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Classical Pattern Avoidance

A permutation π = π1 · · ·πn ∈ Sn contains pattern σ ∈ Sk if
there is some substring πi1πi2 · · ·πik which is order-isomorphic
to σ. If π does not contain σ, then π avoids σ.

Example: 412563 contains 132, but avoids 321.

Notation

For pattern σ ∈ Sk , let Sn(σ) be the set of permutations of
length n which avoid σ, and let Sn(σ) = |Sn(σ)| denote the
number of such permutations.
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Even Permutations

Notation

For permutation π, let inv(π) be the inversion number of π, i.e.

inv(π) = |{(i , j) : i < j , πi > πj}|.

The sign of a permutation is sgn(π) = (−1)inv(π).

A permutation π is even [resp., odd] if inv(π) is even [resp.,
odd].

Notation

Let En denote the even permutations of length n (i.e., the
alternating group).
Let En(σ) = Sn(σ) ∩ En be the set of even permutations
avoiding σ, and En(σ) = |En(σ)| be its size.
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Wilf-Equivalence

Two patterns σ, τ are [classically] Wilf-equivalent if
Sn(σ) = Sn(τ) for all n ≥ 0. We denote this σ ∼Sn τ .

Two patterns σ, τ are even-Wilf-equivalent if En(σ) = En(τ)
for all n ≥ 0. We denote this σ ∼En τ .

Goal

Explore the equivalence relation ∼En . In particular, which
results regarding classical Wilf-equivalence extend to
even-Wilf-equivalence?
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Similar Work

Similar questions have already been examined for pattern
avoidance by involutions, yielding a concept of
involution-Wilf-equivalence. These include:
Guibert (1995), Guibert-Pergola-Pinzani (2001), Jaggard
(2003), Bousqet-Mélou-Steingŕımsson (2005),
Dukes-Jelinek-Mansour-Reifegerste (2007), Jaggard-Marincel
(to appear).

Likewise, explorations of enumeration of classes En(B) for
various sets of patterns B have already started.

1 Mansour (2004): Even permutations with k copies of 132

2 Mansour (2006): Even permutations avoiding 132 and
another (arbitrary) pattern β

3 Albert-Atkinson-Vatter (2009): Even separable
permutations

4 B (PP2009): Enumeration schemes for En(B)
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Same Sign Required

We begin with a very simple result.

Lemma

If σ, τ ∈ Sk have different signs, then σ 6∼En τ .

Proof.

If σ is even and τ is odd, then Ek(σ) = Ek \ {σ} while
Ek(τ) = Ek .
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Symmetries

We define three trivial symmetries, as implied by the dihedral
group D4.

Definition

The reverse of π = π1π2 . . . πn is denoted
πr := πnπn−1 . . . π1.
Example: 1423r = 3241.

The complement of π ∈ Sn is denoted
πc := (n + 1− π1)(n + 1− π2) . . . (n + 1− πn).
Example: 1423c = 4132

The inverse of π is denoted π−1.
Example: 1423−1 = 1342
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Symmetries and Sign

The trivial symmetries affect sign as follows:

Lemma

The sign of a permutation π ∈ Sn in the following ways:

(a.) sgn(π) = sgn(πr ) if and only if n ≡ 0, 1 (mod 4).

(b.) sgn(π) = sgn(πc) if and only if n ≡ 0, 1 (mod 4).

(c.) sgn(π) = sgn(π−1)
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Symmetries and Equivalence

For classical Wilf-equivalence, σ ∼Sn σ
r ∼Sn σ

c ∼Sn σ
−1.

This does not transfer to even-Wilf-equivalence, e.g.,
1234 6∼En 4321.

Each orbit over D4 yields two trivial families of
even-Wilf-equivlences:

Lemma

For a pattern σ, we have the following trivial equivalences:

σ ∼En σ−1 ∼En σrc ∼En
(
σ−1

)rc

σr ∼En σc ∼En
(
σ−1

)r ∼En
(
σ−1

)c
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Classification of S2

Clearly 12 6∼En 21, since they have opposite signs.

Furthermore, En(21) = 1 for all n ≥ 1 while

En(12) =

{
0 n = 0, 1 (mod 4), n ≥ 2
1 otherwise
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Classification of S3

Simion and Schmidt implicitly classified patterns in S3 by ∼En.
They count En(σ)− On(σ) for σ ∈ S3. Their results imply:

Corollary (Simion and Schmidt (1985))

123 ∼En 231 ∼En 312

321 ∼En 213 ∼En 132

Observe the two even-Wilf-equivalence classes are S3 ∩ E3 and
S3 \ E3.
(For pattern-avoidance by involutions, the equivalence class S3

splits similarly into S3 ∩ I3 and S3 \ I3)

This suggests: If σ ∼Sn τ and sgn(σ) = sgn(τ) then σ ∼En τ .
This is false: e.g., 1234 6∼En 4321 although 1234, 4321 ∈ E4
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Direct Sum

The next few results make use of the direct sum of two
patterns.
The direct sum of two permutations, α ∈ Sk and β ∈ S`, is the
length-(k + `) permutation

α⊕ β := α1α2 · · ·αk(β1 + k + 1)(β2 + k + 1) · · · (β` + k + 1).

This is most easily seen as placing β above and to the right of
α.

Figure: 312⊕ 2413 = 3125746
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Prefix Reversal

The following result, nicknamed “prefix reversal,” has been
instrumental in the classical case of Wilf-equivalence.

Theorem (Backelin, West, Xin (2007))

t(t − 1) . . . 21⊕ σ s∼Sn 12 . . . (t − 1)t ⊕ σ for any pattern σ.

The relation
s∼Sn denotes shape-Wilf-equivalence, which is

stronger than ∼Sn and will be explained shortly.

This will not extend directly to even-Wilf-equivalence, as
indicated by 123 6∼En 321 and 1234 6∼En 4321. Something
weaker does extend, however.
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Prefix Manipulation

Proposition (Backelin, West, Xin (2007))

t(t − 1) . . . 21⊕ σ s∼Sn (t − 1) . . . 21t ⊕ σ for any pattern σ.

This proposition restricts to even-Wilf-equivalence in certain
cases.

Proposition (B. and Jaggard (2010))

If t is odd, then t(t − 1) . . . 21⊕ σ s∼En (t − 1) . . . 21t ⊕ σ for
any pattern σ.
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Transversals in Young Diagrams

A transversal π in Young diagram λ = (λ1, λ2, . . . , λn) is a
placement of n rooks in boxes of λ such that there is exactly
one rook in every row and column. Clearly π can be written as
a permutation in Sn.

Figure: Transversal π = 45321 of λ = (5, 5, 5, 3, 2).

A transversal π is even if π is even as a permutation.
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Pattern Avoidance for Transversals

A transversal π of Young diagram λ contains σ if

π contains σ as a permutation and

λ contains the entire square formed by the intersection of
the rows and columns containing the rooks of π forming σ.

Otherwise π avoids σ.

Example:

Transversal π = 45321 of λ = (5, 5, 5, 3, 2) contains
321, but avoids 231

Note: Pattern avoidance is dependent on λ, but sign is not.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Pattern Avoidance for Transversals

A transversal π of Young diagram λ contains σ if

π contains σ as a permutation and

λ contains the entire square formed by the intersection of
the rows and columns containing the rooks of π forming σ.

Otherwise π avoids σ.

Example: Transversal π = 45321 of λ = (5, 5, 5, 3, 2) contains
321

, but avoids 231

Note: Pattern avoidance is dependent on λ, but sign is not.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Pattern Avoidance for Transversals

A transversal π of Young diagram λ contains σ if

π contains σ as a permutation and

λ contains the entire square formed by the intersection of
the rows and columns containing the rooks of π forming σ.

Otherwise π avoids σ.

Example: Transversal π = 45321 of λ = (5, 5, 5, 3, 2) contains
321

, but avoids 231

Note: Pattern avoidance is dependent on λ, but sign is not.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Pattern Avoidance for Transversals

A transversal π of Young diagram λ contains σ if

π contains σ as a permutation and

λ contains the entire square formed by the intersection of
the rows and columns containing the rooks of π forming σ.

Otherwise π avoids σ.

Example: Transversal π = 45321 of λ = (5, 5, 5, 3, 2) contains
321, but avoids 231

Note: Pattern avoidance is dependent on λ, but sign is not.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Pattern Avoidance for Transversals

A transversal π of Young diagram λ contains σ if

π contains σ as a permutation and

λ contains the entire square formed by the intersection of
the rows and columns containing the rooks of π forming σ.

Otherwise π avoids σ.

Example: Transversal π = 45321 of λ = (5, 5, 5, 3, 2) contains
321, but avoids 231

Note: Pattern avoidance is dependent on λ, but sign is not.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Pattern Avoidance for Transversals

A transversal π of Young diagram λ contains σ if

π contains σ as a permutation and

λ contains the entire square formed by the intersection of
the rows and columns containing the rooks of π forming σ.

Otherwise π avoids σ.

Example: Transversal π = 45321 of λ = (5, 5, 5, 3, 2) contains
321, but avoids 231

Note: Pattern avoidance is dependent on λ, but sign is not.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Shape-Wilf-Equivalence

Definition

Let Sλ(σ) be the set of transversals of λ avoiding σ, and
Sλ(σ) = |Sλ(σ)|.
If Sλ(σ) = Sλ(τ) for all λ, then σ and τ are
shape-Wilf-equivalent and we write σ

s∼Sn τ .

This definition extends to even transversals as well.

Definition

Let Eλ(σ) be the set of even transversals of λ avoiding σ, and
Eλ(σ) = |Eλ(σ)|.
If Eλ(σ) = Eλ(τ) for all λ, then σ and τ are
even-shape-Wilf-equivalent and we write σ

s∼En τ .
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Sλ(σ) = |Sλ(σ)|.
If Sλ(σ) = Sλ(τ) for all λ, then σ and τ are
shape-Wilf-equivalent and we write σ

s∼Sn τ .

This definition extends to even transversals as well.

Definition

Let Eλ(σ) be the set of even transversals of λ avoiding σ, and
Eλ(σ) = |Eλ(σ)|.
If Eλ(σ) = Eλ(τ) for all λ, then σ and τ are
even-shape-Wilf-equivalent and we write σ

s∼En τ .
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Shape-Wilf-Equivalence and Direct Sums

Backelin, West, and Xin show that shape-Wilf-equivalence
combines well with direct sums.

Lemma (Backelin, West, Xin (2007))

For patterns α and β, α
s∼Sn β implies α⊕ σ s∼Sn β ⊕ σ.

This lemma refines to even transversals as well.

Lemma (B. and Jaggard (2010))

For patterns α and β, α
s∼En β implies α⊕ σ s∼En β ⊕ σ.
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Shape-Wilf-Equivalence and Direct Sums

Backelin, West, and Xin show that shape-Wilf-equivalence
combines well with direct sums.

Lemma (Backelin, West, Xin (2007))

For patterns α and β, α
s∼Sn β implies α⊕ σ s∼Sn β ⊕ σ.

This lemma refines to even transversals as well.

Lemma (B. and Jaggard (2010))

For patterns α and β, α
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Prefix Manipulation

By the previous lemma,
t(t − 1) · · · 21⊕ σ s∼Sn (t − 1) · · · 21t ⊕ σ follows from a proof
that

Sλ(t(t − 1) · · · 21) = Sλ((t − 1) · · · 21t).

Backelin, West, and Xin provide a bijection
φ∗t : Sλ((t − 1) · · · 21t)→ Sλ(t(t − 1) · · · 21).

We will demonstrate that φ∗t preserves sign when t is odd.

This implies for odd t,

Eλ(t(t − 1) · · · 21) = Eλ((t − 1) · · · 21t),

which implies t(t − 1) · · · 21⊕ σ s∼En (t − 1) · · · 21t ⊕ σ.
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Prefix Manipulation

By the previous lemma,
t(t − 1) · · · 21⊕ σ s∼Sn (t − 1) · · · 21t ⊕ σ follows from a proof
that

Sλ(t(t − 1) · · · 21) = Sλ((t − 1) · · · 21t).

Backelin, West, and Xin provide a bijection
φ∗t : Sλ((t − 1) · · · 21t)→ Sλ(t(t − 1) · · · 21).

We will demonstrate that φ∗t preserves sign when t is odd.

This implies for odd t,

Eλ(t(t − 1) · · · 21) = Eλ((t − 1) · · · 21t),

which implies t(t − 1) · · · 21⊕ σ s∼En (t − 1) · · · 21t ⊕ σ.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

A bijective proof

Let Jt = t(t − 1) · · · 21 and Ft = (t − 1) · · · 21t.

We first recall the bijection φ∗t : Sλ(Ft)→ Sλ(Jt) as
constructed by Backelin et al.

It works by converting copies of Jt into copies of Ft via an
iterated operation φt .
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A bijective proof

Let Jt = t(t − 1) · · · 21 and Ft = (t − 1) · · · 21t.

We first recall the bijection φ∗t : Sλ(Ft)→ Sλ(Jt) as
constructed by Backelin et al.

It works by converting copies of Jt into copies of Ft via an
iterated operation φt .
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: The transversal π in Sλ(F5)
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: An instance of J5.
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Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: An instance of J5.
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Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: An instance of J5.
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: An instance of J5.
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: An instance of J5.
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: An instance of J5.
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Candidates for “first letter.”
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Select the lowest “first letter,” a1
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: This a1 participates in four J5’s
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Two candidates for a2
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Select the leftmost candidate for a2
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Choose leftmost candidate for a3
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Choose leftmost candidate for a4
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Two candidates for a5
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Choose the leftmost candidate for a5
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: We have now selected a J5
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The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Rearrange the selected J5 into an F5



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

The map φt in pictures (for t = 5)

Suppose π ∈ Sλ(Ft). Then an application of φt proceeds as
follows:

Figure: Left with a new transversal, π′
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More about φt

One application of φt does not remove all copies of Jt .

The operation φt is repeated until all occurences of Jt are
removed.

The iterated map φ∗t : Sλ(Ft)→ Sλ(Jt) is a bijection, with
inverse

(
φ−1

t

)∗
This bijection provides the proof for Ft

s∼Sn Jt , which implies
Ft ⊕ σ

s∼Sn Jt ⊕ σ.
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The iterated map φ∗t : Sλ(Ft)→ Sλ(Jt) is a bijection, with
inverse

(
φ−1

t

)∗
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More about φt

One application of φt does not remove all copies of Jt .

The operation φt is repeated until all occurences of Jt are
removed.

The iterated map φ∗t : Sλ(Ft)→ Sλ(Jt) is a bijection, with
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(
φ−1
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The map φt and sign

Claim

The operation φt preserves sign if and only if t is odd.

Figure: The change from Jt to Ft
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The map φt and sign

Figure: The change from Jt to Ft

This is multiplication by the cyclic permutation (a1 a2 · · · at),
which is an even permutation if and only if t is odd.
Thus φt is sign-preserving if and only if t is odd.
Therefore, if t is odd then φ∗t preserves sign.
Hence Jt

s∼En Ft when t is odd, so Jt ⊕ σ
s∼En Ft ⊕ σ when t is

odd.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

The map φt and sign

Figure: The change from Jt to Ft

This is multiplication by the cyclic permutation (a1 a2 · · · at),
which is an even permutation if and only if t is odd.
Thus φt is sign-preserving if and only if t is odd.
Therefore, if t is odd then φ∗t preserves sign.
Hence Jt
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s∼En Ft ⊕ σ when t is

odd.
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Figure: The change from Jt to Ft

This is multiplication by the cyclic permutation (a1 a2 · · · at),
which is an even permutation if and only if t is odd.
Thus φt is sign-preserving if and only if t is odd.
Therefore, if t is odd then φ∗t preserves sign.
Hence Jt

s∼En Ft when t is odd, so Jt ⊕ σ
s∼En Ft ⊕ σ when t is

odd.
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The map φt and sign

Figure: The change from Jt to Ft

This is multiplication by the cyclic permutation (a1 a2 · · · at),
which is an even permutation if and only if t is odd.
Thus φt is sign-preserving if and only if t is odd.
Therefore, if t is odd then φ∗t preserves sign.
Hence Jt

s∼En Ft when t is odd, so Jt ⊕ σ
s∼En Ft ⊕ σ when t is

odd.
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When t is even

Observe that if t is even, each non-trivial application of φt

reverses sign.

However, φt may be iterated an even or odd number of times
dependent on the given π ∈ Sλ(Ft). Hence φ∗t does not respect
sign when t is even.

It can be seen that Eλ(F4) 6= Eλ(J4) to confirm this
computationally.
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Observe that if t is even, each non-trivial application of φt

reverses sign.

However, φt may be iterated an even or odd number of times
dependent on the given π ∈ Sλ(Ft). Hence φ∗t does not respect
sign when t is even.

It can be seen that Eλ(F4) 6= Eλ(J4) to confirm this
computationally.
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Other extensions do not work

Let It = 12 · · · t be the increasing permutation.
Backelin et al. actually prove Jt

s∼Sn Jk ⊕ It−k for any
0 ≤ k ≤ t.
This does not hold for

s∼En , nor even ∼En. Confirmed
computationally:

E7(54321) = E7(4321 5) < E7(321 45) = E7(21 345) < E7(1 2345)
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X Introduction and Statement of Goal

X Elementary Results

X Classification of S2 and S3

X Prefix Manipulation

Classification of S4

Partial Classification of S5 and S6

Concluding Remarks
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Classification of S4

We have thus shown 3214 ∼En 2134 which, when combined
with the equivalences implied by symmetries and computation
of En(σ) for n ≤ 7, completes the classification of length 4
patterns under even-Wilf-equivalence.

Figure: Equivalence classes under ∼En
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Classification of S4

σ sgn(σ) E4(σ) E5(σ) E6(σ) E7(σ) E8(σ) E9(σ) E10(σ)
1243∗ −1 12 52 257 1381 7885 47181 293297
2134 −1 12 52 257 1381 7885 47181 293297
3214 −1 12 52 257 1381 7885 47181 293297
1432 −1 12 52 257 1381 7885 47181 293297
3421∗ −1 12 52 256 1380 7885 47181 293293
4312 −1 12 52 256 1380 7885 47181 293293
2341 −1 12 52 256 1380 7885 47181 293293
4123 −1 12 52 256 1380 7885 47181 293293
2314 1 11 51 257 1371 7742 45622 277826
1423 1 11 51 257 1371 7742 45622 277826
3124 1 11 51 257 1371 7742 45622 277826
1342 1 11 51 257 1371 7742 45622 277826
4132 1 11 51 255 1369 7742 45622 277836
3241 1 11 51 255 1369 7742 45622 277836
4213 1 11 51 255 1369 7742 45622 277836
2413 1 11 51 255 1369 7742 45622 277836
2413 −1 12 52 256 1370 7743 45623 277831
3142 −1 12 52 256 1370 7743 45623 277831
1234∗ 1 11 51 258 1382 7879 47175 293311
4321∗ 1 11 51 255 1379 7879 47175 293279
2143 1 11 51 256 1380 7885 47181 293301
3412 1 11 51 257 1381 7885 47181 293289
1324 −1 12 52 258 1382 7903 47393 296002
4231 −1 12 52 255 1380 7903 47393 295948
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Partial Classification of S5

Computations of En(σ) for n ≤ 11 and σ ∈ S5 suggest there
are four even-Wilf-equivalence classes which contain patterns
which are not trivially equivalent under symmetries.
Some of the putative equivalences can be proven by prefix
manipulation and symmetry:

Corollary

54321 ∼En 43215 ∼En 15432

32154 ∼En 21354 ∼En 21543

12345 ∼En 51234 ∼En 23451

45123 ∼En 45312 ∼En 34512

32145 ∼En 21345 ∼En 12354 ∼En 12543

54123 ∼En 54312 ∼En 34521 ∼En 45321
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Conjectures for Length 5 Patterns

There remain a few conjectured equivalences for length 5
patterns. In the classical case, these were proven by symmetries
and prefix reversal.

Conjecture

12345 ∼En 45123 (equivalently, 54321 ∼En 32154)

12354 ∼En 45321

13524 ∼En 42531

The first conjecture implies
12345 ∼En 2345 1 ∼En 345 12 ∼En 45 123 ∼En 5 1234.
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Conjectures for Length 5 Patterns

Two of the previous conjectures have the form σ ∼En σr , which
suggests:

Question

When is σ ∼En σr ?

This will only occur for σ ∈ Sk where k = 0, 1 (mod 4), since
otherwise sgn(σ) 6= sgn(σr ).

If σr = σ−1, then σ ∼En σr , but this not necessary.
Length 4 and 5 patterns which are even-Wilf-equivalent to their
reverses:

2413 ∼En 3142 (σr = σ−1)

25314 ∼En 41352 (σr = σ−1)

12354 ∼En 45321 (conjectured based on n ≤ 11)

12543 ∼En 34521 (conjectured based on n ≤ 11)

13524 ∼En 42531 (conjectured based on n ≤ 11)
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otherwise sgn(σ) 6= sgn(σr ).

If σr = σ−1, then σ ∼En σr , but this not necessary.
Length 4 and 5 patterns which are even-Wilf-equivalent to their
reverses:
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Partial Classification of S6

For patterns of length 6, prefix manipulation and symmetries
account for all instances of even-Wilf-equivalence except for
one conjectured class (and its reverse)

Conjecture

231564 ∼En 312564 (equivalently, 465132 ∼En 465213)

We have confirmed En(231564) = En(312564) for n ≤ 11.

It was shown by Stankova and West (2002) that
231564

s∼Sn 312564 when they showed that 231
s∼Sn 312. This

suggests the following stronger conjecture:

Conjecture

231
s∼En 312

We have confirmed Eλ(231) = Eλ(312) for all shapes λ which
fit in a 9× 9 square.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Partial Classification of S6

For patterns of length 6, prefix manipulation and symmetries
account for all instances of even-Wilf-equivalence except for
one conjectured class (and its reverse)

Conjecture

231564 ∼En 312564 (equivalently, 465132 ∼En 465213)

We have confirmed En(231564) = En(312564) for n ≤ 11.

It was shown by Stankova and West (2002) that
231564

s∼Sn 312564 when they showed that 231
s∼Sn 312. This

suggests the following stronger conjecture:

Conjecture

231
s∼En 312

We have confirmed Eλ(231) = Eλ(312) for all shapes λ which
fit in a 9× 9 square.
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Reflections on Even-Wilf-Equivalence

So far, all proven and conjectured even-Wilf-equivalences are
between classically Wilf-equivalent patterns. This suggests:

Conjecture

Even-Wilf-equivalence implies classical Wilf-equivalence.

The analogous conjecture is still open for avoidance by
involutions.
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Number of equivalence classes

The even-Wilf-equivalence relation is a very strong condition.
Consider the number of equivalence classes under ∼Sn versus
∼En

n 2 3 4 5 6

Trivial Wilf-classes 1 2 7 23 115

Wilf-equivalence 1 1 3 16 91

Trivial Even-Wilf-classes 2 4 13 45 230

even-Wilf-equivalence 2 2 11 [35, 39] {216, 218}

It appears that for each n there are at least twice as many
equivalence classes under even-Wilf-equivalence as classical
Wilf-equivalence.
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Relaxing Conditions

There are many pairs (σ, τ) where En(σ) = En(τ) for infinitely
many, but not all, n ≥ 0:

En(σ) = En(σr ) = En(σc) for any n = 0, 1 (mod 4)

Data suggest instances of E2n(σ) = E2n(τ), e.g., 12345
and 12354

Data suggest instances of En(σ) = En(τ) for any
n = 0, 1, 2 (mod 4).

Asymptotic equivalence may also be interesting, where σ and τ
are asymptotically even-Wilf-equivalent if En(σ) ∼ En(τ) as
n→∞.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Relaxing Conditions

There are many pairs (σ, τ) where En(σ) = En(τ) for infinitely
many, but not all, n ≥ 0:

En(σ) = En(σr ) = En(σc) for any n = 0, 1 (mod 4)

Data suggest instances of E2n(σ) = E2n(τ), e.g., 12345
and 12354

Data suggest instances of En(σ) = En(τ) for any
n = 0, 1, 2 (mod 4).

Asymptotic equivalence may also be interesting, where σ and τ
are asymptotically even-Wilf-equivalent if En(σ) ∼ En(τ) as
n→∞.



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Other curious behavior of En(σ)

Using enumeration schemes, it has been determined for n ≤ 15
that:

En(1234)− En(1243) = 0, 0, 0,−1,−1, 1, 1,−6,−6, 14, 14,

−69,−69, 332, 332, ...

Observe the sign changes, depending on n (mod 4). Perhaps
of note is that 1234 ∼Sn 1243.
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Conclusion

We have proven that
t(t − 1) · · · 21⊕ σ ∼En (t − 1) · · · 21 t ⊕ σ when t is odd by
refining a result of Backelin, West, and Xin.

We have classified patterns in S4 according to ∼En, and
partially classified S5 and S6

Question: When is σ ∼En σr ? A full characterization would
complete the classification of S5.

Conjecture: 231
s∼En 312, which refines a result of

Stankova and West. This would complete the
classification of S6.

Conjecture: If σ ∼En τ , then σ ∼Sn τ .



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Conclusion

We have proven that
t(t − 1) · · · 21⊕ σ ∼En (t − 1) · · · 21 t ⊕ σ when t is odd by
refining a result of Backelin, West, and Xin.

We have classified patterns in S4 according to ∼En, and
partially classified S5 and S6

Question: When is σ ∼En σr ? A full characterization would
complete the classification of S5.

Conjecture: 231
s∼En 312, which refines a result of

Stankova and West. This would complete the
classification of S6.

Conjecture: If σ ∼En τ , then σ ∼Sn τ .



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Conclusion

We have proven that
t(t − 1) · · · 21⊕ σ ∼En (t − 1) · · · 21 t ⊕ σ when t is odd by
refining a result of Backelin, West, and Xin.

We have classified patterns in S4 according to ∼En, and
partially classified S5 and S6

Question: When is σ ∼En σr ? A full characterization would
complete the classification of S5.

Conjecture: 231
s∼En 312, which refines a result of

Stankova and West. This would complete the
classification of S6.

Conjecture: If σ ∼En τ , then σ ∼Sn τ .



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Conclusion

We have proven that
t(t − 1) · · · 21⊕ σ ∼En (t − 1) · · · 21 t ⊕ σ when t is odd by
refining a result of Backelin, West, and Xin.

We have classified patterns in S4 according to ∼En, and
partially classified S5 and S6

Question: When is σ ∼En σr ? A full characterization would
complete the classification of S5.

Conjecture: 231
s∼En 312, which refines a result of

Stankova and West. This would complete the
classification of S6.

Conjecture: If σ ∼En τ , then σ ∼Sn τ .



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Conclusion

We have proven that
t(t − 1) · · · 21⊕ σ ∼En (t − 1) · · · 21 t ⊕ σ when t is odd by
refining a result of Backelin, West, and Xin.

We have classified patterns in S4 according to ∼En, and
partially classified S5 and S6

Question: When is σ ∼En σr ? A full characterization would
complete the classification of S5.

Conjecture: 231
s∼En 312, which refines a result of

Stankova and West. This would complete the
classification of S6.

Conjecture: If σ ∼En τ , then σ ∼Sn τ .



Some General
Results for
Even-Wilf-

Equivalence

Baxter and
Jaggard

Introduction

Elementary
Results

Short Patterns

Prefix
Manipulation

Classification
of Patterns

Concluding
Remarks

Conclusion

We have proven that
t(t − 1) · · · 21⊕ σ ∼En (t − 1) · · · 21 t ⊕ σ when t is odd by
refining a result of Backelin, West, and Xin.

We have classified patterns in S4 according to ∼En, and
partially classified S5 and S6

Question: When is σ ∼En σr ? A full characterization would
complete the classification of S5.

Conjecture: 231
s∼En 312, which refines a result of

Stankova and West. This would complete the
classification of S6.

Conjecture: If σ ∼En τ , then σ ∼Sn τ .


	Introduction
	Elementary Results
	Short Patterns
	Prefix Manipulation
	Classification of Patterns
	Concluding Remarks

