 P8

Ambiguous encoding
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Introduction: Definitions

Encoding of pin representations by pinwords

¢ R = right 2 1
dllic D = down
e P o

: L = left 314
P1 bt
0. P2 NB: Pinwords = words with no factor
Po ) in {L,R}-{L,R}uU{U,D} -{U,D}

{ ] Ps

Strict pinwords: the only numeral is
the first letter.

21 URDS3UR e Encode proper pin representations.
P1 P2 P3 P4 P5s Ps P7 P8 o Byt proper pin representations are
Ambiguous encoding encoded not only by strict pinwords!

Mathilde Bouvel
Simple permutations in permutation classes
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Introduction: Definitions

The class of pin-permutations

Fact: Not every permutation admits

(proper) pin representations. pr
® Ps
Def: Pin-permutation = that has a ®
pin representation. ® P3
® P4
Def: Proper pin-permutation = that o
has a proper pin representation. ° P2
P1 [ ]
L Ps

Pe

Mathilde Bouvel
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Introduction: Definitions

The class of pin-permutations

Fact: Not every permutation admits
(proper) pin representations.

Def: Pin-permutation = that has a
pin representation.

Def: Proper pin-permutation = that
has a proper pin representation.

Thm: Pin-permutations are a
permutation class (but proper
pin-permutations are not).

Mathilde Bouvel
Simple permutations in permutation classes

p7
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Introduction: Definitions

The class of pin-permutations

Fact: Not every permutation admits

(proper) pin representations. pr

® Ps
Def: Pin-permutation = that has a ®
pin representation. ® P3
Def: Proper pin-permutation = that o
has a proper pin representation. ° P2

P1 [ ]

Thm: Pin-permutations are a Ps

permutation class (but proper
pin-permutations are not).
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

p7 Ps
® Ps ® Pe
@ [
® | P3 ® P
@ Pa ® P3
® P2 ®
[ p2 [
P1 [ Ps [ J
( Ps [ ] P4
Pe p7

Several pin representations for a single pin-permutation

Mathilde Bouvel
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

o a pin-permutation of S,:
m at least one and possibly many pin representations of o

m at least one and possibly many pinwords (at most 8")
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

o a proper pin-permutation of S:
m at least one and possibly many proper pin representations of o

m at least one and possibly many strict pinwords (at most 2""2)

Mathilde Bouvel
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

o a proper pin-permutation of S:
m at least one and possibly many proper pin representations of o

m at least one and possibly many strict pinwords (at most 2""2)

m Every proper pin-permutations is encoded by at least one and
at most 2" strict pinwords.

m Every strict pinword encodes a proper pin-permutation.

Hence: Infinitely many proper pin-permutations in C
<> infinitely many strict pinwords encoding permutations in C

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

Proof of the main result

Thm
For a class C = Av(B) with finite basis B, it is polynomial to
check whether C contains a finite number of simple permutations.

Lemma
For a class C = Av(B) with finite basis B, it is polynomial to check
whether C contains a finite number of proper pin-permutations.

m Patterns on permutations and factors on words
m Computing pinwords

m Automata recognizing pinword languages

m Assembling the algorithm

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

Y (proper pin-)permutation o: 0 € C = Av(B) iff VB € B, L o
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Patterns and factors
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Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

Y (proper pin-)permutation o: 0 € C = Av(B) iff VB € B, L o

Thm [BRV '08]
B € B, o a (proper) pin-permutation, w a (strict) pinword of o.
G <o iff (isa pin-permutation and
3 a pinword u encoding B s.t. u <X w

Mathilde Bouvel
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Patterns and factors
000

Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

Y (proper pin-)permutation o: 0 € C = Av(B) iff VB € B, L o

Thm [BRV '08]
(B € B, o a (proper) pin-permutation, w a (strict) pinword of o.
6 <o iff [isa pin-permutation and
J a pinword u encoding B s.t. u =< w
Def u = v ... ul) with each u() strict pinword.
u=<wwhen w=vDw® vOwlyU) st vie{1,...,/}
m if w() begins with a numeral then w(?) = y4(/)
m if w() begins with a direction, then
= v() is nonempty
m the first letter of w() corresponds to a point lying in the

quadrant specified by the first letter of 'u(") '
m and all letters except the first one in u() and w() agree

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

Patterns as factors of ¢(strict pinwords)

Replace numerals by directions = factors instead of “almost factors”

¢ u=uuy...up strict pinword — ¢(u) € M with
M ={L,R, U, D}* with no factor in {L,R}-{L,R}u{U,D}-{U, D}

Mathilde Bouvel
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Patterns and factors
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Proof: Patterns on permutations and factors on words

Patterns as factors of ¢(strict pinwords)

Replace numerals by directions = factors instead of “almost factors”

¢ u=uuy...up strict pinword — ¢(u) € M with
M ={L,R, U, D}* with no factor in {L,R}-{L,R}u{U,D}-{U, D}

(u) = ugujus . .. uy with uyuy given by

up | up upuy
DorU(]) | UR

1 |[LorR (<) | RU
€ {UR, RU}

Mathilde Bouvel
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Patterns and factors
00®0

Proof: Patterns on permutations and factors on words

Patterns as factors of ¢(strict pinwords)

Replace numerals by directions = factors instead of “almost factors”

¢ u=uuy...up strict pinword — ¢(u) € M with
M ={L,R, U, D}* with no factor in {L,R}-{L,R}u{U,D}-{U, D}

(u) = ugujus . .. uy with uyuy given by

uo upuy

Joreore| C{UL LU}
Jor<ore| C{DL, LD}
Jorore | C{RD,DR}

up | o upuy
DorU(]) | UR
1 [LorR (<) | RU
€ {UR,RU}

HlWIN| S
=
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Proof: Patterns on permutations and factors on words

Patterns as factors of ¢(strict pinwords)

Replace numerals by directions = factors instead of “almost factors”

¢ u=uuy...up strict pinword — ¢(u) € M with
M ={L,R, U, D}* with no factor in {L,R}-{L,R}u{U,D}-{U, D}

(u) = ugujus . .. uy with uyuy given by

Uy | w upuy U | uo upuy
DorU(]) | UR 2 |[Joreore| C{UL LU}

1 [LorR (<) | RU 3 | Joreore| C{DL, LD}
€ {UR,RU} 4 | Jor<ore| C{RD,DR}

For strict pinwords, u < w iff (some x €) ¢(u) is a factor of ¢(w)
(See also PP2009)

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

Patterns as piecewise factors of ¢(pinwords)

Thm
For u a pinword and w a strict pinword, u < w iff p(w) € L(u)

Def For u = uMu@ .. ul) with each u() strict pinword,
L(u) = T*(uMN)Z*p(u®) ... T*p(u)T* with © = {L, R, U, D}

L(u) = words that contain ¢(u) = (¢(uM), p(u?@), ..., s(u)))
as “piecewise factor”

Mathilde Bouvel
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Patterns and factors
oooe

Proof: Patterns on permutations and factors on words

Patterns as piecewise factors of ¢(pinwords)

Thm
For u a pinword and w a strict pinword, u < w iff p(w) € L(u)

Def For u = uMu@ .. ul) with each u() strict pinword,
L(u) = T*(uMN)Z*p(u®) ... T*p(u)T* with © = {L, R, U, D}

L(u) = words that contain ¢(u) = (¢(uM), p(u?@), ..., s(u)))

“ - . "
as “piecewise factor

Thm
G € B, o a proper pin-permutation, w a strict pinword of o.
6 <o iff [isa pin-permutation and 3 a pinword u
encoding [ s.t. ¢p(w) € L(u)

Mathilde Bouvel
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Proof: Computing pinwords of any pin-permutation

One step further: computing pinwords of 7 € B

So far:
V' proper pin-permutation o: 0 € C = Av(B) iff VG € B, £ o

B € B, o a proper pin-permutation, w a strict pinword of o.
B £ o iff (3is not a pin-permutation or for all pinwords u

encoding 3, ¢(w) & L(u)

Mathilde Bouvel
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Proof: Computing pinwords of any pin-permutation

One step further: computing pinwords of 7 € B

So far:
V' proper pin-permutation o: 0 € C = Av(B) iff VG € B, £ o

B € B, o a proper pin-permutation, w a strict pinword of o.
B £ o iff (3is not a pin-permutation or for all pinwords u

encoding 3, ¢(w) & L(u)

Next step:
When (3 € B is a pin-permutation, find its pinwords.
< Use the characterization of pin-permutations of [BBR09]

Mathilde Bouvel
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Proof: Computing pinwords of any pin-permutation

Characterization of the pin-permutation class

The set P of decomposition trees of pin-permutations satisfies:
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Proof: Computing pinwords of any pin-permutation

Pinwords P(o) of any pin-permutation o

For each shape of tree, compute recursively the corresponding set
of pinwords.
Example:

For o = .%- , i.e. 0 a simple pin-permutation

P(o) contains at most 64 pinwords

P(o) can be effectively computed in time O(n), with n = |o|
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Proof: Computing pinwords of any pin-permutation

Pinwords P(o) of any pin-permutation o

For each shape of tree, compute recursively the corresponding set
of pinwords.

Example:

For o = D .TiogWJr,VifiGWJr
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Pinwords
ooe

Proof: Computing pinwords of any pin-permutation

Pinwords P(o) of any pin-permutation o

For each shape of tree, compute recursively the corresponding set
of pinwords.

Example:

For o = D .Tiongr,VifiGWJr

/ \
&1 & §e2 &q

Set P(K)(&;) = pinwords of &; with origin pg in quadrant k,
B = (POE), POG1), .., PD(&))
and B = (PA(E), P<3>(§,+1) ., PO(&,)

Mathilde Bouvel
Simple permutations in permutation classes



Pinwords
ooe

Proof: Computing pinwords of any pin-permutation

Pinwords P(o) of any pin-permutation o

For each shape of tree, compute recursively the corresponding set
of pinwords.

Example:

For o = D .Tiongr,VifiGWJr

/ \
&1 & §e2 &q

If o does not satisfy any special condition (H)

then P(c) = Po = P(Tj) - Bl
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Proof: Computing pinwords of any pin-permutation

Pinwords P(o) of any pin-permutation o

For each shape of tree, compute recursively the corresponding set
of pinwords.

Example:

For o = D .Tiongr,VifiGWJr

&1 & $€q Se=0=y
(2H1) S &p2 =0 =x

Tiy = Sle, 5]
If o satisfies Condition (2H1) then P(c) = Py U P1 U P>, with
Py =P(S)-1- LB = P(S)-3- U-BD p®
! (S): ‘B (0) q3(1z+3 (S) Ble-n) B (2
xU Ty yUTj
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Pinwords
ooe

Proof: Computing pinwords of any pin-permutation

Pinwords P(o) of any pin-permutation o

For each shape of tree, compute recursively the corresponding set
of pinwords.

Example:

For o = D .Tiongr,VifiGWJr

/ \
&1 & §e2 &q

If o satisfies Condition ...

Proof: Technical...and many cases. ..
Analyze the behavior of a pin representation w.r.t. the block of ¢
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Proof: Automata recognizing pinword languages

One more step: automata recognizing U,cp(g) £L(u), 3 € B

So far:
V' proper pin-permutation o: 0 € C = Av(B) iff VG € B, £ o

(3 pin-permutation — P(3) = set of pinwords encoding [

B € B, o a proper pin-permutation, w a strict pinword of o.
B8 Lo iff (isnota pin-permutation or

P(w) & Uyepp)L(u)
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Automata
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Proof: Automata recognizing pinword languages

One more step: automata recognizing U,cp(g) £L(u), 3 € B

So far:
V' proper pin-permutation o: 0 € C = Av(B) iff VG € B, £ o

(3 pin-permutation — P(3) = set of pinwords encoding [

B € B, o a proper pin-permutation, w a strict pinword of .
B8 Lo iff (isnota pin-permutation or

(W) & Uyep(p)L(u)

Next step: When 3 € B is a pin-permutation, describe the
language U,cp(5)L£(u) by a deterministic automaton
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Proof: Automata recognizing pinword languages

Determinism and mirror languages

m As before, use the recursive characterization of the
pin-permutation class:

< For each shape of tree of a pin-permutation o, compute a
deterministic automaton recognizing £(0) = Uyep(0)L(u) -
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Proof: Automata recognizing pinword languages

Determinism and mirror languages

m As before, use the recursive characterization of the
pin-permutation class:

< For each shape of tree of a pin- permutatlon o, compute a
deterministic automaton recognizing E( )= Uuep(g)ﬁ( u).
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Proof: Automata recognizing pinword languages

Determinism and mirror languages

m As before, use the recursive characterization of the
pin-permutation class:

< For each shape of tree of a pin- permutatlon o, compute a
deterministic automaton recognizing E( )= Uuep(g)ﬁ( u).
Why the mirror?
m Common suffixes in pinwords of P(o)
m But several choices for the beginning of u € P(0)

— Reading for the end allows determinism

Determinism is key to have a polynomial complexity.
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Automata
0e00
Proof: Automata recognizing pinword languages

Determinism and mirror languages

m As before, use the recursive characterization of the
pin-permutation class:

< For each shape of tree of a pin- permutatlon o, compute a
deterministic automaton recognizing E( )= Uuep(g)ﬁ( u).

Why the mirror?
m Common suffixes in pinwords of P(o)
m But several choices for the beginning of u € P(0)

— Reading for the end allows determinism

Determinism is key to have a polynomial complexity.

Recall that £(u) = Z*¢(uM)X*p(u) ... T*p(ul))L*
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Proof: Automata recognizing pinword languages

- . - . . %
Deterministic automaton recognizing £(o)

Recursive construction on the shape of the tree of o:

Example:

For o = .ﬁ\- , i.e. 0 a simple pin-permutation

Compute P(c) (at most 64 pinwords, strict or quasi-strict)
-
L(c) = words with a factor in {¢(v) : u € P(o)}

NB: small extension of ¢ to quasi-strict pin-words

Aho-Corasick: linear-time construction of a deterministic automa-
ton A, recognizing L(o)
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Proof: Automata recognizing pinword languages

- . - . . %
Deterministic automaton recognizing £(o)

Recursive construction on the shape of the tree of o:

Example:
For o = ® , T @WT, Vi & ewt

&1 & ? &q

If o does not satisfy any special condition (H)

then P(c) = Po = P(Tj) - Bl )
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Proof: Automata recognizing pinword languages

- . - . . <—
Deterministic automaton recognizing £(o)

Recursive construction on the shape of the tree of o:
Example:

NAD (61 AW ()

»
N T

&/ AW (61 KPAD (£)\OF

»

7\ ,@m

SR
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Proof: Automata recognizing pinword languages

- . - . . <—
Deterministic automaton recognizing £(o)

Recursive construction on the shape of the tree of o:

Example:
For o = ) 1770¢W+1Vi§few+

Ry ﬁsq Gr=e=y
(2H1) Eip = o = x

Tio = @[.v S]

If o satisfies Condition (2H1) then P(c) = Py U P1 U Py, with ...
= Add shortcuts to marked states of A( T},), corresponding to words
added to P(o)
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00®0

Proof: Automata recognizing pinword languages

- . - . . <—
Deterministic automaton recognizing £(o)

Recursive construction on the shape of the tree of o:
Example:

A GRS : >
APrely el AP A‘
& AD (6, XD AV (£,)\OF R

AV (& XPAD () \OP
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Proof: Automata recognizing pinword languages

Complexity of the construction

Time complexity Size of A,
Non recursive cases | up to O(n3) up to O(n?)
Recursive cases up to O(n?) up to O(n?)

+ recursive computation | 4 recursive size

Thm For any pin-permutation o, we can build a deterministic
L. O <

automaton A, recognizing L(0) = Uyep(s)L(u)

Complexity (time and space): O(n®) where n = |o|
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Proof: Assembling the algorithm

Almost there

So far:
V' proper pin-permutation o: 0 € C = Av(B) iff VG € B, £ o

(3 pin-permutation — P(3) = set of pinwords encoding [
B € B, o a proper pin-permutation, w a strict pinword of o.

B £o iff [Bisnota pin-permutation or ¢(w) & U,cp(g)L(u)
iff 3 is not a pin-permutation or ¢(w) is not accepted by Ag

Mathilde Bouvel
Simple permutations in permutation classes



Algorithm
€000

Proof: Assembling the algorithm

Almost there

So far:
V' proper pin-permutation o: 0 € C = Av(B) iff VG € B, £ o

(3 pin-permutation — P(3) = set of pinwords encoding [

B € B, o a proper pin-permutation, w a strict pinword of .
B £o iff [Bisnota pin-permutation or ¢(w) & U,cp(g)L(u)
iff 3 is not a pin-permutation or ¢(w) is not accepted by Ag

Final step:

e Build the automaton accepting the language of words of the
form ¢(w) (for w strict pinword) that are not accepted by any Ag
(for 8 € B and 3 pin-permutation)

e Test the finiteness of the corresponding language
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Proof: Assembling the algorithm

The missing first step

Find the pin-permutations (§ € B!

Algorithm to test if a simple permutation ¢ is a pin-permutation
m using properties of pin representation in [BBR '09]

< linear-time procedure

Algorithm to test if a permutation ¢ is a pin-permutation:

m compute the decomposition tree of o
m test whether its shape corresponds to pin-permutation trees

m check that the simple permutations in the tree are
pin-permutations

— linear-time procedure
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Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of strict pinwords encoding permutations in C
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Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of ¢(strict pinwords) encoding permutations in C
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Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of ¢(strict pinwords) encoding permutations in C
Procedure:

m Find the pin-permutations 3 € B

m Compute the automata Ag

m Compute the automaton A = (UAg)° N A(M)
NB Use product construction for union to preserve determinism

m Test whether L(.A) is infinite i.e. whether A contains a cycle
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Algorithm
foleY T}
Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of ¢(strict pinwords) encoding permutations in C

Procedure:
m Find the pin-permutations 3 € B
m Compute the automata Ag

m Compute the automaton A = (UAg)° N A(M)
NB Use product construction for union to preserve determinism

m Test whether L(.A) is infinite i.e. whether A contains a cycle

Complexity: O(n3F) in time and space
where n = max{|f| : § € B} and k = number of patterns in B
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Proof: Assembling the algorithm

Main result

Thm There is a O(k - nlog n) procedure to test whether
C = Av(B) contains finitely many parallel alternations (resp.
wedge simple permutations).

Thm There is a O(n3F) procedure to test whether C = Av(B)
contains finitely proper pin-permutations

Thm There is a O(n%F) procedure to test whether C = Av(B)
contains finitely simple permutations
(which is a sufficient condition for C(z) to be algebraic)
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Perspectives

Conclusion

So far:
m Finite number of simple permutations in C: sufficient
condition for C(z) to be algebraic
m Polynomial procedure to test this condition
Next step:
m Compute the set of simple permutations in C
< [AA '05] gives a procedure, but very high complexity
m Compute the generating function C(z)
< Provide an algorithm from the proof of [AA '05]
Further perspectives:
m Random generation in (wreath-closed) permutation classes

m Implementation in a library
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