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The spoiler

Theorem
Every subclass of S either:

◮ contains (at least) one of A, B, C, or D, or,
◮ has a rational generating function.



The spoiler

But where’s the rôle for Mr X?

Theorem
Every subclass of S either:

◮ contains (at least) one of A, B, C, or D, or,
◮ has a rational generating function.



The real spoiler

Theorem
Every atomic subclass of S either:

◮ contains (at least) one of A, B, C, or D, or,
◮ (condition X) is contained in the inflation, X [U ] of one of its

proper subclasses.
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Well order in the atomic age

A class is atomic if every two permutations in the class have a
common extension in the class.

◮ An atomic class is not the finite union of proper subclasses.
◮ A partially well ordered class is a finite union of atomic

classes.
◮ If P and Q are hereditary properties and every element of

an atomic class satisfies P or Q, then every member
satisfies P or every member satisfies Q.



The real spoiler (again)

Theorem
Every atomic subclass of S either:

◮ contains (at least) one of A, B, C, or D, or,
◮ (condition X) is contained in the inflation, X [U ] of one of its

proper subclasses.
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The highlight reel (I)

Let an atomic subclass Y of S be given.

◮ If the subclass consisting of all subpermutations of plus
(minus) indecomposable elements of Y is proper, then
condition X holds.

◮ If not, and Y is ⊕-closed, then for π ∈ Y, 1 ⊕ π � θ for
some ⊕-indecomposable θ. So, either 1 ⊖ (1 ⊕ π), or
(1 ⊕ π) ⊖ 1 belongs to Y. By atomicity, 1 ⊖ Y ⊆ Y or
Y ⊖ 1 ⊆ Y. So C ⊆ Y or D ⊆ Y .



The highlight reel (I)

Let an atomic subclass Y of S be given.

◮ If the subclass consisting of all subpermutations of plus
(minus) indecomposable elements of Y is proper, then
condition X holds.

◮ If not, and Y is ⊕-closed, then for π ∈ Y, 1 ⊕ π � θ for
some ⊕-indecomposable θ. So, either 1 ⊖ (1 ⊕ π), or
(1 ⊕ π) ⊖ 1 belongs to Y. By atomicity, 1 ⊖ Y ⊆ Y or
Y ⊖ 1 ⊆ Y. So C ⊆ Y or D ⊆ Y .

◮ Similarly if Y is ⊖ closed.



The highlight reel (II)

So, Y is atomic, neither ⊕ nor ⊖ closed, and we may assume is
neither the sum or skew sum of two proper subclasses (lest
condition X hold).
Define:

YSW = {σ ∈ Y : σ ⊕ Y ⊆ Y}
YSE = {σ ∈ Y : Y ⊖ σ ⊆ Y}
YNW = {σ ∈ Y : σ ⊖ Y ⊆ Y}
YNE = {σ ∈ Y : Y ⊕ σ ⊆ Y}

Each is a proper subclass of Y (possibly empty). Put their
union in U .



The highlight reel (III)

Consider π = γ ⊕ τ ∈ Y. If γ ∈ YSE , or τ ∈ YNW then “locally”
condition X holds. If not, define:

Fγ = {σ ∈ Y : γ ⊕ σ ∈ Y}
Eγ = {σ ∈ Y : σ ⊕Fγ ⊆ Y}

Both are proper. Moreover (magic), there are only finitely many
different possibilities. So, put them all in U (and do the same for
minus decomposable permutations).



The highlight reel (III)

Consider π = γ ⊕ τ ∈ Y. If γ ∈ YSE , or τ ∈ YNW then “locally”
condition X holds. If not, define:

Fγ = {σ ∈ Y : γ ⊕ σ ∈ Y}
Eγ = {σ ∈ Y : σ ⊕Fγ ⊆ Y}

Both are proper. Moreover (magic), there are only finitely many
different possibilities. So, put them all in U (and do the same for
minus decomposable permutations).

Finis.
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