Some General Results for Even-Wilf-Equivalence

Andrew M. Baxter Aaron D. Jaggard
${ }^{1}$ Dept. of Mathematics, Rutgers
${ }^{2}$ CS Dept., Colgate and DIMACS, Rutgers
Permutation Patterns 2010
August 13, 2010

Partially supported by NSA

Classical Pattern Avoidance

A permutation $\pi=\pi_{1} \cdots \pi_{n} \in \mathcal{S}_{n}$ contains pattern $\sigma \in \mathcal{S}_{k}$ if there is some substring $\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{k}}$ which is order-isomorphic to σ. If π does not contain σ, then π avoids σ.
Example: 412563 contains 132, but avoids 321.

Classical Pattern Avoidance

A permutation $\pi=\pi_{1} \cdots \pi_{n} \in \mathcal{S}_{n}$ contains pattern $\sigma \in \mathcal{S}_{k}$ if there is some substring $\pi_{i_{1}} \pi_{i_{2}} \cdots \pi_{i_{k}}$ which is order-isomorphic to σ. If π does not contain σ, then π avoids σ.
Example: 412563 contains 132, but avoids 321.

Notation

For pattern $\sigma \in \mathcal{S}_{k}$, let $\mathcal{S}_{n}(\sigma)$ be the set of permutations of length n which avoid σ, and let $S_{n}(\sigma)=\left|\mathcal{S}_{n}(\sigma)\right|$ denote the number of such permutations.

Even Permutations

Notation

For permutation π, let $\operatorname{inv}(\pi)$ be the inversion number of π, i.e.

$$
\operatorname{inv}(\pi)=\left|\left\{(i, j): i<j, \pi_{i}>\pi_{j}\right\}\right|
$$

The sign of a permutation is $\operatorname{sgn}(\pi)=(-1)^{\operatorname{inv}(\pi)}$.
A permutation π is even [resp., odd] if $\operatorname{inv}(\pi)$ is even [resp., odd].

Even Permutations

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Notation

For permutation π, let $\operatorname{inv}(\pi)$ be the inversion number of π, i.e.

$$
\operatorname{inv}(\pi)=\left|\left\{(i, j): i<j, \pi_{i}>\pi_{j}\right\}\right|
$$

The sign of a permutation is $\operatorname{sgn}(\pi)=(-1)^{\operatorname{inv}(\pi)}$.
A permutation π is even [resp., odd] if $\operatorname{inv}(\pi)$ is even [resp., odd].

Notation

Let \mathcal{E}_{n} denote the even permutations of length n (i.e., the alternating group).

Even Permutations

Notation

For permutation π, let $\operatorname{inv}(\pi)$ be the inversion number of π, i.e.

$$
\operatorname{inv}(\pi)=\left|\left\{(i, j): i<j, \pi_{i}>\pi_{j}\right\}\right|
$$

The sign of a permutation is $\operatorname{sgn}(\pi)=(-1)^{\operatorname{inv}(\pi)}$.
A permutation π is even [resp., odd] if $\operatorname{inv}(\pi)$ is even [resp., odd].

Notation

Let \mathcal{E}_{n} denote the even permutations of length n (i.e., the alternating group).
Let $\mathcal{E}_{n}(\sigma)=\mathcal{S}_{n}(\sigma) \cap \mathcal{E}_{n}$ be the set of even permutations avoiding σ, and $E_{n}(\sigma)=\left|\mathcal{E}_{n}(\sigma)\right|$ be its size.

Wilf-Equivalence

```
Some General
    Results for
    Even-Wilf-
    Equivalence
    Baxter and
    Jaggard
```

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification
of Patterns
Concluding
Remarks

Two patterns σ, τ are [classically] Wilf-equivalent if $S_{n}(\sigma)=S_{n}(\tau)$ for all $n \geq 0$. We denote this $\sigma \sim_{\mathcal{S}_{n}} \tau$.
Two patterns σ, τ are even-Wilf-equivalent if $E_{n}(\sigma)=E_{n}(\tau)$ for all $n \geq 0$. We denote this $\sigma \sim_{\mathcal{E}_{n}} \tau$.

Wilf-Equivalence

```
Some General
    Results for
    Even-Wilf-
    Equivalence
    Baxter and
    Jaggard
```

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification
of Patterns
Concluding
Remarks

Two patterns σ, τ are [classically] Wilf-equivalent if $S_{n}(\sigma)=S_{n}(\tau)$ for all $n \geq 0$. We denote this $\sigma \sim_{\mathcal{S}_{n}} \tau$. Two patterns σ, τ are even-Wilf-equivalent if $E_{n}(\sigma)=E_{n}(\tau)$ for all $n \geq 0$. We denote this $\sigma \sim_{\mathcal{E}_{n}} \tau$.

Wilf-Equivalence

Two patterns σ, τ are [classically] Wilf-equivalent if $S_{n}(\sigma)=S_{n}(\tau)$ for all $n \geq 0$. We denote this $\sigma \sim_{\mathcal{S}_{n}} \tau$.
Two patterns σ, τ are even-Wilf-equivalent if $E_{n}(\sigma)=E_{n}(\tau)$ for all $n \geq 0$. We denote this $\sigma \sim_{\mathcal{E}_{n}} \tau$.

Goal

Explore the equivalence relation $\sim_{\mathcal{E}_{n}}$. In particular, which results regarding classical Wilf-equivalence extend to even-Wilf-equivalence?

Similar Work

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Similar questions have already been examined for pattern avoidance by involutions, yielding a concept of involution-Wilf-equivalence. These include:
Guibert (1995), Guibert-Pergola-Pinzani (2001), Jaggard (2003), Bousqet-Mélou-Steingrímsson (2005),

Dukes-Jelinek-Mansour-Reifegerste (2007), Jaggard-Marincel (to appear).

Similar Work

Baxter and Jaggard

Introduction

Elementary Results

Similar questions have already been examined for pattern avoidance by involutions, yielding a concept of involution-Wilf-equivalence. These include:
Guibert (1995), Guibert-Pergola-Pinzani (2001), Jaggard (2003), Bousqet-Mélou-Steingrímsson (2005),

Dukes-Jelinek-Mansour-Reifegerste (2007), Jaggard-Marincel (to appear).
Likewise, explorations of enumeration of classes $\mathcal{E}_{n}(B)$ for various sets of patterns B have already started.

1 Mansour (2004): Even permutations with k copies of 132
2 Mansour (2006): Even permutations avoiding 132 and another (arbitrary) pattern β
3 Albert-Atkinson-Vatter (2009): Even separable permutations
4 B (PP2009): Enumeration schemes for $E_{n}(B)$

Outline of Talk

```
Some General
    Results for
    Even-Wilf-
    Equivalence
    Baxter and
    Jaggard
```

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification
of Patterns
\checkmark Introduction and Statement of Goal
■ Elementary Results
■ Classification of \mathcal{S}_{2} and \mathcal{S}_{3}

- Prefix Manipulation

■ Classification of \mathcal{S}_{4}

- Partial Classification of \mathcal{S}_{5} and \mathcal{S}_{6}

■ Concluding Remarks

Same Sign Required

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

We begin with a very simple result.
Lemma
If $\sigma, \tau \in \mathcal{S}_{k}$ have different signs, then $\sigma \not \chi_{\mathcal{E}_{n}} \tau$.

Same Sign Required

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

We begin with a very simple result.

Lemma

If $\sigma, \tau \in \mathcal{S}_{k}$ have different signs, then $\sigma \not \chi_{\mathcal{E}_{n}} \tau$.

Proof.

If σ is even and τ is odd, then $\mathcal{E}_{k}(\sigma)=\mathcal{E}_{k} \backslash\{\sigma\}$ while $\mathcal{E}_{k}(\tau)=\mathcal{E}_{k}$.

Symmetries

Some General

Results for Even-WilfEquivalence

Baxter and Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

We define three trivial symmetries, as implied by the dihedral group D_{4}.

Definition

- The reverse of $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ is denoted $\pi^{r}:=\pi_{n} \pi_{n-1} \ldots \pi_{1}$.
Example: $1423^{r}=3241$.

Symmetries

Some General

Results for Even-WilfEquivalence

Baxter and
Jaggard

We define three trivial symmetries, as implied by the dihedral group D_{4}.

Definition

■ The reverse of $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ is denoted $\pi^{r}:=\pi_{n} \pi_{n-1} \ldots \pi_{1}$.
Example: $1423^{r}=3241$.

- The complement of $\pi \in \mathcal{S}_{n}$ is denoted $\pi^{c}:=\left(n+1-\pi_{1}\right)\left(n+1-\pi_{2}\right) \ldots\left(n+1-\pi_{n}\right)$.
Example: $1423^{c}=4132$

Symmetries

Some General

Results for Even-WilfEquivalence

Baxter and
Jaggard

We define three trivial symmetries, as implied by the dihedral group D_{4}.

Definition

■ The reverse of $\pi=\pi_{1} \pi_{2} \ldots \pi_{n}$ is denoted $\pi^{r}:=\pi_{n} \pi_{n-1} \ldots \pi_{1}$.
Example: $1423^{r}=3241$.

- The complement of $\pi \in \mathcal{S}_{n}$ is denoted $\pi^{c}:=\left(n+1-\pi_{1}\right)\left(n+1-\pi_{2}\right) \ldots\left(n+1-\pi_{n}\right)$.
Example: $1423^{c}=4132$
- The inverse of π is denoted π^{-1}.

Example: $1423^{-1}=1342$

Symmetries and Sign

Some General

Results for
Even-WilfEquivalence

Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

The trivial symmetries affect sign as follows:

Lemma

The sign of a permutation $\pi \in S_{n}$ in the following ways:
(a.) $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{r}\right)$ if and only if $n \equiv 0,1(\bmod 4)$.
(b.) $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{c}\right)$ if and only if $n \equiv 0,1(\bmod 4)$.
(c.) $\operatorname{sgn}(\pi)=\operatorname{sgn}\left(\pi^{-1}\right)$

Symmetries and Equivalence

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

For classical Wilf-equivalence, $\sigma \sim_{\mathcal{S}_{n}} \sigma^{r} \sim_{\mathcal{S}_{n}} \sigma^{c} \sim_{\mathcal{S}_{n}} \sigma^{-1}$. This does not transfer to even-Wilf-equivalence, e.g., $1234 \not \chi_{\mathcal{E}_{n}} 4321$.
Each orbit over D_{4} yields two trivial families of even-Wilf-equivlences:

Symmetries and Equivalence

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

For classical Wilf-equivalence, $\sigma \sim_{\mathcal{S}_{n}} \sigma^{r} \sim_{\mathcal{S}_{n}} \sigma^{c} \sim_{\mathcal{S}_{n}} \sigma^{-1}$. This does not transfer to even-Wilf-equivalence, e.g., $1234 \chi_{\mathcal{E}_{n}} 4321$.
Each orbit over D_{4} yields two trivial families of even-Wilf-equivlences:

Symmetries and Equivalence

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

For classical Wilf-equivalence, $\sigma \sim_{\mathcal{S}_{n}} \sigma^{r} \sim_{\mathcal{S}_{n}} \sigma^{c} \sim_{\mathcal{S}_{n}} \sigma^{-1}$.
This does not transfer to even-Wilf-equivalence, e.g., $1234 \chi_{\mathcal{E}_{n}} 4321$.
Each orbit over D_{4} yields two trivial families of even-Wilf-equivlences:

Lemma

For a pattern σ, we have the following trivial equivalences:

- $\sigma \sim_{\mathcal{E}_{n}} \sigma^{-1} \sim_{\mathcal{E}_{n}} \sigma^{r c} \sim_{\mathcal{E}_{n}}\left(\sigma^{-1}\right)^{r c}$
- $\sigma^{r} \sim_{\mathcal{E}_{n}} \sigma^{c} \sim_{\mathcal{E}_{n}}\left(\sigma^{-1}\right)^{r} \sim_{\mathcal{E}_{n}}\left(\sigma^{-1}\right)^{c}$

Outline of Talk

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks
\checkmark Introduction and Statement of Goal
\checkmark Elementary Results
■ Classification of \mathcal{S}_{2} and \mathcal{S}_{3}

- Prefix Manipulation

■ Classification of \mathcal{S}_{4}

- Partial Classification of \mathcal{S}_{5} and \mathcal{S}_{6}

■ Concluding Remarks

Classification of \mathcal{S}_{2}

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Clearly $12 \not \chi_{\mathcal{E}_{n}} 21$, since they have opposite signs.

Elementary

Results
Short Patterns
Prefix
Manipulation
Classification
of Patterns
Concluding
Remarks

Classification of \mathcal{S}_{2}

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Clearly $12 \not \chi_{\mathcal{E}_{n}} 21$, since they have opposite signs.
Furthermore, $E_{n}(21)=1$ for all $n \geq 1$ while

$$
E_{n}(12)= \begin{cases}0 & n=0,1(\bmod 4), n \geq 2 \\ 1 & \text { otherwise }\end{cases}
$$

Classification of \mathcal{S}_{3}

Simion and Schmidt implicitly classified patterns in \mathcal{S}_{3} by $\sim_{\mathcal{E}_{n}}$. They count $E_{n}(\sigma)-O_{n}(\sigma)$ for $\sigma \in \mathcal{S}_{3}$. Their results imply:

Corollary (Simion and Schmidt (1985))

- $123 \sim_{\mathcal{E}_{n}} 231 \sim_{\mathcal{E}_{n}} 312$

■ $321 \sim_{\mathcal{E}_{n}} 213 \sim_{\mathcal{E}_{n}} 132$

Observe the two even-Wilf-equivalence classes are $\mathcal{S}_{3} \cap \mathcal{E}_{3}$ and $\mathcal{S}_{3} \backslash \mathcal{E}_{3}$.
(For pattern-avoidance by involutions, the equivalence class \mathcal{S}_{3} splits similarly into $\mathcal{S}_{3} \cap \mathcal{I}_{3}$ and $\mathcal{S}_{3} \backslash \mathcal{I}_{3}$)

Classification of \mathcal{S}_{3}

Short Patterns

Simion and Schmidt implicitly classified patterns in \mathcal{S}_{3} by \mathcal{E}_{n}. They count $E_{n}(\sigma)-O_{n}(\sigma)$ for $\sigma \in \mathcal{S}_{3}$. Their results imply:

Corollary (Simion and Schmidt (1985))

- $123 \sim_{\mathcal{E}_{n}} 231 \sim_{\mathcal{E}_{n}} 312$
- $321 \sim_{\mathcal{E}_{n}} 213 \sim_{\mathcal{E}_{n}} 132$

Observe the two even-Wilf-equivalence classes are $\mathcal{S}_{3} \cap \mathcal{E}_{3}$ and $\mathcal{S}_{3} \backslash \mathcal{E}_{3}$.
(For pattern-avoidance by involutions, the equivalence class \mathcal{S}_{3} splits similarly into $\mathcal{S}_{3} \cap \mathcal{I}_{3}$ and $\left.\mathcal{S}_{3} \backslash \mathcal{I}_{3}\right)$
This suggests: If $\sigma \sim_{\mathcal{S}_{n}} \tau$ and $\operatorname{sgn}(\sigma)=\operatorname{sgn}(\tau)$ then $\sigma \sim_{\mathcal{E}_{n}} \tau$.

Classification of \mathcal{S}_{3}

Simion and Schmidt implicitly classified patterns in \mathcal{S}_{3} by $\sim_{\mathcal{E}_{n}}$. They count $E_{n}(\sigma)-O_{n}(\sigma)$ for $\sigma \in \mathcal{S}_{3}$. Their results imply:

Corollary (Simion and Schmidt (1985))

■ $123 \sim_{\mathcal{E}_{n}} 231 \sim_{\mathcal{E}_{n}} 312$
■ $321 \sim_{\mathcal{E}_{n}} 213 \sim_{\mathcal{E}_{n}} 132$

Observe the two even-Wilf-equivalence classes are $\mathcal{S}_{3} \cap \mathcal{E}_{3}$ and $\mathcal{S}_{3} \backslash \mathcal{E}_{3}$.
(For pattern-avoidance by involutions, the equivalence class \mathcal{S}_{3} splits similarly into $\mathcal{S}_{3} \cap \mathcal{I}_{3}$ and $\left.\mathcal{S}_{3} \backslash \mathcal{I}_{3}\right)$
This suggests: If $\sigma \sim_{\mathcal{S}_{n}} \tau$ and $\operatorname{sgn}(\sigma)=\operatorname{sgn}(\tau)$ then $\sigma \sim_{\mathcal{E}_{n}} \tau$. This is false: e.g., $1234 \not \chi_{\mathcal{E}_{n}} 4321$ although $1234,4321 \in \mathcal{E}_{4}$

Outline of Talk

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks
\checkmark Introduction and Statement of Goal
\checkmark Elementary Results
\checkmark Classification of \mathcal{S}_{2} and \mathcal{S}_{3}

- Prefix Manipulation

■ Classification of \mathcal{S}_{4}

- Partial Classification of \mathcal{S}_{5} and \mathcal{S}_{6}

■ Concluding Remarks

Direct Sum

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

The next few results make use of the direct sum of two patterns.
The direct sum of two permutations, $\alpha \in \mathcal{S}_{k}$ and $\beta \in \mathcal{S}_{\ell}$, is the length- $(k+\ell)$ permutation
$\alpha \oplus \beta:=\alpha_{1} \alpha_{2} \cdots \alpha_{k}\left(\beta_{1}+k+1\right)\left(\beta_{2}+k+1\right) \cdots\left(\beta_{\ell}+k+1\right)$.
This is most easily seen as placing β above and to the right of α.

Figure: $312 \oplus 2413=3125746$

Prefix Reversal

The relation $\stackrel{s}{\sim} \mathcal{S}_{n}$ denotes shape-Wilf-equivalence, which is stronger than $\sim_{\mathcal{S}_{n}}$ and will be explained shortly.

Prefix Reversal

Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

The following result, nicknamed "prefix reversal," has been instrumental in the classical case of Wilf-equivalence.

Theorem (Backelin, West, Xin (2007))
$t(t-1) \ldots 21 \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n} 12 \ldots(t-1) t \oplus \sigma$ for any pattern σ.

The relation $\stackrel{s^{\sim}}{\sim} \mathcal{S}_{n}$ denotes shape-Wilf-equivalence, which is stronger than $\sim_{\mathcal{S}_{n}}$ and will be explained shortly.
This will not extend directly to even-Wilf-equivalence, as indicated by $123 \not \chi_{\mathcal{E}_{n}} 321$ and $1234 \chi_{\mathcal{E}_{n}} 4321$. Something weaker does extend, however.

Prefix Manipulation

Some General
Results for Even-WilfEquivalence

Baxter and Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Proposition (Backelin, West, Xin (2007))

$$
t(t-1) \ldots 21 \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n}(t-1) \ldots 21 t \oplus \sigma \text { for any pattern } \sigma .
$$

Prefix Manipulation

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Proposition (Backelin, West, Xin (2007))

$$
t(t-1) \ldots 21 \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n}(t-1) \ldots 21 t \oplus \sigma \text { for any pattern } \sigma .
$$

This proposition restricts to even-Wilf-equivalence in certain cases.

Proposition (B. and Jaggard (2010))
If t is odd, then $t(t-1) \ldots 21 \oplus \sigma \stackrel{s}{\sim} \mathcal{E}_{n}(t-1) \ldots 21 t \oplus \sigma$ for any pattern σ.

Transversals in Young Diagrams

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

A transversal π in Young diagram $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is a placement of n rooks in boxes of λ such that there is exactly one rook in every row and column. Clearly π can be written as a permutation in \mathcal{S}_{n}.

Figure: Transversal $\pi=45321$ of $\lambda=(5,5,5,3,2)$.

A transversal π is even if π is even as a permutation.

Pattern Avoidance for Transversals

Some General
Results for Even-WilfEquivalence

Baxter and Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

A transversal π of Young diagram λ contains σ if

Example:

Pattern Avoidance for Transversals

Some General

Results for Even-WilfEquivalence

Baxter and
Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

A transversal π of Young diagram λ contains σ if
■ π contains σ as a permutation and

Example: Transversal $\pi=45321$ of $\lambda=(5,5,5,3,2)$ contains 321

Pattern Avoidance for Transversals

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

A transversal π of Young diagram λ contains σ if
■ π contains σ as a permutation and

- λ contains the entire square formed by the intersection of the rows and columns containing the rooks of π forming σ.

Example: Transversal $\pi=45321$ of $\lambda=(5,5,5,3,2)$ contains 321

Pattern Avoidance for Transversals

Some General
Results for Even-WilfEquivalence

Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

A transversal π of Young diagram λ contains σ if

- π contains σ as a permutation and
- λ contains the entire square formed by the intersection of the rows and columns containing the rooks of π forming σ.
Otherwise π avoids σ.
Example: Transversal $\pi=45321$ of $\lambda=(5,5,5,3,2)$ contains 321, but avoids 231

Pattern Avoidance for Transversals

Some General
Results for Even-WilfEquivalence

Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

A transversal π of Young diagram λ contains σ if
■ π contains σ as a permutation and

- λ contains the entire square formed by the intersection of the rows and columns containing the rooks of π forming σ.
Otherwise π avoids σ.
Example: Transversal $\pi=45321$ of $\lambda=(5,5,5,3,2)$ contains 321, but avoids 231

Pattern Avoidance for Transversals

Some General
Results for Even-WilfEquivalence

Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

A transversal π of Young diagram λ contains σ if

- π contains σ as a permutation and
- λ contains the entire square formed by the intersection of the rows and columns containing the rooks of π forming σ.
Otherwise π avoids σ.
Example: Transversal $\pi=45321$ of $\lambda=(5,5,5,3,2)$ contains 321, but avoids 231

Note: Pattern avoidance is dependent on λ, but sign is not.

Shape-Wilf-Equivalence

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Definition

Let $\mathcal{S}_{\lambda}(\sigma)$ be the set of transversals of λ avoiding σ, and $S_{\lambda}(\sigma)=\left|\mathcal{S}_{\lambda}(\sigma)\right|$.
If $S_{\lambda}(\sigma)=S_{\lambda}(\tau)$ for all λ, then σ and τ are shape-Wilf-equivalent and we write $\sigma \stackrel{s_{\sim}^{*}}{\mathcal{S}_{n}} \tau$.

Shape-Wilf-Equivalence

Definition

Let $\mathcal{S}_{\lambda}(\sigma)$ be the set of transversals of λ avoiding σ, and $S_{\lambda}(\sigma)=\left|\mathcal{S}_{\lambda}(\sigma)\right|$.
If $S_{\lambda}(\sigma)=S_{\lambda}(\tau)$ for all λ, then σ and τ are shape-Wilf-equivalent and we write $\sigma \stackrel{{ }_{\sim}^{s}}{\mathcal{S}_{n}} \tau$.

This definition extends to even transversals as well.

Definition

Let $\mathcal{E}_{\lambda}(\sigma)$ be the set of even transversals of λ avoiding σ, and $E_{\lambda}(\sigma)=\left|\mathcal{E}_{\lambda}(\sigma)\right|$.
If $E_{\lambda}(\sigma)=E_{\lambda}(\tau)$ for all λ, then σ and τ are even-shape-Wilf-equivalent and we write $\sigma \stackrel{\mathcal{S}}{\sim} \mathcal{E}_{n} \tau$.

Shape-Wilf-Equivalence and Direct Sums

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Backelin, West, and Xin show that shape-Wilf-equivalence combines well with direct sums.

Lemma (Backelin, West, Xin (2007))
For patterns α and $\beta, \alpha \stackrel{s}{\sim} \mathcal{S}_{n} \beta$ implies $\alpha \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n} \beta \oplus \sigma$.

Shape-Wilf-Equivalence and Direct Sums

Backelin, West, and Xin show that shape-Wilf-equivalence combines well with direct sums.

Lemma (Backelin, West, Xin (2007))
For patterns α and $\beta, \alpha \stackrel{s}{\sim} \mathcal{S}_{n} \beta$ implies $\alpha \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n} \beta \oplus \sigma$.

This lemma refines to even transversals as well.

Lemma (B. and Jaggard (2010))

For patterns α and $\beta, \alpha \stackrel{s}{\sim}_{\mathcal{E}_{n}} \beta$ implies $\alpha \oplus \sigma \stackrel{s}{\sim} \mathcal{E}_{n} \beta \oplus \sigma$.

Prefix Manipulation

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns

Prefix

Manipulation
Classification of Patterns

Concluding Remarks

By the previous lemma,
$t(t-1) \cdots 21 \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n}(t-1) \cdots 21 t \oplus \sigma$ follows from a proof that

$$
S_{\lambda}(t(t-1) \cdots 21)=S_{\lambda}((t-1) \cdots 21 t)
$$

Backelin, West, and Xin provide a bijection $\phi_{t}^{*}: \mathcal{S}_{\lambda}((t-1) \cdots 21 t) \rightarrow \mathcal{S}_{\lambda}(t(t-1) \cdots 21)$.

Prefix Manipulation

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

By the previous lemma,
$t(t-1) \cdots 21 \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n}(t-1) \cdots 21 t \oplus \sigma$ follows from a proof that

$$
S_{\lambda}(t(t-1) \cdots 21)=S_{\lambda}((t-1) \cdots 21 t)
$$

Backelin, West, and Xin provide a bijection $\phi_{t}^{*}: \mathcal{S}_{\lambda}((t-1) \cdots 21 t) \rightarrow \mathcal{S}_{\lambda}(t(t-1) \cdots 21)$.
We will demonstrate that ϕ_{t}^{*} preserves sign when t is odd. This implies for odd t,

$$
E_{\lambda}(t(t-1) \cdots 21)=E_{\lambda}((t-1) \cdots 21 t)
$$

which implies $t(t-1) \cdots 21 \oplus \sigma \stackrel{s}{\sim}_{\mathcal{E}_{n}}(t-1) \cdots 21 t \oplus \sigma$.

A bijective proof

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification
of Patterns
Concluding Remarks

Let $J_{t}=t(t-1) \cdots 21$ and $F_{t}=(t-1) \cdots 21 t$.
We first recall the bijection $\phi_{t}^{*}: \mathcal{S}_{\lambda}\left(F_{t}\right) \rightarrow \mathcal{S}_{\lambda}\left(J_{t}\right)$ as constructed by Backelin et al.

A bijective proof

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Let $J_{t}=t(t-1) \cdots 21$ and $F_{t}=(t-1) \cdots 21 t$.
We first recall the bijection $\phi_{t}^{*}: \mathcal{S}_{\lambda}\left(F_{t}\right) \rightarrow \mathcal{S}_{\lambda}\left(J_{t}\right)$ as constructed by Backelin et al.
It works by converting copies of J_{t} into copies of F_{t} via an iterated operation ϕ_{t}.

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: The transversal π in $\mathcal{S}_{\lambda}\left(F_{5}\right)$

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: An instance of J_{5}.

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: An instance of J_{5}.

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: An instance of J_{5}.

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: An instance of J_{5}.

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: An instance of J_{5}.

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: An instance of J_{5}.

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Candidates for "first letter."

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Select the lowest "first letter," a_{1}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: This a_{1} participates in four J_{5} 's

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Two candidates for a_{2}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Select the leftmost candidate for a_{2}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Choose leftmost candidate for a_{3}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Choose leftmost candidate for a_{4}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Two candidates for a_{5}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Choose the leftmost candidate for a_{5}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: We have now selected a J_{5}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Rearrange the selected J_{5} into an F_{5}

The map ϕ_{t} in pictures (for $t=5$)

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Suppose $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Then an application of ϕ_{t} proceeds as follows:

Figure: Left with a new transversal, π^{\prime}

More about ϕ_{t}

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

One application of ϕ_{t} does not remove all copies of J_{t}.
The operation ϕ_{t} is repeated until all occurences of J_{t} are removed.

The iterated map $\phi_{t}^{*}: \mathcal{S}_{\lambda}\left(F_{t}\right) \rightarrow \mathcal{S}_{\lambda}\left(J_{t}\right)$ is a bijection, with inverse $\left(\phi_{t}^{-1}\right)^{*}$
This bijection provides the proof for $F_{t} \stackrel{s}{\sim} \mathcal{S}_{n} J_{t}$, which implies $F_{t} \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n} J_{t} \oplus \sigma$.

More about ϕ_{t}

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

One application of ϕ_{t} does not remove all copies of J_{t}. The operation ϕ_{t} is repeated until all occurences of J_{t} are removed.

The iterated map $\phi_{t}^{*}: \mathcal{S}_{\lambda}\left(F_{t}\right) \rightarrow \mathcal{S}_{\lambda}\left(J_{t}\right)$ is a bijection, with inverse $\left(\phi_{t}^{-1}\right)^{*}$
This bijection provides the proof for $F_{t} \stackrel{s}{\sim} \mathcal{S}_{n} J_{t}$, which implies $F_{t} \oplus \sigma \stackrel{s_{\mathcal{S}}}{\mathcal{S}_{n}} J_{t} \oplus \sigma$.

More about ϕ_{t}

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

One application of ϕ_{t} does not remove all copies of J_{t}. The operation ϕ_{t} is repeated until all occurences of J_{t} are removed.
The iterated map $\phi_{t}^{*}: \mathcal{S}_{\lambda}\left(F_{t}\right) \rightarrow \mathcal{S}_{\lambda}\left(J_{t}\right)$ is a bijection, with inverse $\left(\phi_{t}^{-1}\right)^{*}$
This bijection provides the proof for $F_{t} \stackrel{s}{\sim} \mathcal{S}_{n} J_{t}$, which implies $F_{t} \oplus \sigma \stackrel{s}{\sim} \mathcal{S}_{n} J_{t} \oplus \sigma$.

More about ϕ_{t}

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

One application of ϕ_{t} does not remove all copies of J_{t}.
The operation ϕ_{t} is repeated until all occurences of J_{t} are removed.

The iterated map $\phi_{t}^{*}: \mathcal{S}_{\lambda}\left(F_{t}\right) \rightarrow \mathcal{S}_{\lambda}\left(J_{t}\right)$ is a bijection, with inverse $\left(\phi_{t}^{-1}\right)^{*}$
This bijection provides the proof for $F_{t} \stackrel{s_{\mathcal{S}}}{\mathcal{S}_{n}} J_{t}$, which implies $F_{t} \oplus \sigma \stackrel{s_{\mathcal{S}}}{\mathcal{S}_{n}} J_{t} \oplus \sigma$.

The map ϕ_{t} and sign

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Claim

The operation ϕ_{t} preserves sign if and only if t is odd.

Figure: The change from J_{t} to F_{t}

The map ϕ_{t} and sign

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Figure: The change from J_{t} to F_{t}

This is multiplication by the cyclic permutation ($a_{1} a_{2} \cdots a_{t}$), which is an even permutation if and only if t is odd. Thus ϕ_{t} is sign-preserving if and only if t is odd. Therefore, if t is odd then ϕ_{t}^{*} preserves sign. Hence $J_{t} \stackrel{s}{\sim} \mathcal{E}_{n} F_{t}$ when t is odd, so $J_{t} \oplus \sigma \stackrel{s}{\sim} \mathcal{E}_{n} F_{t} \oplus \sigma$ when t is odd.

The map ϕ_{t} and sign

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Figure: The change from J_{t} to F_{t}

This is multiplication by the cyclic permutation ($a_{1} a_{2} \cdots a_{t}$), which is an even permutation if and only if t is odd. Thus ϕ_{t} is sign-preserving if and only if t is odd.
Therefore, if t is odd then ϕ_{t}^{*} preserves sign. Hence $J_{t} \stackrel{s}{\sim} \mathcal{E}_{n} F_{t}$ when t is odd, so $J_{t} \oplus \sigma \stackrel{s}{\sim} \mathcal{E}_{n} F_{t} \oplus \sigma$ when t is odd.

The map ϕ_{t} and sign

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Figure: The change from J_{t} to F_{t}

This is multiplication by the cyclic permutation ($a_{1} a_{2} \cdots a_{t}$), which is an even permutation if and only if t is odd. Thus ϕ_{t} is sign-preserving if and only if t is odd. Therefore, if t is odd then ϕ_{t}^{*} preserves sign. Hence $J_{t} \stackrel{s}{\sim} \mathcal{E}_{n} F_{t}$ when t is odd, so $J_{t} \oplus \sigma \stackrel{s}{\sim} \mathcal{E}_{n} F_{t} \oplus \sigma$ when t is odd.

The map ϕ_{t} and sign

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Figure: The change from J_{t} to F_{t}

This is multiplication by the cyclic permutation ($a_{1} a_{2} \cdots a_{t}$), which is an even permutation if and only if t is odd. Thus ϕ_{t} is sign-preserving if and only if t is odd.
Therefore, if t is odd then ϕ_{t}^{*} preserves sign. Hence $J_{t} \stackrel{s}{\sim}_{\mathcal{E}_{n}} F_{t}$ when t is odd, so $J_{t} \oplus \sigma \stackrel{s}{\sim} \mathcal{E}_{n} F_{t} \oplus \sigma$ when t is odd.

When t is even

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Observe that if t is even, each non-trivial application of ϕ_{t} reverses sign.
However, ϕ_{t} may be iterated an even or odd number of times dependent on the given $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Hence ϕ_{t}^{*} does not respect sign when t is even.

It can be seen that $E_{\lambda}\left(F_{4}\right) \neq E_{\lambda}\left(J_{4}\right)$ to confirm this computationally.

When t is even

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Observe that if t is even, each non-trivial application of ϕ_{t} reverses sign.
However, ϕ_{t} may be iterated an even or odd number of times dependent on the given $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Hence ϕ_{t}^{*} does not respect sign when t is even.

It can be seen that $E_{\lambda}\left(F_{4}\right) \neq E_{\lambda}\left(J_{4}\right)$ to confirm this computationally.

When t is even

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Observe that if t is even, each non-trivial application of ϕ_{t} reverses sign.
However, ϕ_{t} may be iterated an even or odd number of times dependent on the given $\pi \in \mathcal{S}_{\lambda}\left(F_{t}\right)$. Hence ϕ_{t}^{*} does not respect sign when t is even.

It can be seen that $E_{\lambda}\left(F_{4}\right) \neq E_{\lambda}\left(J_{4}\right)$ to confirm this computationally.

Other extensions do not work

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Let $I_{t}=12 \cdots t$ be the increasing permutation.
Backelin et al. actually prove $J_{t} \stackrel{s}{\sim}_{\mathcal{S}_{n}} J_{k} \oplus I_{t-k}$ for any $0 \leq k \leq t$.
This does not hold for $\stackrel{s}{\sim}_{\mathcal{E}_{n}}$, nor even $\sim_{\mathcal{E}_{n}}$. Confirmed computationally:

$$
E_{7}(54321)=E_{7}(43215)<E_{7}(32145)=E_{7}(21345)<E_{7}(12345)
$$

Other extensions do not work

Some General

Results for
Even-Wilf-
Equivalence
Baxter and Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Let $I_{t}=12 \cdots t$ be the increasing permutation.
Backelin et al. actually prove $J_{t} \stackrel{s}{\sim}_{\mathcal{S}_{n}} J_{k} \oplus I_{t-k}$ for any $0 \leq k \leq t$.
This does not hold for $\stackrel{\mathcal{S}}{\sim} \mathcal{E}_{n}$, nor even $\sim_{\mathcal{E}_{n}}$. Confirmed computationally:

$$
E_{7}(54321)=E_{7}(43215)<E_{7}(32145)=E_{7}(21345)<E_{7}(12345)
$$

Outline of Talk

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks
\checkmark Introduction and Statement of Goal
\checkmark Elementary Results
\checkmark Classification of \mathcal{S}_{2} and \mathcal{S}_{3}
\checkmark Prefix Manipulation
■ Classification of \mathcal{S}_{4}

- Partial Classification of \mathcal{S}_{5} and \mathcal{S}_{6}

■ Concluding Remarks

Classification of \mathcal{S}_{4}

Some General

Results for Even-WilfEquivalence

Baxter and Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

We have thus shown $3214 \sim_{\mathcal{E}_{n}} 2134$ which, when combined with the equivalences implied by symmetries and computation of $E_{n}(\sigma)$ for $n \leq 7$, completes the classification of length 4 patterns under even-Wilf-equivalence.

1234	4321
2143	3412
1243	3421
2134	4312
1432	2341
3214	4123

2314 4132 1423 3241 1342 2431 3124 4213 2413 3142 1324 4231

Figure: Equivalence classes under $\sim_{\mathcal{E}_{n}}$

Classification of \mathcal{S}_{4}

Some General Results for Even-WilfEquivalence

Baxter and Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

σ	$\operatorname{sgn}(\sigma)$	$E_{4}(\sigma)$	$E_{5}(\sigma)$	$E_{6}(\sigma)$	$E_{7}(\sigma)$	$E_{8}(\sigma)$	$E_{9}(\sigma)$	$E_{10}(\sigma)$
1243*	-1	12	52	257	1381	7885	47181	293297
2134	-1	12	52	257	1381	7885	47181	293297
3214 ${ }^{\circ}$	-i	12	52°	257	1381	7885	47181	2933297
1432	-1	12	52	257	1381	7885	47181	293297
3421*	-1	12	52	256	1380	7885	47181	293293
4312	-1	12	52	256	1380	7885	47181	293293
$2341{ }^{\circ}$	-1	12	52	256	1380	7885	47181	293293
4123	-1	12	52	256	1380	7885	47181	293293
2314	1	11	51	257	1371	7742	45622	277826
1423	1	11	51	257	1371	7742	45622	277826
3124	1	11	51	257	1371	7742	45622	277826
1342	1	11	51	257	1371	7742	45622	277826
4132	1	11	51	255	1369	7742	45622	277836
3241	1	11	51	255	1369	7742	45622	277836
4213	1	11	51	255	1369	7742	45622	277836
2413	1	11	51	255	1369	7742	45622	277836
2413	-1	12	52	256	1370	7743	45623	277831
3142	-1	12	52	256	1370	7743	45623	277831
1234*	1	11	51	258	1382	7879	47175	293311
4321*	1	11	51	255	1379	7879	47175	293279
2143	1	11	51	256	1380	7885	47181	293301
3412	1	11	51	257	1381	7885	47181	293289
1324	-1	12	52	258	1382	7903	47393	296002
4231	-1	12	52	255	1380	7903	47393	295948

Partial Classification of \mathcal{S}_{5}

Some General
Results for Even-WilfEquivalence

Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Computations of $E_{n}(\sigma)$ for $n \leq 11$ and $\sigma \in \mathcal{S}_{5}$ suggest there are four even-Wilf-equivalence classes which contain patterns which are not trivially equivalent under symmetries.
Some of the putative equivalences can be proven by prefix manipulation and symmetry:

Corollary

■ $54321 \sim_{\mathcal{E}_{n}} 43215 \sim_{\mathcal{E}_{n}} 15432$
■ $32154 \sim_{\mathcal{E}_{n}} 21354 \sim_{\mathcal{E}_{n}} 21543$

- $12345 \sim_{\mathcal{E}_{n}} 51234 \sim_{\mathcal{E}_{n}} 23451$

■ $45123 \sim_{\mathcal{E}_{n}} 45312 \sim_{\mathcal{E}_{n}} 34512$

- $32145 \sim_{\mathcal{E}_{n}} 21345 \sim_{\mathcal{E}_{n}} 12354 \sim_{\mathcal{E}_{n}} 12543$

■ $54123 \sim_{\mathcal{E}_{n}} 54312 \sim_{\mathcal{E}_{n}} 34521 \sim_{\mathcal{E}_{n}} 45321$

Conjectures for Length 5 Patterns

There remain a few conjectured equivalences for length 5 patterns. In the classical case, these were proven by symmetries and prefix reversal.

Conjecture

- $12345 \sim_{\mathcal{E}_{n}} 45123$ (equivalently, $54321 \sim_{\mathcal{E}_{n}} 32154$)
- $12354 \sim_{\mathcal{E}_{n}} 45321$
- $13524 \sim_{\mathcal{E}_{n}} 42531$

The first conjecture implies $12345 \sim_{\mathcal{E}_{n}} 23451 \sim_{\mathcal{E}_{n}} 34512 \sim_{\mathcal{E}_{n}} 45123 \sim \sim_{\mathcal{E}_{n}} 51234$.

Conjectures for Length 5 Patterns

Two of the previous conjectures have the form $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$, which suggests:

Question

When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$?
This will only occur for $\sigma \in \mathcal{S}_{k}$ where $k=0,1(\bmod 4)$, since otherwise $\operatorname{sgn}(\sigma) \neq \operatorname{sgn}\left(\sigma^{r}\right)$.

Conjectures for Length 5 Patterns

Some General
Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Two of the previous conjectures have the form $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$, which suggests:

Question

When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$?
This will only occur for $\sigma \in \mathcal{S}_{k}$ where $k=0,1(\bmod 4)$, since otherwise $\operatorname{sgn}(\sigma) \neq \operatorname{sgn}\left(\sigma^{r}\right)$.
If $\sigma^{r}=\sigma^{-1}$, then $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$, but this not necessary.
Length 4 and 5 patterns which are even-Wilf-equivalent to their reverses:

■ $2413 \sim_{\mathcal{E}_{n}} 3142\left(\sigma^{r}=\sigma^{-1}\right)$

- $25314 \sim_{\mathcal{E}_{n}} 41352\left(\sigma^{r}=\sigma^{-1}\right)$

■ $12354 \sim_{\mathcal{E}_{n}} 45321$ (conjectured based on $n \leq 11$)

- $12543 \sim_{\mathcal{E}_{n}} 34521$ (conjectured based on $n \leq 11$)

■ $13524 \sim_{\mathcal{E}_{n}} 42531$ (conjectured based on $n \leq 11$)

Partial Classification of \mathcal{S}_{6}

Some General
Results for Even-WilfEquivalence

Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

For patterns of length 6, prefix manipulation and symmetries account for all instances of even-Wilf-equivalence except for one conjectured class (and its reverse)

Conjecture

$231564 \sim_{\mathcal{E}_{n}} 312564$ (equivalently, $465132 \sim_{\mathcal{E}_{n}} 465213$)
We have confirmed $E_{n}(231564)=E_{n}(312564)$ for $n \leq 11$.

Partial Classification of \mathcal{S}_{6}

Baxter and
Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

For patterns of length 6, prefix manipulation and symmetries account for all instances of even-Wilf-equivalence except for one conjectured class (and its reverse)

Conjecture

$231564 \sim_{\mathcal{E}_{n}} 312564$ (equivalently, $465132 \sim_{\mathcal{E}_{n}} 465213$)
We have confirmed $E_{n}(231564)=E_{n}(312564)$ for $n \leq 11$. It was shown by Stankova and West (2002) that $231564 \stackrel{\mathcal{s}}{\sim} \mathcal{S}_{n} 312564$ when they showed that $231 \stackrel{s_{\sim}^{*}}{\mathcal{S}_{n}} 312$. This suggests the following stronger conjecture:

Conjecture

We have confirmed $E_{\lambda}(231)=E_{\lambda}(312)$ for all shapes λ which fit in a 9×9 square.

Outline of Talk

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification
of Patterns
Concluding Remarks
\checkmark Introduction and Statement of Goal
\checkmark Elementary Results
\checkmark Classification of \mathcal{S}_{2} and \mathcal{S}_{3}
\checkmark Prefix Manipulation
\checkmark Classification of \mathcal{S}_{4}
\checkmark Partial Classification of \mathcal{S}_{5} and \mathcal{S}_{6}
■ Concluding Remarks

Reflections on Even-Wilf-Equivalence

So far, all proven and conjectured even-Wilf-equivalences are between classically Wilf-equivalent patterns. This suggests:

Conjecture

Even-Wilf-equivalence implies classical Wilf-equivalence.
The analogous conjecture is still open for avoidance by involutions.

Number of equivalence classes

Baxter and Jaggard

Introduction
Elementary Results

Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

The even-Wilf-equivalence relation is a very strong condition. Consider the number of equivalence classes under $\sim_{\mathcal{S}_{n}}$ versus $\sim_{\mathcal{E}_{n}}$

n	2	3	4	5	6
Trivial Wilf-classes	1	2	7	23	115
Wilf-equivalence	1	1	3	16	91
Trivial Even-Wilf-classes	2	4	13	45	230
even-Wilf-equivalence	2	2	11	$[35,39]$	$\{216,218\}$

It appears that for each n there are at least twice as many equivalence classes under even-Wilf-equivalence as classical Wilf-equivalence.

Relaxing Conditions

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction
Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

There are many pairs (σ, τ) where $E_{n}(\sigma)=E_{n}(\tau)$ for infinitely many, but not all, $n \geq 0$:

■ $E_{n}(\sigma)=E_{n}\left(\sigma^{r}\right)=E_{n}\left(\sigma^{c}\right)$ for any $n=0,1(\bmod 4)$
■ Data suggest instances of $E_{2 n}(\sigma)=E_{2 n}(\tau)$, e.g., 12345 and 12354

- Data suggest instances of $E_{n}(\sigma)=E_{n}(\tau)$ for any $n=0,1,2(\bmod 4)$.

Relaxing Conditions

There are many pairs (σ, τ) where $E_{n}(\sigma)=E_{n}(\tau)$ for infinitely many, but not all, $n \geq 0$:

■ $E_{n}(\sigma)=E_{n}\left(\sigma^{r}\right)=E_{n}\left(\sigma^{c}\right)$ for any $n=0,1(\bmod 4)$
■ Data suggest instances of $E_{2 n}(\sigma)=E_{2 n}(\tau)$, e.g., 12345 and 12354
■ Data suggest instances of $E_{n}(\sigma)=E_{n}(\tau)$ for any $n=0,1,2(\bmod 4)$.

Asymptotic equivalence may also be interesting, where σ and τ are asymptotically even-Wilf-equivalent if $E_{n}(\sigma) \sim E_{n}(\tau)$ as $n \rightarrow \infty$.

Other curious behavior of $E_{n}(\sigma)$

Some General

Results for
Even-Wilf-
Equivalence
Baxter and
Jaggard

Introduction

Elementary
Results
Short Patterns
Prefix
Manipulation
Classification of Patterns

Concluding Remarks

Using enumeration schemes, it has been determined for $n \leq 15$ that:

$$
\begin{aligned}
E_{n}(1234)-E_{n}(1243)= & 0,0,0,-1,-1,1,1,-6,-6,14,14 \\
& -69,-69,332,332, \ldots
\end{aligned}
$$

Observe the sign changes, depending on $n(\bmod 4)$. Perhaps of note is that $1234 \sim_{\mathcal{S}_{n}} 1243$.

Conclusion

- We have proven that $t(t-1) \cdots 21 \oplus \sigma \sim_{\mathcal{E}_{n}}(t-1) \cdots 21 t \oplus \sigma$ when t is odd by refining a result of Backelin, West, and Xin.
■ We have classified patterns in \mathcal{S}_{4} according to $\sim_{\mathcal{E}_{n^{\prime}}}$ and partially classified \mathcal{S}_{5} and \mathcal{S}_{6}
- Question: When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$? A full characterization would complete the classification of \mathcal{S}_{5}.
- Conjecture: $231 \stackrel{s}{\sim} \mathcal{E}_{n} 312$, which refines a result of Stankova and West. This would complete the classification of \mathcal{S}_{6}.
■ Conjecture: If $\sigma \sim_{\mathcal{E}_{n}} \tau$, then $\sigma \sim_{\mathcal{S}_{n}} \tau$.

Conclusion

- We have proven that $t(t-1) \cdots 21 \oplus \sigma \sim_{\mathcal{E}_{n}}(t-1) \cdots 21 t \oplus \sigma$ when t is odd by refining a result of Backelin, West, and Xin.
■ We have classified patterns in \mathcal{S}_{4} according to $\sim_{\mathcal{E}_{n^{\prime}}}$ and partially classified \mathcal{S}_{5} and \mathcal{S}_{6}
- Question: When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$? A full characterization would complete the classification of \mathcal{S}_{5}.
■ Conjecture: $231 \stackrel{\mathcal{S}}{\sim} \mathcal{E}_{n} 312$, which refines a result of Stankova and West. This would complete the classification of \mathcal{S}_{6}.
■ Conjecture: If $\sigma \sim_{\mathcal{E}_{n}} \tau$, then $\sigma \sim_{\mathcal{S}_{n}} \tau$.

Conclusion

- We have proven that $t(t-1) \cdots 21 \oplus \sigma \sim_{\mathcal{E}_{n}}(t-1) \cdots 21 t \oplus \sigma$ when t is odd by refining a result of Backelin, West, and Xin.
■ We have classified patterns in \mathcal{S}_{4} according to $\sim_{\mathcal{E}_{n^{\prime}}}$ and partially classified \mathcal{S}_{5} and \mathcal{S}_{6}
- Question: When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$? A full characterization would complete the classification of \mathcal{S}_{5}.
- Conjecture: $231 \stackrel{\mathcal{S}}{\sim} \mathcal{E}_{n} 312$, which refines a result of Stankova and West. This would complete the classification of \mathcal{S}_{6}.
■ Conjecture: If $\sigma \sim_{\mathcal{E}_{n}} \tau$, then $\sigma \sim_{\mathcal{S}_{n}} \tau$.

Conclusion

- We have proven that $t(t-1) \cdots 21 \oplus \sigma \sim_{\mathcal{E}_{n}}(t-1) \cdots 21 t \oplus \sigma$ when t is odd by refining a result of Backelin, West, and Xin.
■ We have classified patterns in \mathcal{S}_{4} according to $\sim_{\mathcal{E}_{n^{\prime}}}$ and partially classified \mathcal{S}_{5} and \mathcal{S}_{6}
- Question: When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$? A full characterization would complete the classification of \mathcal{S}_{5}.
- Conjecture: $231 \underset{\mathcal{E}_{n}}{\mathcal{E}_{n}} 312$, which refines a result of Stankova and West. This would complete the classification of \mathcal{S}_{6}.
■ Conjecture: If $\sigma \sim_{\mathcal{E}_{n}} \tau$, then $\sigma \sim_{\mathcal{S}_{n}} \tau$.

Conclusion

- We have proven that $t(t-1) \cdots 21 \oplus \sigma \sim_{\mathcal{E}_{n}}(t-1) \cdots 21 t \oplus \sigma$ when t is odd by refining a result of Backelin, West, and Xin.
■ We have classified patterns in \mathcal{S}_{4} according to $\sim_{\mathcal{E}_{n^{\prime}}}$ and partially classified \mathcal{S}_{5} and \mathcal{S}_{6}
- Question: When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$? A full characterization would complete the classification of \mathcal{S}_{5}.
- Conjecture: $231 \stackrel{s}{\sim} \mathcal{E}_{n} 312$, which refines a result of Stankova and West. This would complete the classification of \mathcal{S}_{6}.
■ Conjecture: If $\sigma \sim_{\mathcal{E}_{n}} \tau$, then $\sigma \sim_{\mathcal{S}_{n}} \tau$.

Conclusion

- We have proven that $t(t-1) \cdots 21 \oplus \sigma \sim_{\mathcal{E}_{n}}(t-1) \cdots 21 t \oplus \sigma$ when t is odd by refining a result of Backelin, West, and Xin.
■ We have classified patterns in \mathcal{S}_{4} according to $\sim_{\mathcal{E}_{n^{\prime}}}$ and partially classified \mathcal{S}_{5} and \mathcal{S}_{6}
■ Question: When is $\sigma \sim_{\mathcal{E}_{n}} \sigma^{r}$? A full characterization would complete the classification of \mathcal{S}_{5}.
- Conjecture: $231 \stackrel{s}{\sim} \mathcal{E}_{n} 312$, which refines a result of Stankova and West. This would complete the classification of \mathcal{S}_{6}.
■ Conjecture: If $\sigma \sim_{\mathcal{E}_{n}} \tau$, then $\sigma \sim_{\mathcal{S}_{n}} \tau$.

