Simple permutations in permutation classes

A polynomial algorithm for deciding the finiteness of the number of simple permutations in permutation classes

Frédérique Bassino ${ }^{1}$, Mathilde Bouvel ${ }^{2}$, Adeline Pierrot ${ }^{2}$, Dominique Rossin ${ }^{3}$

Permutation Patterns 2010, August 9-13, Dartmouth College

1: LIPN, Université Paris 13 and CNRS
2: LIAFA, Université Paris Diderot and CNRS
3: LIX, École Polytechnique and CNRS

Outline

1 Introduction

■ Context of the study

- Definitions

2 Sketch of the procedure

- Patterns on permutations and factors on words
- Computing pinwords
- Automata recognizing pinword languages
- Assembling the algorithm

3 Perspectives

Introduction

■ Context of the study

- Definitions

Permutation classes and their enumeration

Permutation: $\sigma=\sigma(1) \sigma(2) \ldots \sigma(n)=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in S_{n}$
Pattern: $\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π. Denoted $\pi \leq \sigma$.

Permutation classes and their enumeration

Permutation: $\sigma=\sigma(1) \sigma(2) \ldots \sigma(n)=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in S_{n}$
Pattern: $\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π. Denoted $\pi \leq \sigma$.

Permutation classes and their enumeration

Permutation: $\sigma=\sigma(1) \sigma(2) \ldots \sigma(n)=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in S_{n}$
Pattern: $\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π. Denoted $\pi \leq \sigma$.

Permutation classes and their enumeration

Permutation: $\sigma=\sigma(1) \sigma(2) \ldots \sigma(n)=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in S_{n}$
Pattern: $\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π. Denoted $\pi \leq \sigma$.

Permutation Class: Set \mathcal{C} downward closed for \leq.
Characterized by its basis $B: \mathcal{C}=\operatorname{Av}(B)=\{\sigma: \forall \beta \in B, \beta \not \leq \sigma\}$. The (finite or infinite) basis is an antichain and is unique:

$$
B=\{\beta \notin \mathcal{C}: \forall \pi \leq \beta \text { such that } \pi \neq \beta, \pi \in \mathcal{C}\}
$$

Permutation classes and their enumeration

Permutation: $\sigma=\sigma(1) \sigma(2) \ldots \sigma(n)=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in S_{n}$
Pattern: $\pi \in S_{k}$ is a pattern of $\sigma \in S_{n}$ if $\exists 1 \leq i_{1}<\ldots<i_{k} \leq n$ such that $\sigma_{i_{1}} \ldots \sigma_{i_{k}}$ is order-isomorphic to π. Denoted $\pi \leq \sigma$.
Permutation Class: Set \mathcal{C} downward closed for \leq.
Characterized by its basis $B: \mathcal{C}=\operatorname{Av}(B)=\{\sigma: \forall \beta \in B, \beta \not \leq \sigma\}$. The (finite or infinite) basis is an antichain and is unique:

$$
B=\{\beta \notin \mathcal{C}: \forall \pi \leq \beta \text { such that } \pi \neq \beta, \pi \in \mathcal{C}\}
$$

Enumeration of class $\mathcal{C}=\operatorname{Av}(B)$, with finite basis B :

- closed formula for $c_{n}=\left|S_{n} \cap \mathcal{C}\right|$
- recurrence on the c_{n} 's
- generating function $\sum c_{n} z^{n}$

■ . .
NB: Enumeration without being given the basis is less frequent.

Permutation classes and generating functions

Enumerating class \mathcal{C} by its generating function $C(z)=\sum c_{n} z^{n}$ Structure of $\mathcal{C} \hookrightarrow$ Equations on $C(z) \hookrightarrow$ Properties of $C(z)$

Permutation classes and generating functions

Enumerating class \mathcal{C} by its generating function $C(z)=\sum c_{n} z^{n}$ Structure of $\mathcal{C} \hookrightarrow$ Equations on $C(z) \hookrightarrow$ Properties of $C(z)$

Example: $\mathcal{C}=\operatorname{Av}(231)$

- Sequence $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$
- Algebraic generating function $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$

Proof:

$\sigma \in \mathcal{C} \cap S_{n} \Leftrightarrow \exists k \in[0 . . n-1]$ s.t. $\sigma=\sigma_{L} n \sigma_{R}$

$$
\sigma_{R}
$$

with $\sigma_{L} \in \mathcal{C}$ on [1..k]
and $\sigma_{R} \in \mathcal{C}$ on $[k+1 . . n-1]$
$\Rightarrow C(z)=1+z C(z)^{2}$

Permutation classes and generating functions

Enumerating class \mathcal{C} by its generating function $C(z)=\sum c_{n} z^{n}$ Structure of $\mathcal{C} \hookrightarrow$ Equations on $C(z) \hookrightarrow$ Properties of $C(z)$

Example: $\mathcal{C}=\operatorname{Av}(231)$

- Sequence $c_{n}=\frac{1}{n+1}\binom{2 n}{n}$
- Algebraic generating function $C(z)=\frac{1-\sqrt{1-4 z}}{2 z}$

Proof:
$\sigma \in \mathcal{C} \cap S_{n} \Leftrightarrow \exists k \in[0 . . n-1]$ s.t. $\sigma=\sigma_{L} n \sigma_{R}$

$$
\sigma_{R}
$$

with $\sigma_{L} \in \mathcal{C}$ on [1..k]
and $\sigma_{R} \in \mathcal{C}$ on $[k+1 . . n-1]$
$\Rightarrow C(z)=1+z C(z)^{2}$
Properties of the generating function \equiv Structure of the class

A general sufficient condition for algebricity

Thm [Albert, Atkinson '05]
\mathcal{C} contains finitely many simple permutations
$\Rightarrow \mathcal{C}$ is finitely based and has an algebraic generating function.

Sketch of the proof

Use substitution decomposition of permutations (\equiv represent uniquely every permutation by its decomposition tree)

Recursive structure of the permutations in \mathcal{C} (\equiv Tree grammar)
\Rightarrow System of equations satisfied by the generating function $C(z)$ \Rightarrow Algebricity of the generating function

Finite number of simple permutations: decision

Thm [Brignall, Ruškuc, Vatter '08]
For a class $\mathcal{C}=\operatorname{Av}(B)$ with finite basis B, it is decidable whether
\mathcal{C} contains a finite number of simple permutations.

Sketch of the proof

\mathcal{C} contains infinitely many simple permutations iff \mathcal{C} contains:

1. either infinitely many parallel alternations
2. or infinitely many wedge simple permutations
3. or infinitely many proper pin-permutations

	Decision procedure	Complexity
1. and 2.:	pattern matching of patterns of size 3 or 4 in the $\beta \in B$.	Polynomial
$3 .:$	Decidability with automata techniques on pinwords	Decidable 2ExpTime

Main result: polynomial-time decision

Thm

For a class $\mathcal{C}=\operatorname{Av}(B)$ with finite basis B, it is polynomial to check whether \mathcal{C} contains a finite number of simple permutations.

NB: Result known for wreath-closed classes since PP2009
With $n=\max \{|\beta|: \beta \in B\}$ and $k=$ number of patterns in B, the complexity is: Steps 1. and 2.: $\mathcal{O}(k \cdot n \log n)$ Step 3.: $\mathcal{O}\left(n^{3 k}\right)$
NB: Step 3. in the previous procedure: $\mathcal{O}\left(2^{n \cdot k \cdot 2^{n}}\right)$

Tools for the proof

- Substitution decomposition

■ Encoding by pinwords and automata techniques

- Previous results on the class of pin-permutations

Substitution for permutations

Substitution or inflation : $\sigma=\pi\left[\alpha^{(1)}, \alpha^{(2)}, \ldots, \alpha^{(k)}\right]$.
Example: Here, $\pi=132$, and $\left\{\begin{array}{l}\alpha^{(1)}=21=\bullet \bullet \\ \alpha^{(2)}=132=\bullet \bullet \\ \alpha^{(3)}=1=\bullet\end{array}\right.$

Hence $\sigma=132[21,132,1]=214653$.

Simple permutations

Interval (or block) $=$ set of elements of σ whose positions and values form intervals of integers Example: 5746 is an interval of
2574613

Simple permutation $=$ permutation that has no interval, except the trivial intervals: $1,2, \ldots, n$ and σ Example: 3174625 is simple.

The smallest simple: 12, 21,2413,3142

Substitution decomposition of permutations

Thm [AA '05]: Every $\sigma(\neq 1)$ is uniquely decomposed as
■ $\oplus\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \oplus-indecomposable
■ $\ominus\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where the $\alpha^{(i)}$ are \ominus-indecomposable

- $\pi\left[\alpha^{(1)}, \ldots, \alpha^{(k)}\right]$, where π is simple of size $k \geq 4$

NB: $\oplus=12 \ldots$ and $\ominus=k \ldots 21$, for any $k \geq 2$

Decomposition tree:

Recursively defined as
Example: Decomposition tree of
$\sigma=101312111411819202117161548329567$
$T_{1}=\bullet$
and

$$
T_{\sigma}=
$$

$$
T_{\alpha^{(1)}} \stackrel{\pi / \oplus / \ominus}{T_{\alpha^{(2)}}} \cdots{ }_{T_{\alpha^{(k)}}}
$$

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition
$=$ bounding box of $\left\{p_{1}, \ldots, p_{i-1}\right\}$

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition

$=$ bounding box of $\left\{p_{1}, \ldots, p_{i-1}\right\}$

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition

$=$ bounding box of $\left\{p_{1}, \ldots, p_{i-1}\right\}$ Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies

- the externality condition
- and
- the separation condition

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Example:

Pin representations

Pin representation of $\sigma=$ sequence $\left(p_{1}, \ldots, p_{n}\right)$ s. t. each p_{i} satisfies
p_{i}

- the externality condition
- and
- the separation condition

- or the independence condition

$$
=\text { bounding box of }\left\{p_{1}, \ldots, p_{i-1}\right\}
$$

Proper pin representation $=$ pin

 representation where each p_{i} satisfies Example: the separation condition

Encoding of pin representations by pinwords

$$
U=\text { up }
$$

U
p_{3}

Encoding of pin representations by pinwords

$$
\begin{aligned}
& U=\text { up } \\
& R=\text { right }
\end{aligned}
$$

$\cup R$ $p_{3} p_{4}$

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down }
\end{gathered}
$$

Introduction: Definitions

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Introduction: Definitions

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Introduction: Definitions

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Introduction: Definitions

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Introduction: Definitions

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Introduction: Definitions

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Introduction: Definitions

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

Encoding of pin representations by pinwords

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

NB: Pinwords = words with no factor in $\{L, R\} \cdot\{L, R\} \cup\{U, D\} \cdot\{U, D\}$

Encoding of pin representations by pinwords

$$
\begin{array}{cccccccc}
2 & 1 & U & R & D & 3 & U & R \\
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} & p_{8}
\end{array}
$$

Ambiguous encoding

$$
\begin{gathered}
U=\text { up } \\
R=\text { right } \\
D=\text { down } \\
L=\text { left }
\end{gathered}
$$

2	1
3	4

NB: Pinwords $=$ words with no factor in $\{L, R\} \cdot\{L, R\} \cup\{U, D\} \cdot\{U, D\}$

Strict pinwords: the only numeral is the first letter.

- Encode proper pin representations.
- But proper pin representations are encoded not only by strict pinwords!

The class of pin-permutations

Fact: Not every permutation admits (proper) pin representations.

Def: Pin-permutation $=$ that has a pin representation.

Def: Proper pin-permutation = that has a proper pin representation.

The class of pin-permutations

Fact: Not every permutation admits (proper) pin representations.

Def: Pin-permutation $=$ that has a pin representation.

Def: Proper pin-permutation = that has a proper pin representation.

Thm: Pin-permutations are a permutation class (but proper pin-permutations are not).

The class of pin-permutations

Fact: Not every permutation admits (proper) pin representations.

Def: Pin-permutation $=$ that has a pin representation.

Def: Proper pin-permutation = that has a proper pin representation.

Thm: Pin-permutations are a permutation class (but proper pin-permutations are not).

Ambiguity of the encoding of pin-permutations by pinwords

p_{7}

Several pin representations for a single pin-permutation

Ambiguity of the encoding of pin-permutations by pinwords

σ a pin-permutation of S_{n} :
■ at least one and possibly many pin representations of σ
■ at least one and possibly many pinwords (at most 8^{n})

Ambiguity of the encoding of pin-permutations by pinwords

σ a proper pin-permutation of S_{n} :

- at least one and possibly many proper pin representations of σ
- at least one and possibly many strict pinwords (at most 2^{n+2})

Ambiguity of the encoding of pin-permutations by pinwords

σ a proper pin-permutation of S_{n} :

- at least one and possibly many proper pin representations of σ
- at least one and possibly many strict pinwords (at most 2^{n+2})

■ Every proper pin-permutations is encoded by at least one and at most 2^{n+2} strict pinwords.

■ Every strict pinword encodes a proper pin-permutation.
Hence: Infinitely many proper pin-permutations in \mathcal{C}
\Leftrightarrow infinitely many strict pinwords encoding permutations in \mathcal{C}

Proof of the main result

Thm

For a class $\mathcal{C}=\operatorname{Av}(B)$ with finite basis B, it is polynomial to check whether \mathcal{C} contains a finite number of simple permutations.

Lemma

For a class $\mathcal{C}=\operatorname{Av}(B)$ with finite basis B, it is polynomial to check whether \mathcal{C} contains a finite number of proper pin-permutations.

- Patterns on permutations and factors on words
- Computing pinwords
- Automata recognizing pinword languages
- Assembling the algorithm

Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

\forall (proper pin-) permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$

Proof: Patterns on permutations and factors on words

How to read permutation patterns in pinwords

\forall (proper pin-) permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
Thm [BRV '08]
$\beta \in B, \sigma$ a (proper) pin-permutation, w a (strict) pinword of σ. $\beta \leq \sigma \quad$ iff β is a pin-permutation and
\exists a pinword u encoding β s.t. $u \preceq w$

How to read permutation patterns in pinwords

\forall (proper pin-) permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
Thm [BRV '08]
$\beta \in B, \sigma$ a (proper) pin-permutation, w a (strict) pinword of σ. $\beta \leq \sigma \quad$ iff $\quad \beta$ is a pin-permutation and
\exists a pinword u encoding β s.t. $u \preceq w$
Def $u=u^{(1)} \ldots u^{(j)}$ with each $u^{(i)}$ strict pinword.
$u \preceq w$ when $w=v^{(1)} w^{(1)} \ldots v^{(j)} w^{(j)} v^{(j+1)}$ s.t. $\forall i \in\{1, \ldots, j\}$:
■ if $w^{(i)}$ begins with a numeral then $w^{(i)}=u^{(i)}$

- if $w^{(i)}$ begins with a direction, then
- $v^{(i)}$ is nonempty
- the first letter of $w^{(i)}$ corresponds to a point lying in the quadrant specified by the first letter of $u^{(i)}$
- and all letters except the first one in $u^{(i)}$ and $w^{(i)}$ agree

Patterns as factors of ϕ (strict pinwords)

Replace numerals by directions \Rightarrow factors instead of "almost factors"
$\phi: u=u_{1} u_{2} \ldots u_{n}$ strict pinword $\mapsto \phi(u) \in \mathcal{M}$ with $\mathcal{M}=\{L, R, U, D\}^{*}$ with no factor in $\{L, R\} \cdot\{L, R\} \cup\{U, D\} \cdot\{U, D\}$

Patterns as factors of ϕ (strict pinwords)

Replace numerals by directions \Rightarrow factors instead of "almost factors"
$\phi: u=u_{1} u_{2} \ldots u_{n}$ strict pinword $\mapsto \phi(u) \in \mathcal{M}$ with $\mathcal{M}=\{L, R, U, D\}^{*}$ with no factor in $\{L, R\} \cdot\{L, R\} \cup\{U, D\} \cdot\{U, D\}$
$\phi(u)=u_{0}^{\prime} u_{1}^{\prime} u_{2} \ldots u_{n}$ with $u_{0}^{\prime} u_{1}^{\prime}$ given by

u_{1}	u_{2}	$u_{0}^{\prime} u_{1}^{\prime}$
1	D or $U(\uparrow)$	$U R$
	L or $R(\leftrightarrow)$	$R U$
	ϵ	$\{U R, R U\}$

Patterns as factors of ϕ (strict pinwords)

Replace numerals by directions \Rightarrow factors instead of "almost factors"
$\phi: u=u_{1} u_{2} \ldots u_{n}$ strict pinword $\mapsto \phi(u) \in \mathcal{M}$ with $\mathcal{M}=\{L, R, U, D\}^{*}$ with no factor in $\{L, R\} \cdot\{L, R\} \cup\{U, D\} \cdot\{U, D\}$
$\phi(u)=u_{0}^{\prime} u_{1}^{\prime} u_{2} \ldots u_{n}$ with $u_{0}^{\prime} u_{1}^{\prime}$ given by

u_{1}	u_{2}	$u_{0}^{\prime} u_{1}^{\prime}$
1	D or $U(\uparrow)$	$U R$
	L or $R(\leftrightarrow)$	$R U$
	ϵ	$\{U R, R U\}$

u_{1}	u_{2}	$u_{0}^{\prime} u_{1}^{\prime}$
2	$\mathfrak{\imath}$ or \leftrightarrow or ϵ	$\subseteq\{U L, L U\}$
3	$\mathfrak{\jmath}$ or \leftrightarrow or ϵ	$\subseteq\{D L, L D\}$
4	$\mathfrak{\text { or }} \leftrightarrow$ or ϵ	$\subseteq\{R D, D R\}$

Patterns as factors of ϕ (strict pinwords)

Replace numerals by directions \Rightarrow factors instead of "almost factors"
$\phi: u=u_{1} u_{2} \ldots u_{n}$ strict pinword $\mapsto \phi(u) \in \mathcal{M}$ with $\mathcal{M}=\{L, R, U, D\}^{*}$ with no factor in $\{L, R\} \cdot\{L, R\} \cup\{U, D\} \cdot\{U, D\}$
$\phi(u)=u_{0}^{\prime} u_{1}^{\prime} u_{2} \ldots u_{n}$ with $u_{0}^{\prime} u_{1}^{\prime}$ given by

u_{1}	u_{2}	$u_{0}^{\prime} u_{1}^{\prime}$
1	D or $U(\uparrow)$	$U R$
	L or $R(\leftrightarrow)$	$R U$
	ϵ	$\{U R, R U\}$

u_{1}	u_{2}	$u_{0}^{\prime} u_{1}^{\prime}$
2	$\mathfrak{\imath}$ or \leftrightarrow or ϵ	$\subseteq\{U L, L U\}$
3	$\mathfrak{\jmath}$ or \leftrightarrow or ϵ	$\subseteq\{D L, L D\}$
4	$\mathfrak{\text { or }} \leftrightarrow$ or ϵ	$\subseteq\{R D, D R\}$

For strict pinwords, $u \preceq w$ iff (some $x \in$) $\phi(u)$ is a factor of $\phi(w)$ (See also PP2009)

Patterns as piecewise factors of ϕ (pinwords)

Thm

For u a pinword and w a strict pinword, $u \preceq w$ iff $\phi(w) \in \mathcal{L}(u)$
Def For $u=u^{(1)} u^{(2)} \ldots u^{(j)}$ with each $u^{(i)}$ strict pinword, $\mathcal{L}(u)=\Sigma^{*} \phi\left(u^{(1)}\right) \Sigma^{*} \phi\left(u^{(2)}\right) \ldots \Sigma^{*} \phi\left(u^{(j)}\right) \Sigma^{*}$ with $\Sigma=\{L, R, U, D\}$
$\mathcal{L}(u)=$ words that contain $\phi(u)=\left(\phi\left(u^{(1)}\right), \phi\left(u^{(2)}\right), \ldots, \phi\left(u^{(j)}\right)\right)$ as "piecewise factor"

Patterns as piecewise factors of ϕ (pinwords)

Thm

For u a pinword and w a strict pinword, $u \preceq w$ iff $\phi(w) \in \mathcal{L}(u)$
Def For $u=u^{(1)} u^{(2)} \ldots u^{(j)}$ with each $u^{(i)}$ strict pinword, $\mathcal{L}(u)=\Sigma^{*} \phi\left(u^{(1)}\right) \Sigma^{*} \phi\left(u^{(2)}\right) \ldots \Sigma^{*} \phi\left(u^{(j)}\right) \Sigma^{*}$ with $\Sigma=\{L, R, U, D\}$
$\mathcal{L}(u)=$ words that contain $\phi(u)=\left(\phi\left(u^{(1)}\right), \phi\left(u^{(2)}\right), \ldots, \phi\left(u^{(j)}\right)\right)$ as "piecewise factor"

Thm

$\beta \in B, \sigma$ a proper pin-permutation, w a strict pinword of σ.

$$
\begin{array}{ll}
\beta \leq \sigma \quad \text { iff } & \beta \text { is a pin-permutation and } \exists \text { a pinword } u \\
& \text { encoding } \beta \text { s.t. } \phi(w) \in \mathcal{L}(u)
\end{array}
$$

Proof: Computing pinwords of any pin-permutation

One step further: computing pinwords of $\beta \in B$

So far:

\forall proper pin-permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
$\beta \in B, \sigma$ a proper pin-permutation, w a strict pinword of σ. $\beta \not \leq \sigma \quad$ iff $\quad \beta$ is not a pin-permutation or for all pinwords u encoding $\beta, \phi(w) \notin \mathcal{L}(u)$

One step further: computing pinwords of $\beta \in B$

So far:

\forall proper pin-permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
$\beta \in B, \sigma$ a proper pin-permutation, w a strict pinword of σ. $\beta \not \leq \sigma \quad$ iff $\quad \beta$ is not a pin-permutation or for all pinwords u encoding $\beta, \phi(w) \notin \mathcal{L}(u)$

Next step:

When $\beta \in B$ is a pin-permutation, find its pinwords.
\hookrightarrow Use the characterization of pin-permutations of [BBR09]

Proof: Computing pinwords of any pin-permutation

Characterization of the pin-permutation class

The set \mathcal{P} of decomposition trees of pin-permutations satisfies:

$\bigcirc \bigcirc \bigcirc$

0000

Mathilde Bouvel
Simple permutations in permutation classes

Proof: Computing pinwords of any pin-permutation

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Example:

For $\sigma=\sim_{0}^{\alpha}$
, i.e. σ a simple pin-permutation
$P(\sigma)$ contains at most 64 pinwords
$P(\sigma)$ can be effectively computed in time $\mathcal{O}(n)$, with $n=|\sigma|$

Proof: Computing pinwords of any pin-permutation

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Example:

For $\sigma=\xi_{\xi_{1}} \overbrace{\xi_{i_{0}}}^{\oplus}, T_{i_{0}} \notin \mathcal{W}^{+}, \forall i \xi_{i} \in \mathcal{W}^{+}$

Proof: Computing pinwords of any pin-permutation

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Example:

For $\sigma=\quad, \quad, \quad T_{i_{0}} \notin \mathcal{W}^{+}, \forall i \xi_{i} \in \mathcal{W}^{+}$

Set $P^{(k)}\left(\xi_{i}\right)=$ pinwords of ξ_{i} with origin p_{0} in quadrant k, $\mathfrak{P}_{(j)}^{(1)}=\left(P^{(1)}\left(\xi_{j}\right), P^{(1)}\left(\xi_{j-1}\right), \ldots, P^{(1)}\left(\xi_{1}\right)\right)$
and $\mathfrak{P}_{(j)}^{(3)}=\left(P^{(3)}\left(\xi_{j}\right), P^{(3)}\left(\xi_{j+1}\right), \ldots, P^{(3)}\left(\xi_{q}\right)\right)$

Proof: Computing pinwords of any pin-permutation

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Example:

For $\sigma=\quad, \quad, \quad T_{i_{0}} \notin \mathcal{W}^{+}, \forall i \xi_{i} \in \mathcal{W}^{+}$

If σ does not satisfy any special condition (H)
then $P(\sigma)=P_{0}=P\left(T_{i_{0}}\right) \cdot \mathfrak{P}_{(\ell)}^{(1)} \sqcup \mathfrak{P}_{(\ell+2)}^{(3)}$

Proof: Computing pinwords of any pin-permutation

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Example:

For $\sigma=\quad, \quad, \quad T_{i_{0}} \notin \mathcal{W}^{+}, \forall i \xi_{i} \in \mathcal{W}^{+}$

$$
(2 H 1)\left\{\begin{array}{l}
\xi_{\ell}=\bullet=y \\
\xi_{\ell+2}=\bullet=x \\
T_{i_{0}}=\ominus[\bullet, S]
\end{array}\right.
$$

If σ satisfies Condition (2H1) then $P(\sigma)=P_{0} \cup P_{1} \cup P_{2}$, with

$$
P_{1}=\underbrace{P(S) \cdot 1 \cdot L}_{x \cup T_{i_{0}}} \cdot \mathfrak{P}_{(\ell)}^{(1)} \sqcup \mathfrak{P}_{(\ell+3)}^{(3)}, P_{2}=\underbrace{P(S) \cdot 3 \cdot U}_{y \cup T_{i_{0}}} \cdot \mathfrak{P}_{(\ell-1)}^{(1)} \sqcup \mathfrak{P}_{(\ell+2)}^{(3)}
$$

Proof: Computing pinwords of any pin-permutation

Pinwords $P(\sigma)$ of any pin-permutation σ

For each shape of tree, compute recursively the corresponding set of pinwords.

Example:

For $\sigma=$

If σ satisfies Condition...

Proof: Technical... and many cases...
Analyze the behavior of a pin representation w.r.t. the block of σ

One more step: automata recognizing $\cup_{u \in P(\beta)} \mathcal{L}(u), \beta \in B$

So far:

\forall proper pin-permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
β pin-permutation $\mapsto P(\beta)=$ set of pinwords encoding β
$\beta \in B, \sigma$ a proper pin-permutation, w a strict pinword of σ.
$\beta \not \leq \sigma \quad$ iff $\quad \beta$ is not a pin-permutation or

$$
\phi(w) \notin \cup_{u \in P(\beta)} \mathcal{L}(u)
$$

One more step: automata recognizing $\cup_{u \in P(\beta)} \mathcal{L}(u), \beta \in B$

So far:

\forall proper pin-permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
β pin-permutation $\mapsto P(\beta)=$ set of pinwords encoding β
$\beta \in B, \sigma$ a proper pin-permutation, w a strict pinword of σ.

$$
\begin{array}{ll}
\beta \not \leq \sigma \quad \text { iff } \quad & \beta \text { is not a pin-permutation or } \\
& \phi(w) \notin \cup_{u \in P(\beta)} \mathcal{L}(u)
\end{array}
$$

Next step: When $\beta \in B$ is a pin-permutation, describe the language $\cup_{u \in P(\beta)} \mathcal{L}(u)$ by a deterministic automaton

Determinism and mirror languages

- As before, use the recursive characterization of the pin-permutation class:
\hookrightarrow For each shape of tree of a pin-permutation σ, compute a deterministic automaton recognizing $\mathcal{L}(\sigma)=\cup_{u \in P(\sigma)} \mathcal{L}(u)$.

Determinism and mirror languages

■ As before, use the recursive characterization of the pin-permutation class:
\hookrightarrow For each shape of tree of a pin-permutation σ, compute a deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)}=\cup_{u \in P(\sigma)} \overleftarrow{\mathcal{L}(u)}$.

Determinism and mirror languages

- As before, use the recursive characterization of the pin-permutation class:
\hookrightarrow For each shape of tree of a pin-permutation σ, compute a deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)}=\cup_{u \in P(\sigma)} \overleftarrow{\mathcal{L}(u)}$.

Why the mirror?

- Common suffixes in pinwords of $P(\sigma)$
- But several choices for the beginning of $u \in P(\sigma)$
\hookrightarrow Reading for the end allows determinism
Determinism is key to have a polynomial complexity.

Determinism and mirror languages

- As before, use the recursive characterization of the pin-permutation class:
\hookrightarrow For each shape of tree of a pin-permutation σ, compute a deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)}=\cup_{u \in P(\sigma)} \overleftarrow{\mathcal{L}(u)}$.

Why the mirror?

- Common suffixes in pinwords of $P(\sigma)$
- But several choices for the beginning of $u \in P(\sigma)$
\hookrightarrow Reading for the end allows determinism
Determinism is key to have a polynomial complexity.
Recall that $\mathcal{L}(u)=\Sigma^{*} \phi\left(u^{(1)}\right) \Sigma^{*} \phi\left(u^{(2)}\right) \ldots \Sigma^{*} \phi\left(u^{(j)}\right) \Sigma^{*}$

Deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)}$

Recursive construction on the shape of the tree of σ :

Example:

For $\sigma=\quad \alpha \quad$, i.e. σ a simple pin-permutation

Compute $P(\sigma)$ (at most 64 pinwords, strict or quasi-strict) $\overleftarrow{\mathcal{L}(\sigma)}=$ words with a factor in $\{\overleftarrow{\phi(u)}: u \in P(\sigma)\}$
NB: small extension of ϕ to quasi-strict pin-words
Aho-Corasick: linear-time construction of a deterministic automaton \mathcal{A}_{σ} recognizing $\overleftarrow{\mathcal{L}(\sigma)}$

Proof: Automata recognizing pinword languages

Deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)}$

Recursive construction on the shape of the tree of σ :

Example:

For $\sigma=$

If σ does not satisfy any special condition (H)
then $P(\sigma)=P_{0}=P\left(T_{i_{0}}\right) \cdot \mathfrak{P}_{(\ell)}^{(1)} \sqcup \mathfrak{P}_{(\ell+2)}^{(3)}$

Proof: Automata recognizing pinword languages

Deterministic automaton recognizing $\mathscr{\mathcal { L }}(\sigma)$

Recursive construction on the shape of the tree of σ :

Example:

Deterministic automaton recognizing $\overleftarrow{\mathcal{L}(\sigma)}$

Recursive construction on the shape of the tree of σ :

Example:

For $\sigma=$

$$
\begin{aligned}
& T_{i_{0}} \notin \mathcal{W}^{+}, \forall i \xi_{i} \in \mathcal{W}^{+} \\
& (2 H 1)\left\{\begin{array}{l}
\xi_{\ell}=\bullet=y \\
\xi_{\ell+2}=\bullet=x \\
T_{i_{0}}=\ominus[\bullet, S]
\end{array}\right.
\end{aligned}
$$

If σ satisfies Condition (2H1) then $P(\sigma)=P_{0} \cup P_{1} \cup P_{2}$, with \ldots \Rightarrow Add shortcuts to marked states of $\mathcal{A}\left(T_{i_{0}}\right)$, corresponding to words added to $P(\sigma)$

Proof: Automata recognizing pinword languages

Deterministic automaton recognizing $\mathscr{\mathcal { L }}(\sigma)$

Recursive construction on the shape of the tree of σ :

Example:

Complexity of the construction

	Time complexity	Size of \mathcal{A}_{σ}
Non recursive cases	up to $\mathcal{O}\left(n^{3}\right)$	up to $\mathcal{O}\left(n^{3}\right)$
Recursive cases	up to $\mathcal{O}\left(n^{2}\right)$ + recursive computation	up to $\mathcal{O}\left(n^{2}\right)$ + recursive size

Thm For any pin-permutation σ, we can build a deterministic automaton \mathcal{A}_{σ} recognizing $\overleftarrow{\mathcal{L}(\sigma)}=\cup_{u \in P(\sigma)} \overleftarrow{\mathcal{L}(u)}$ Complexity (time and space): $\mathcal{O}\left(n^{3}\right)$ where $n=|\sigma|$

Almost there

So far:

\forall proper pin-permutation $\sigma: \sigma \in \mathcal{C}=A v(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
β pin-permutation $\mapsto P(\beta)=$ set of pinwords encoding β
$\beta \in B, \sigma$ a proper pin-permutation, w a strict pinword of σ.
$\beta \not \leq \sigma \quad$ iff $\quad \beta$ is not a pin-permutation or $\phi(w) \notin \cup_{u \in P(\beta)} \mathcal{L}(u)$
iff β is not a pin-permutation or $\phi(w)$ is not accepted by \mathcal{A}_{β}

Almost there

So far:

\forall proper pin-permutation $\sigma: \sigma \in \mathcal{C}=\operatorname{Av}(B)$ iff $\forall \beta \in B, \beta \not \leq \sigma$
β pin-permutation $\mapsto P(\beta)=$ set of pinwords encoding β
$\beta \in B, \sigma$ a proper pin-permutation, w a strict pinword of σ.
$\beta \not \leq \sigma \quad$ iff $\quad \beta$ is not a pin-permutation or $\phi(w) \notin \cup_{u \in P(\beta)} \mathcal{L}(u)$
iff β is not a pin-permutation or $\phi(w)$ is not accepted by \mathcal{A}_{β}

Final step:

- Build the automaton accepting the language of words of the form $\phi(w)$ (for w strict pinword) that are not accepted by any \mathcal{A}_{β} (for $\beta \in B$ and β pin-permutation)
- Test the finiteness of the corresponding language

The missing first step

Find the pin-permutations $\beta \in B$!

Algorithm to test if a simple permutation σ is a pin-permutation

- using properties of pin representation in [BBR '09]
\hookrightarrow linear-time procedure
Algorithm to test if a permutation σ is a pin-permutation:
- compute the decomposition tree of σ
- test whether its shape corresponds to pin-permutation trees

■ check that the simple permutations in the tree are pin-permutations
\hookrightarrow linear-time procedure

Overview of the algorithm

Goal: Check the finiteness of the number of proper pin-permutations in $\mathcal{C}=\operatorname{Av}(B)$, i.e. check the finiteness of the number of strict pinwords encoding permutations in \mathcal{C}

Overview of the algorithm

Goal: Check the finiteness of the number of proper pin-permutations in $\mathcal{C}=\operatorname{Av}(B)$, i.e. check the finiteness of the number of ϕ (strict pinwords) encoding permutations in \mathcal{C}

Overview of the algorithm

Goal: Check the finiteness of the number of proper pin-permutations in $\mathcal{C}=\operatorname{Av}(B)$, i.e. check the finiteness of the number of ϕ (strict pinwords) encoding permutations in \mathcal{C}

Procedure:

- Find the pin-permutations $\beta \in B$
- Compute the automata \mathcal{A}_{β}
- Compute the automaton $\mathcal{A}=\left(\cup \mathcal{A}_{\beta}\right)^{c} \cap \mathcal{A}(\mathcal{M})$

NB Use product construction for union to preserve determinism

- Test whether $L(\mathcal{A})$ is infinite i.e. whether \mathcal{A} contains a cycle

Overview of the algorithm

Goal: Check the finiteness of the number of proper pin-permutations in $\mathcal{C}=\operatorname{Av}(B)$, i.e. check the finiteness of the number of ϕ (strict pinwords) encoding permutations in \mathcal{C}

Procedure:

- Find the pin-permutations $\beta \in B$
- Compute the automata \mathcal{A}_{β}
- Compute the automaton $\mathcal{A}=\left(\cup \mathcal{A}_{\beta}\right)^{c} \cap \mathcal{A}(\mathcal{M})$

NB Use product construction for union to preserve determinism

- Test whether $L(\mathcal{A})$ is infinite i.e. whether \mathcal{A} contains a cycle

Complexity: $\mathcal{O}\left(n^{3 k}\right)$ in time and space where $n=\max \{|\beta|: \beta \in B\}$ and $k=$ number of patterns in B

Main result

Thm There is a $\mathcal{O}(k \cdot n \log n)$ procedure to test whether $\mathcal{C}=\operatorname{Av}(B)$ contains finitely many parallel alternations (resp. wedge simple permutations).

Thm There is a $\mathcal{O}\left(n^{3 k}\right)$ procedure to test whether $\mathcal{C}=\operatorname{Av}(B)$ contains finitely proper pin-permutations

Thm There is a $\mathcal{O}\left(n^{3 k}\right)$ procedure to test whether $\mathcal{C}=\operatorname{Av}(B)$ contains finitely simple permutations (which is a sufficient condition for $C(z)$ to be algebraic)

Conclusion

So far:
■ Finite number of simple permutations in \mathcal{C} : sufficient condition for $C(z)$ to be algebraic

- Polynomial procedure to test this condition

Next step:

- Compute the set of simple permutations in \mathcal{C}
\hookrightarrow [AA '05] gives a procedure, but very high complexity
- Compute the generating function $C(z)$
\hookrightarrow Provide an algorithm from the proof of [AA '05]
Further perspectives:
- Random generation in (wreath-closed) permutation classes
- Implementation in a library

