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Introduction: Context of the study

Permutation classes and their enumeration

Permutation: σ = σ(1)σ(2) . . . σ(n) = σ1σ2 . . . σn ∈ Sn

Pattern: π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n
such that σi1 . . . σik is order-isomorphic to π. Denoted π ≤ σ.

i

σ(i)
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Introduction: Context of the study

Permutation classes and their enumeration

Permutation: σ = σ(1)σ(2) . . . σ(n) = σ1σ2 . . . σn ∈ Sn

Pattern: π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n
such that σi1 . . . σik is order-isomorphic to π. Denoted π ≤ σ.

Permutation Class: Set C downward closed for ≤.
Characterized by its basis B: C = Av(B) = {σ : ∀β ∈ B, β 6≤ σ}.
The (finite or infinite) basis is an antichain and is unique:

B = {β /∈ C : ∀π ≤ β such that π 6= β, π ∈ C}.

Mathilde Bouvel
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Introduction: Context of the study

Permutation classes and their enumeration

Permutation: σ = σ(1)σ(2) . . . σ(n) = σ1σ2 . . . σn ∈ Sn

Pattern: π ∈ Sk is a pattern of σ ∈ Sn if ∃ 1 ≤ i1 < . . . < ik ≤ n
such that σi1 . . . σik is order-isomorphic to π. Denoted π ≤ σ.

Permutation Class: Set C downward closed for ≤.
Characterized by its basis B: C = Av(B) = {σ : ∀β ∈ B, β 6≤ σ}.
The (finite or infinite) basis is an antichain and is unique:

B = {β /∈ C : ∀π ≤ β such that π 6= β, π ∈ C}.

Enumeration of class C = Av(B), with finite basis B:
closed formula for cn = |Sn ∩C|
generating function

∑
cnz

n

recurrence on the cn’s

. . .

NB: Enumeration without being given the basis is less frequent.
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Introduction: Context of the study

Permutation classes and generating functions

Enumerating class C by its generating function C (z) =
∑

cnz
n

Structure of C ↪→ Equations on C (z) ↪→ Properties of C (z)
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Introduction: Context of the study

Permutation classes and generating functions

Enumerating class C by its generating function C (z) =
∑

cnz
n

Structure of C ↪→ Equations on C (z) ↪→ Properties of C (z)

Example: C = Av(231)
• Sequence cn = 1

n+1

(2n
n

)
• Algebraic generating function C (z) = 1−

√
1−4z

2z

Proof:
σ ∈ C ∩ Sn ⇔ ∃k ∈ [0..n− 1] s.t. σ = σLnσR

with σL ∈ C on [1..k]
and σR ∈ C on [k + 1..n − 1]

⇒ C (z) = 1 + zC (z)2

σL

σR

Mathilde Bouvel
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Introduction: Context of the study

Permutation classes and generating functions

Enumerating class C by its generating function C (z) =
∑

cnz
n

Structure of C ↪→ Equations on C (z) ↪→ Properties of C (z)

Example: C = Av(231)
• Sequence cn = 1

n+1

(2n
n

)
• Algebraic generating function C (z) = 1−

√
1−4z

2z

Proof:
σ ∈ C ∩ Sn ⇔ ∃k ∈ [0..n− 1] s.t. σ = σLnσR

with σL ∈ C on [1..k]
and σR ∈ C on [k + 1..n − 1]

⇒ C (z) = 1 + zC (z)2

σL

σR

Properties of the generating function ≡ Structure of the class

Mathilde Bouvel
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Introduction: Context of the study

A general sufficient condition for algebricity

Thm [Albert, Atkinson ’05]
C contains finitely many simple permutations
⇒ C is finitely based and has an algebraic generating function.

Sketch of the proof

Use substitution decomposition of permutations (≡ represent
uniquely every permutation by its decomposition tree)

Recursive structure of the permutations in C (≡ Tree grammar)

⇒ System of equations satisfied by the generating function C (z)

⇒ Algebricity of the generating function

Mathilde Bouvel
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Introduction: Context of the study

Finite number of simple permutations: decision

Thm [Brignall, Ruškuc, Vatter ’08]
For a class C = Av(B) with finite basis B, it is decidable whether
C contains a finite number of simple permutations.

Sketch of the proof
C contains infinitely many simple permutations iff C contains:

1. either infinitely many parallel alternations

2. or infinitely many wedge simple permutations

3. or infinitely many proper pin-permutations

Decision procedure Complexity

1. and 2. : pattern matching of patterns Polynomial
of size 3 or 4 in the β ∈ B.

3. : Decidability with automata Decidable
techniques on pinwords 2ExpTime

Mathilde Bouvel
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Introduction: Context of the study

Main result: polynomial-time decision

Thm
For a class C = Av(B) with finite basis B, it is polynomial to
check whether C contains a finite number of simple permutations.

NB: Result known for wreath-closed classes since PP2009

With n = max{|β| : β ∈ B} and k = number of patterns in B,
the complexity is: Steps 1. and 2.: O(k · n log n)

Step 3.: O(n3k)

NB: Step 3. in the previous procedure: O(2n·k·2n
)

Tools for the proof

Substitution decomposition

Encoding by pinwords and automata techniques

Previous results on the class of pin-permutations

Mathilde Bouvel
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Introduction: Definitions

Substitution for permutations

Substitution or inflation : σ = π[α(1), α(2), . . . , α(k)].

Example : Here, π = 1 3 2, and


α(1) = 2 1 =

α(2) = 1 3 2 =

α(3) = 1 =

.

Hence σ = 1 3 2[2 1, 1 3 2, 1] = 2 1 4 6 5 3.

Mathilde Bouvel
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Introduction: Definitions

Simple permutations

Interval (or block) = set of elements of
σ whose positions and values form
intervals of integers
Example: 5 7 4 6 is an interval of
2 5 7 4 6 1 3

Simple permutation = permutation
that has no interval, except the trivial
intervals: 1, 2, . . . , n and σ
Example: 3 1 7 4 6 2 5 is simple.

The smallest simple: 1 2, 2 1, 2 4 1 3, 3 1 4 2

Mathilde Bouvel
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Introduction: Definitions

Substitution decomposition of permutations

Thm [AA ’05]: Every σ ( 6= 1) is uniquely decomposed as

⊕[α(1), . . . , α(k)], where the α(i) are ⊕-indecomposable

	[α(1), . . . , α(k)], where the α(i) are 	-indecomposable

π[α(1), . . . , α(k)], where π is simple of size k ≥ 4

NB: ⊕ = 12 . . . and 	 = k . . . 21, for any k ≥ 2

Decomposition tree:
Recursively defined as
T1 = •
and
Tσ = π/⊕/	

Tα(1) Tα(2) . . . Tα(k)

Example: Decomposition tree of
σ = 10 13 12 11 14 1 18 19 20 21 17 16 15 4 8 3 2 9 5 6 7

3 1 4 2

⊕

	

	

⊕

2 4 1 5 3

	 ⊕

Mathilde Bouvel
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

Mathilde Bouvel
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1

p2
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1

p3

p2
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1

p3

p2

p4
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p1

p3

p2

p5

p4
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p6

p1

p3

p2

p5

p4
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p6

p7

p1

p3

p2

p5

p4
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Example:

p6

p7

p1

p3

p2

p5

p4

p8
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Introduction: Definitions

Pin representations

Pin representation of σ = sequence (p1, . . . , pn) s. t. each pi satisfies

the externality condition

pi

and

• the separation condition

pi
pi−1

p1 . . . pi−2

• or the independence condition

pi

= bounding box of {p1, . . . , pi−1}

Proper pin representation = pin
representation where each pi satisfies
the separation condition

Example:

p6

p7

p1

p3

p2

p5

p4

p8

Mathilde Bouvel
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Introduction: Definitions

Encoding of pin representations by pinwords

Mathilde Bouvel
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Introduction: Definitions

Encoding of pin representations by pinwords

p1
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

Mathilde Bouvel
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

L = left

12

3 4

Mathilde Bouvel

Simple permutations in permutation classes



Context Definitions Patterns and factors Pinwords Automata Algorithm Perspectives

Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

L = left

12

3 4
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

L = left

12

3 4
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

?

p1

p2

L = left

12

3 4
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

?

p1

p2

p0
L = left

12

3 4
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

p1

p2

p0

R
p2

L = left

12

3 4
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

p1

p2

p0

R
p2

L = left

12

3 4

3
p1

Mathilde Bouvel
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

p1

p2

L = left

12

3 4

p0

1
p2

2
p1

Ambiguous encoding
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

p1

p2

L = left

12

3 4

p0

1
p2

2
p1

Ambiguous encoding

NB: Pinwords = words with no factor
in {L,R} · {L,R} ∪ {U,D} · {U,D}

Mathilde Bouvel
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Introduction: Definitions

Encoding of pin representations by pinwords

p1

p2

p3

U = up

U
p3

p4

R = right

R
p4

p5

D = down

D
p5

p6

3
p6

p7

U
p7

p8

R
p8

p1

p2

L = left

12

3 4

p0

1
p2

2
p1

Ambiguous encoding

NB: Pinwords = words with no factor
in {L,R} · {L,R} ∪ {U,D} · {U,D}

Strict pinwords: the only numeral is
the first letter.
• Encode proper pin representations.
• But proper pin representations are
encoded not only by strict pinwords!

Mathilde Bouvel
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Introduction: Definitions

The class of pin-permutations

Fact: Not every permutation admits
(proper) pin representations.

Def: Pin-permutation = that has a
pin representation.

Def: Proper pin-permutation = that
has a proper pin representation.

p6

p7

p1

p3

p2

p5

p4

p8
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Introduction: Definitions

The class of pin-permutations

Fact: Not every permutation admits
(proper) pin representations.

Def: Pin-permutation = that has a
pin representation.

Def: Proper pin-permutation = that
has a proper pin representation.

Thm: Pin-permutations are a
permutation class (but proper
pin-permutations are not).

p6

p7

p1

p3

p2

p5

p4

p8
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Introduction: Definitions

The class of pin-permutations

Fact: Not every permutation admits
(proper) pin representations.

Def: Pin-permutation = that has a
pin representation.

Def: Proper pin-permutation = that
has a proper pin representation.

Thm: Pin-permutations are a
permutation class (but proper
pin-permutations are not).

p6

p7

p1

p3

p2

p5

p4

p8

p4

p6
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

p6

p7

p1

p3

p2

p5

p4

p8

p7

p8

p5

p1

p2

p4

p3

p6

Several pin representations for a single pin-permutation

Mathilde Bouvel
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

σ a pin-permutation of Sn:

at least one and possibly many pin representations of σ

at least one and possibly many pinwords (at most 8n)

Mathilde Bouvel
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

σ a proper pin-permutation of Sn:

at least one and possibly many proper pin representations of σ

at least one and possibly many strict pinwords (at most 2n+2)

Mathilde Bouvel
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Introduction: Definitions

Ambiguity of the encoding of pin-permutations by pinwords

σ a proper pin-permutation of Sn:

at least one and possibly many proper pin representations of σ

at least one and possibly many strict pinwords (at most 2n+2)

Every proper pin-permutations is encoded by at least one and
at most 2n+2 strict pinwords.

Every strict pinword encodes a proper pin-permutation.

Hence: Infinitely many proper pin-permutations in C
⇔ infinitely many strict pinwords encoding permutations in C

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

Proof of the main result

Thm
For a class C = Av(B) with finite basis B, it is polynomial to
check whether C contains a finite number of simple permutations.

Lemma
For a class C = Av(B) with finite basis B, it is polynomial to check
whether C contains a finite number of proper pin-permutations.

Patterns on permutations and factors on words

Computing pinwords

Automata recognizing pinword languages

Assembling the algorithm

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

∀ (proper pin-)permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

∀ (proper pin-)permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

Thm [BRV ’08]
β ∈ B, σ a (proper) pin-permutation, w a (strict) pinword of σ.
β ≤ σ iff β is a pin-permutation and

∃ a pinword u encoding β s.t. u � w

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

∀ (proper pin-)permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

Thm [BRV ’08]
β ∈ B, σ a (proper) pin-permutation, w a (strict) pinword of σ.
β ≤ σ iff β is a pin-permutation and

∃ a pinword u encoding β s.t. u � w

Def u = u(1) . . . u(j) with each u(i) strict pinword.
u � w when w = v (1)w (1) . . . v (j)w (j)v (j+1) s.t. ∀i ∈ {1, . . . , j}:

if w (i) begins with a numeral then w (i) = u(i)

if w (i) begins with a direction, then
v (i) is nonempty
the first letter of w (i) corresponds to a point lying in the
quadrant specified by the first letter of u(i)

and all letters except the first one in u(i) and w (i) agree
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Context Definitions Patterns and factors Pinwords Automata Algorithm Perspectives

Proof: Patterns on permutations and factors on words

Patterns as factors of φ(strict pinwords)

Replace numerals by directions ⇒ factors instead of “almost factors”

φ: u = u1u2 . . . un strict pinword 7→ φ(u) ∈ M with

M = {L,R,U,D}∗ with no factor in {L,R} · {L,R}∪{U,D} · {U,D}
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Proof: Patterns on permutations and factors on words

Patterns as factors of φ(strict pinwords)

Replace numerals by directions ⇒ factors instead of “almost factors”

φ: u = u1u2 . . . un strict pinword 7→ φ(u) ∈ M with

M = {L,R,U,D}∗ with no factor in {L,R} · {L,R}∪{U,D} · {U,D}

φ(u) = u′0u
′
1u2 . . . un with u′0u

′
1 given by

u1 u2 u′0u
′
1

1
D or U (l) UR
L or R (↔) RU
ε {UR,RU}
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Proof: Patterns on permutations and factors on words

Patterns as factors of φ(strict pinwords)

Replace numerals by directions ⇒ factors instead of “almost factors”

φ: u = u1u2 . . . un strict pinword 7→ φ(u) ∈ M with

M = {L,R,U,D}∗ with no factor in {L,R} · {L,R}∪{U,D} · {U,D}

φ(u) = u′0u
′
1u2 . . . un with u′0u

′
1 given by

u1 u2 u′0u
′
1

1
D or U (l) UR
L or R (↔) RU
ε {UR,RU}

u1 u2 u′0u
′
1

2 l or ↔ or ε ⊆ {UL, LU}
3 l or ↔ or ε ⊆ {DL, LD}
4 l or ↔ or ε ⊆ {RD,DR}
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Proof: Patterns on permutations and factors on words

Patterns as factors of φ(strict pinwords)

Replace numerals by directions ⇒ factors instead of “almost factors”

φ: u = u1u2 . . . un strict pinword 7→ φ(u) ∈ M with

M = {L,R,U,D}∗ with no factor in {L,R} · {L,R}∪{U,D} · {U,D}

φ(u) = u′0u
′
1u2 . . . un with u′0u

′
1 given by

u1 u2 u′0u
′
1

1
D or U (l) UR
L or R (↔) RU
ε {UR,RU}

u1 u2 u′0u
′
1

2 l or ↔ or ε ⊆ {UL, LU}
3 l or ↔ or ε ⊆ {DL, LD}
4 l or ↔ or ε ⊆ {RD,DR}

For strict pinwords, u � w iff (some x ∈) φ(u) is a factor of φ(w)
(See also PP2009)
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Proof: Patterns on permutations and factors on words

Patterns as piecewise factors of φ(pinwords)

Thm
For u a pinword and w a strict pinword, u � w iff φ(w) ∈ L(u)

Def For u = u(1)u(2) . . . u(j) with each u(i) strict pinword,
L(u) = Σ∗φ(u(1))Σ∗φ(u(2)) . . .Σ∗φ(u(j))Σ∗ with Σ = {L,R,U,D}

L(u) = words that contain φ(u) = (φ(u(1)), φ(u(2)), . . . , φ(u(j)))
as “piecewise factor”

Mathilde Bouvel
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Proof: Patterns on permutations and factors on words

Patterns as piecewise factors of φ(pinwords)

Thm
For u a pinword and w a strict pinword, u � w iff φ(w) ∈ L(u)

Def For u = u(1)u(2) . . . u(j) with each u(i) strict pinword,
L(u) = Σ∗φ(u(1))Σ∗φ(u(2)) . . .Σ∗φ(u(j))Σ∗ with Σ = {L,R,U,D}

L(u) = words that contain φ(u) = (φ(u(1)), φ(u(2)), . . . , φ(u(j)))
as “piecewise factor”

Thm
β ∈ B, σ a proper pin-permutation, w a strict pinword of σ.
β ≤ σ iff β is a pin-permutation and ∃ a pinword u

encoding β s.t. φ(w) ∈ L(u)

Mathilde Bouvel
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Proof: Computing pinwords of any pin-permutation

One step further: computing pinwords of β ∈ B

So far:
∀ proper pin-permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

β ∈ B, σ a proper pin-permutation, w a strict pinword of σ.
β 6≤ σ iff β is not a pin-permutation or for all pinwords u

encoding β, φ(w) 6∈ L(u)
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Proof: Computing pinwords of any pin-permutation

One step further: computing pinwords of β ∈ B

So far:
∀ proper pin-permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

β ∈ B, σ a proper pin-permutation, w a strict pinword of σ.
β 6≤ σ iff β is not a pin-permutation or for all pinwords u

encoding β, φ(w) 6∈ L(u)

Next step:
When β ∈ B is a pin-permutation, find its pinwords.
↪→ Use the characterization of pin-permutations of [BBR09]

Mathilde Bouvel
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Proof: Computing pinwords of any pin-permutation

Characterization of the pin-permutation class

The set P of decomposition trees of pin-permutations satisfies:
P = + +

W+ W+ . . . W+

+ +

W+ . . .

N+(P)

. . . W+

+ −

W− W− . . . W−

+ −

W− . . .
N−(P)

. . . W−

+ α

. . .

+ α

. . .

P\{ }

. . .

+ β+

. . .

P\{ }

. . .12

+ β−

. . .

P\{ }

. . .21
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Proof: Computing pinwords of any pin-permutation

Pinwords P(σ) of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set
of pinwords.
Example:
For σ = α

. . .

, i.e. σ a simple pin-permutation

P(σ) contains at most 64 pinwords

P(σ) can be effectively computed in time O(n), with n = |σ|

Mathilde Bouvel
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Proof: Computing pinwords of any pin-permutation

Pinwords P(σ) of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set
of pinwords.
Example:
For σ = ⊕

ξ1 ξ`

Ti0

ξ`+2 ξq

, Ti0 6∈ W+, ∀i ξi ∈ W+
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Proof: Computing pinwords of any pin-permutation

Pinwords P(σ) of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set
of pinwords.
Example:
For σ = ⊕

ξ1 ξ`

Ti0

ξ`+2 ξq

, Ti0 6∈ W+, ∀i ξi ∈ W+

Set P(k)(ξi ) = pinwords of ξi with origin p0 in quadrant k ,

P
(1)
(j) =

(
P(1)(ξj),P

(1)(ξj−1), . . . ,P(1)(ξ1)
)

and P
(3)
(j) =

(
P(3)(ξj),P

(3)(ξj+1), . . . ,P(3)(ξq)
)
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Proof: Computing pinwords of any pin-permutation

Pinwords P(σ) of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set
of pinwords.
Example:
For σ = ⊕

ξ1 ξ`

Ti0

ξ`+2 ξq

, Ti0 6∈ W+, ∀i ξi ∈ W+

If σ does not satisfy any special condition (H)

then P(σ) = P0 = P(Ti0) ·P(1)
(`) P

(3)
(`+2)

Mathilde Bouvel

Simple permutations in permutation classes



Context Definitions Patterns and factors Pinwords Automata Algorithm Perspectives

Proof: Computing pinwords of any pin-permutation

Pinwords P(σ) of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set
of pinwords.
Example:
For σ = ⊕

ξ1 ξ`

Ti0

ξ`+2 ξq

, Ti0 6∈ W+, ∀i ξi ∈ W+

If σ satisfies Condition (2H1) then P(σ) = P0 ∪ P1 ∪ P2, with

P1 = P(S) · 1 · L︸ ︷︷ ︸
x

S
Ti0

·P(1)
(`) P

(3)
(`+3),P2 = P(S) · 3 · U︸ ︷︷ ︸

y
S

Ti0

·P(1)
(`−1) P

(3)
(`+2)

(2H1)


ξ` = • = y

ξ`+2 = • = x

Ti0 = 	[•, S ]
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Proof: Computing pinwords of any pin-permutation

Pinwords P(σ) of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set
of pinwords.
Example:
For σ = ⊕

ξ1 ξ`

Ti0

ξ`+2 ξq

, Ti0 6∈ W+, ∀i ξi ∈ W+

If σ satisfies Condition . . .

Proof: Technical. . . and many cases. . .
Analyze the behavior of a pin representation w.r.t. the block of σ
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Proof: Automata recognizing pinword languages

One more step: automata recognizing ∪u∈P(β) L(u), β ∈ B

So far:
∀ proper pin-permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

β pin-permutation 7→ P(β) = set of pinwords encoding β

β ∈ B, σ a proper pin-permutation, w a strict pinword of σ.
β 6≤ σ iff β is not a pin-permutation or

φ(w) 6∈ ∪u∈P(β)L(u)
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Proof: Automata recognizing pinword languages

One more step: automata recognizing ∪u∈P(β) L(u), β ∈ B

So far:
∀ proper pin-permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

β pin-permutation 7→ P(β) = set of pinwords encoding β

β ∈ B, σ a proper pin-permutation, w a strict pinword of σ.
β 6≤ σ iff β is not a pin-permutation or

φ(w) 6∈ ∪u∈P(β)L(u)

Next step: When β ∈ B is a pin-permutation, describe the
language ∪u∈P(β)L(u) by a deterministic automaton

Mathilde Bouvel
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Proof: Automata recognizing pinword languages

Determinism and mirror languages

As before, use the recursive characterization of the
pin-permutation class:

↪→ For each shape of tree of a pin-permutation σ, compute a
deterministic automaton recognizing L(σ) = ∪u∈P(σ)L(u) .
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Proof: Automata recognizing pinword languages

Determinism and mirror languages

As before, use the recursive characterization of the
pin-permutation class:

↪→ For each shape of tree of a pin-permutation σ, compute a

deterministic automaton recognizing
←−−
L(σ) = ∪u∈P(σ)

←−−
L(u).
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Proof: Automata recognizing pinword languages

Determinism and mirror languages

As before, use the recursive characterization of the
pin-permutation class:

↪→ For each shape of tree of a pin-permutation σ, compute a

deterministic automaton recognizing
←−−
L(σ) = ∪u∈P(σ)

←−−
L(u).

Why the mirror?

Common suffixes in pinwords of P(σ)

But several choices for the beginning of u ∈ P(σ)

↪→ Reading for the end allows determinism

Determinism is key to have a polynomial complexity.

Mathilde Bouvel
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Proof: Automata recognizing pinword languages

Determinism and mirror languages

As before, use the recursive characterization of the
pin-permutation class:

↪→ For each shape of tree of a pin-permutation σ, compute a

deterministic automaton recognizing
←−−
L(σ) = ∪u∈P(σ)

←−−
L(u).

Why the mirror?

Common suffixes in pinwords of P(σ)

But several choices for the beginning of u ∈ P(σ)

↪→ Reading for the end allows determinism

Determinism is key to have a polynomial complexity.

Recall that L(u) = Σ∗φ(u(1))Σ∗φ(u(2)) . . .Σ∗φ(u(j))Σ∗

Mathilde Bouvel
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Proof: Automata recognizing pinword languages

Deterministic automaton recognizing
←−−
L(σ)

Recursive construction on the shape of the tree of σ:

Example:
For σ = α

. . .

, i.e. σ a simple pin-permutation

Compute P(σ) (at most 64 pinwords, strict or quasi-strict)
←−−
L(σ) = words with a factor in {

←−−
φ(u) : u ∈ P(σ)}

NB: small extension of φ to quasi-strict pin-words

Aho-Corasick: linear-time construction of a deterministic automa-
ton Aσ recognizing

←−−
L(σ)
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Proof: Automata recognizing pinword languages

Deterministic automaton recognizing
←−−
L(σ)

Recursive construction on the shape of the tree of σ:

Example:
For σ = ⊕

ξ1 ξ`

Ti0

ξ`+2 ξq

, Ti0 6∈ W+, ∀i ξi ∈ W+

If σ does not satisfy any special condition (H)

then P(σ) = P0 = P(Ti0) ·P(1)
(`) P

(3)
(`+2)
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Proof: Automata recognizing pinword languages

Deterministic automaton recognizing
←−−
L(σ)

Recursive construction on the shape of the tree of σ:

Example:

A(1)(ξ1) A(1)(ξ2)

A(1)(ξ1) A(1)(ξ2)

A(1)(ξ1) A(1)(ξ2)

A(3)(ξq)

A(3)(ξq−1)

A(3)(ξq)

A(3)(ξq−1)

A(3)(ξq)

A(3)(ξq−1)

A(3)(ξl+2)

A(1)(ξ`)

A(1)(ξ`)

A(1)(ξ`)

A(1)(ξ1)

A(1)(ξ1)

A(3)(ξ`+2)

A(3)(ξq) A(3)(ξq)

A(3)(ξq−1) A(3)(ξq−1)

A(3)(ξ`+2) A(3)(ξ`+2)

A(1)(ξ`)

A(1)(ξ`)

A(1)(ξ2)

A(1)(ξ2)

A(3)(ξ`+2)

A(Ti0)
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Proof: Automata recognizing pinword languages

Deterministic automaton recognizing
←−−
L(σ)

Recursive construction on the shape of the tree of σ:

Example:
For σ = ⊕

ξ1 ξ`

Ti0

ξ`+2 ξq

, Ti0 6∈ W+, ∀i ξi ∈ W+

If σ satisfies Condition (2H1) then P(σ) = P0 ∪ P1 ∪ P2, with . . .
⇒ Add shortcuts to marked states ofA(Ti0), corresponding to words
added to P(σ)

(2H1)


ξ` = • = y

ξ`+2 = • = x

Ti0 = 	[•,S ]
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Proof: Automata recognizing pinword languages

Deterministic automaton recognizing
←−−
L(σ)

Recursive construction on the shape of the tree of σ:

Example:

A(1)(ξ1) A(1)(ξ2)

A(1)(ξ1) A(1)(ξ2)

A(1)(ξ1) A(1)(ξ2)

A(3)(ξq)

A(3)(ξq−1)

A(3)(ξq)

A(3)(ξq−1)

A(3)(ξq)

A(3)(ξq−1)

A(3)(ξl+2)

A(1)(ξ`)

A(1)(ξ`)

A(1)(ξ`)

A(1)(ξ1)

A(1)(ξ1)

A(3)(ξ`+2)

A(3)(ξq) A(3)(ξq)

A(3)(ξq−1) A(3)(ξq−1)

A(3)(ξ`+2) A(3)(ξ`+2)

A(1)(ξ`)

A(1)(ξ`)

A(1)(ξ2)

A(1)(ξ2)

A(3)(ξ`+2)

A(Ti0)

A(S)

L
U

R

U

L
D
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Proof: Automata recognizing pinword languages

Complexity of the construction

Time complexity Size of Aσ
Non recursive cases up to O(n3) up to O(n3)

Recursive cases up to O(n2) up to O(n2)
+ recursive computation + recursive size

Thm For any pin-permutation σ, we can build a deterministic

automaton Aσ recognizing
←−−
L(σ) = ∪u∈P(σ)

←−−
L(u)

Complexity (time and space): O(n3) where n = |σ|
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Proof: Assembling the algorithm

Almost there

So far:
∀ proper pin-permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

β pin-permutation 7→ P(β) = set of pinwords encoding β

β ∈ B, σ a proper pin-permutation, w a strict pinword of σ.
β 6≤ σ iff β is not a pin-permutation or φ(w) 6∈ ∪u∈P(β)L(u)

iff β is not a pin-permutation or φ(w) is not accepted by Aβ

Mathilde Bouvel
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Proof: Assembling the algorithm

Almost there

So far:
∀ proper pin-permutation σ: σ ∈ C = Av(B) iff ∀β ∈ B, β 6≤ σ

β pin-permutation 7→ P(β) = set of pinwords encoding β

β ∈ B, σ a proper pin-permutation, w a strict pinword of σ.
β 6≤ σ iff β is not a pin-permutation or φ(w) 6∈ ∪u∈P(β)L(u)

iff β is not a pin-permutation or φ(w) is not accepted by Aβ

Final step:
• Build the automaton accepting the language of words of the
form φ(w) (for w strict pinword) that are not accepted by any Aβ
(for β ∈ B and β pin-permutation)
• Test the finiteness of the corresponding language

Mathilde Bouvel
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Proof: Assembling the algorithm

The missing first step

Find the pin-permutations β ∈ B!

Algorithm to test if a simple permutation σ is a pin-permutation

using properties of pin representation in [BBR ’09]

↪→ linear-time procedure

Algorithm to test if a permutation σ is a pin-permutation:

compute the decomposition tree of σ

test whether its shape corresponds to pin-permutation trees

check that the simple permutations in the tree are
pin-permutations

↪→ linear-time procedure

Mathilde Bouvel
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Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of strict pinwords encoding permutations in C

Mathilde Bouvel
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Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of φ(strict pinwords) encoding permutations in C
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Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of φ(strict pinwords) encoding permutations in C

Procedure:

Find the pin-permutations β ∈ B

Compute the automata Aβ
Compute the automaton A = (∪Aβ)c ∩ A(M)

NB Use product construction for union to preserve determinism

Test whether L(A) is infinite i.e. whether A contains a cycle

Mathilde Bouvel
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Proof: Assembling the algorithm

Overview of the algorithm

Goal: Check the finiteness of the number of proper
pin-permutations in C = Av(B), i.e. check the finiteness of the
number of φ(strict pinwords) encoding permutations in C

Procedure:

Find the pin-permutations β ∈ B

Compute the automata Aβ
Compute the automaton A = (∪Aβ)c ∩ A(M)

NB Use product construction for union to preserve determinism

Test whether L(A) is infinite i.e. whether A contains a cycle

Complexity: O(n3k) in time and space
where n = max{|β| : β ∈ B} and k = number of patterns in B

Mathilde Bouvel

Simple permutations in permutation classes



Context Definitions Patterns and factors Pinwords Automata Algorithm Perspectives

Proof: Assembling the algorithm

Main result

Thm There is a O(k · n log n) procedure to test whether
C = Av(B) contains finitely many parallel alternations (resp.
wedge simple permutations).

Thm There is a O(n3k) procedure to test whether C = Av(B)
contains finitely proper pin-permutations

Thm There is a O(n3k) procedure to test whether C = Av(B)
contains finitely simple permutations
(which is a sufficient condition for C (z) to be algebraic)

Mathilde Bouvel

Simple permutations in permutation classes



Context Definitions Patterns and factors Pinwords Automata Algorithm Perspectives

Perspectives

Conclusion

So far:

Finite number of simple permutations in C: sufficient
condition for C (z) to be algebraic

Polynomial procedure to test this condition

Next step:

Compute the set of simple permutations in C
↪→ [AA ’05] gives a procedure, but very high complexity

Compute the generating function C (z)

↪→ Provide an algorithm from the proof of [AA ’05]

Further perspectives:

Random generation in (wreath-closed) permutation classes

Implementation in a library

Mathilde Bouvel
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