The weak Bruhat order and separable permutations

Fan Wei
Massachusetts Institute of Technology
Let \mathfrak{S}_{n} denote the symmetric group of all permutations of $1,2, \ldots n$, partially ordered by the weak (Bruhat) order. Thus for any permutation $w \in \mathfrak{S}_{n}$, the rank $\ell(w)$ of w in \mathfrak{S}_{n} is the number of inversions in w. It follows that the rank-generating function of \mathfrak{S}_{n} is

$$
F\left(\mathfrak{S}_{n}, q\right)=\sum_{w \in \mathfrak{S}_{n}} q^{\ell(w)}=(n)!
$$

where $(n)!=(1)(2) \cdots(n)$ and $(i)=1+q+q^{2}+\cdots+q^{i-1}$.
For any $w \in \mathfrak{S}_{n}$, we define two graded posets associated with $w: \Lambda_{w}=\left\{v \in \mathfrak{S}_{n}: v \leq\right.$ $w\}$ and $V_{w}=\left\{v \in \mathfrak{S}_{n}: v \geq w\right\}$. In V_{w}, we define the rank of $v \in V_{w}$ to be $\ell(v)-\ell(w)$.

In general the rank-generating functions of Λ_{w} and V_{w} are messy. However, in this talk we will show that if w is a separable permutation, i.e., 3142 -avoiding and 2413-avoiding, then there is the surprising formula

$$
F\left(\Lambda_{w}, q\right) F\left(V_{w}, q\right)=(n)!
$$

Moreover, we define a bijection $\varphi: \Lambda_{w} \times V_{w} \rightarrow \mathfrak{S}_{n}$ satisfying $\ell(u)+\ell(v)-\ell(w)=$ $\ell(\varphi(u, v))$, and we give a convenient method to find an explicit formula for $F\left(\Lambda_{w}, q\right)$ and $F\left(V_{w}, q\right)$. In particular, we find that if w is a 231-avoiding, or 213-avoiding, or 312-avoiding, or 132-avoiding permutation, a more direct expression for $F\left(\Lambda_{w}, q\right)$ and $F\left(V_{w}, q\right)$ can be given. We also deduce from our formula for $F\left(\Lambda_{w}, q\right)$ and $F\left(V_{w}, q\right)$ that the posets Λ_{w} and V_{w} are rank-symmetric and rank-unimodal for all separable permutation w.

These results were obtained under the supervision of Richard Stanley when the author was an undergraduate at M.I.T.

